#ifndef _ROUNDED_RECT_ #define _ROUNDED_RECT_ struct RoundedRect { vec4 bounds; vec4 corner_widths; vec4 corner_heights; }; float ellipsis_dist (vec2 p, vec2 radius) { vec2 p0 = p / radius; vec2 p1 = 2.0 * p0 / radius; return (dot(p0, p0) - 1.0) / length (p1); } float ellipsis_coverage (vec2 point, vec2 center, vec2 radius) { float d = ellipsis_dist (point - center, radius); return clamp (0.5 - d, 0.0, 1.0); } float rounded_rect_coverage (RoundedRect r, vec2 p) { if (p.x < r.bounds.x || p.y < r.bounds.y || p.x >= r.bounds.z || p.y >= r.bounds.w) return 0.0; vec2 rad_tl = vec2(r.corner_widths.x, r.corner_heights.x); vec2 rad_tr = vec2(r.corner_widths.y, r.corner_heights.y); vec2 rad_br = vec2(r.corner_widths.z, r.corner_heights.z); vec2 rad_bl = vec2(r.corner_widths.w, r.corner_heights.w); vec2 ref_tl = r.bounds.xy + vec2( r.corner_widths.x, r.corner_heights.x); vec2 ref_tr = r.bounds.zy + vec2(-r.corner_widths.y, r.corner_heights.y); vec2 ref_br = r.bounds.zw + vec2(-r.corner_widths.z, -r.corner_heights.z); vec2 ref_bl = r.bounds.xw + vec2( r.corner_widths.w, -r.corner_heights.w); float d_tl = ellipsis_coverage(p, ref_tl, rad_tl); float d_tr = ellipsis_coverage(p, ref_tr, rad_tr); float d_br = ellipsis_coverage(p, ref_br, rad_br); float d_bl = ellipsis_coverage(p, ref_bl, rad_bl); vec4 corner_coverages = 1.0 - vec4(d_tl, d_tr, d_br, d_bl); bvec4 is_out = bvec4(p.x < ref_tl.x && p.y < ref_tl.y, p.x > ref_tr.x && p.y < ref_tr.y, p.x > ref_br.x && p.y > ref_br.y, p.x < ref_bl.x && p.y > ref_bl.y); return 1.0 - dot(vec4(is_out), corner_coverages); } RoundedRect rounded_rect_shrink (RoundedRect r, vec4 amount) { vec4 new_bounds = r.bounds + vec4(1.0,1.0,-1.0,-1.0) * amount.wxyz; vec4 new_widths = max (r.corner_widths - amount.wyyw, 0.0); vec4 new_heights = max (r.corner_heights - amount.xxzz, 0.0); return RoundedRect (new_bounds, new_widths, new_heights); } #endif