// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" // The code in this file implements stack trace walking for all architectures. // The most important fact about a given architecture is whether it uses a link register. // On systems with link registers, the prologue for a non-leaf function stores the // incoming value of LR at the bottom of the newly allocated stack frame. // On systems without link registers, the architecture pushes a return PC during // the call instruction, so the return PC ends up above the stack frame. // In this file, the return PC is always called LR, no matter how it was found. // // To date, the opposite of a link register architecture is an x86 architecture. // This code may need to change if some other kind of non-link-register // architecture comes along. // // The other important fact is the size of a pointer: on 32-bit systems the LR // takes up only 4 bytes on the stack, while on 64-bit systems it takes up 8 bytes. // Typically this is ptrSize. // // As an exception, amd64p32 has ptrSize == 4 but the CALL instruction still // stores an 8-byte return PC onto the stack. To accommodate this, we use regSize // as the size of the architecture-pushed return PC. // // usesLR is defined below. ptrSize and regSize are defined in stubs.go. const usesLR = GOARCH != "amd64" && GOARCH != "amd64p32" && GOARCH != "386" var ( // initialized in tracebackinit deferprocPC uintptr goexitPC uintptr jmpdeferPC uintptr mcallPC uintptr morestackPC uintptr mstartPC uintptr newprocPC uintptr rt0_goPC uintptr sigpanicPC uintptr systemstack_switchPC uintptr externalthreadhandlerp uintptr // initialized elsewhere ) func tracebackinit() { // Go variable initialization happens late during runtime startup. // Instead of initializing the variables above in the declarations, // schedinit calls this function so that the variables are // initialized and available earlier in the startup sequence. deferprocPC = funcPC(deferproc) goexitPC = funcPC(goexit) jmpdeferPC = funcPC(jmpdefer) mcallPC = funcPC(mcall) morestackPC = funcPC(morestack) mstartPC = funcPC(mstart) newprocPC = funcPC(newproc) rt0_goPC = funcPC(rt0_go) sigpanicPC = funcPC(sigpanic) systemstack_switchPC = funcPC(systemstack_switch) } // Traceback over the deferred function calls. // Report them like calls that have been invoked but not started executing yet. func tracebackdefers(gp *g, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer) { var frame stkframe for d := gp._defer; d != nil; d = d.link { fn := d.fn if fn == nil { // Defer of nil function. Args don't matter. frame.pc = 0 frame.fn = nil frame.argp = 0 frame.arglen = 0 frame.argmap = nil } else { frame.pc = uintptr(fn.fn) f := findfunc(frame.pc) if f == nil { print("runtime: unknown pc in defer ", hex(frame.pc), "\n") gothrow("unknown pc") } frame.fn = f frame.argp = uintptr(deferArgs(d)) setArgInfo(&frame, f, true) } frame.continpc = frame.pc if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) { return } } } // Generic traceback. Handles runtime stack prints (pcbuf == nil), // the runtime.Callers function (pcbuf != nil), as well as the garbage // collector (callback != nil). A little clunky to merge these, but avoids // duplicating the code and all its subtlety. func gentraceback(pc0 uintptr, sp0 uintptr, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int { if goexitPC == 0 { gothrow("gentraceback before goexitPC initialization") } g := getg() if g == gp && g == g.m.curg { // The starting sp has been passed in as a uintptr, and the caller may // have other uintptr-typed stack references as well. // If during one of the calls that got us here or during one of the // callbacks below the stack must be grown, all these uintptr references // to the stack will not be updated, and gentraceback will continue // to inspect the old stack memory, which may no longer be valid. // Even if all the variables were updated correctly, it is not clear that // we want to expose a traceback that begins on one stack and ends // on another stack. That could confuse callers quite a bit. // Instead, we require that gentraceback and any other function that // accepts an sp for the current goroutine (typically obtained by // calling getcallersp) must not run on that goroutine's stack but // instead on the g0 stack. gothrow("gentraceback cannot trace user goroutine on its own stack") } gotraceback := gotraceback(nil) if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp. if gp.syscallsp != 0 { pc0 = gp.syscallpc sp0 = gp.syscallsp if usesLR { lr0 = 0 } } else { pc0 = gp.sched.pc sp0 = gp.sched.sp if usesLR { lr0 = gp.sched.lr } } } nprint := 0 var frame stkframe frame.pc = pc0 frame.sp = sp0 if usesLR { frame.lr = lr0 } waspanic := false wasnewproc := false printing := pcbuf == nil && callback == nil _defer := gp._defer for _defer != nil && uintptr(_defer.argp) == _NoArgs { _defer = _defer.link } // If the PC is zero, it's likely a nil function call. // Start in the caller's frame. if frame.pc == 0 { if usesLR { frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp)) frame.lr = 0 } else { frame.pc = uintptr(*(*uintreg)(unsafe.Pointer(frame.sp))) frame.sp += regSize } } f := findfunc(frame.pc) if f == nil { if callback != nil { print("runtime: unknown pc ", hex(frame.pc), "\n") gothrow("unknown pc") } return 0 } frame.fn = f n := 0 for n < max { // Typically: // pc is the PC of the running function. // sp is the stack pointer at that program counter. // fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown. // stk is the stack containing sp. // The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp. f = frame.fn // Found an actual function. // Derive frame pointer and link register. if frame.fp == 0 { frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc)) if !usesLR { // On x86, call instruction pushes return PC before entering new function. frame.fp += regSize } } var flr *_func if topofstack(f) { frame.lr = 0 flr = nil } else if usesLR && f.entry == jmpdeferPC { // jmpdefer modifies SP/LR/PC non-atomically. // If a profiling interrupt arrives during jmpdefer, // the stack unwind may see a mismatched register set // and get confused. Stop if we see PC within jmpdefer // to avoid that confusion. // See golang.org/issue/8153. if callback != nil { gothrow("traceback_arm: found jmpdefer when tracing with callback") } frame.lr = 0 } else { if usesLR { if n == 0 && frame.sp < frame.fp || frame.lr == 0 { frame.lr = *(*uintptr)(unsafe.Pointer(frame.sp)) } } else { if frame.lr == 0 { frame.lr = uintptr(*(*uintreg)(unsafe.Pointer(frame.fp - regSize))) } } flr = findfunc(frame.lr) if flr == nil { // This happens if you get a profiling interrupt at just the wrong time. // In that context it is okay to stop early. // But if callback is set, we're doing a garbage collection and must // get everything, so crash loudly. if callback != nil { print("runtime: unexpected return pc for ", gofuncname(f), " called from ", hex(frame.lr), "\n") gothrow("unknown caller pc") } } } frame.varp = frame.fp if !usesLR { // On x86, call instruction pushes return PC before entering new function. frame.varp -= regSize } // Derive size of arguments. // Most functions have a fixed-size argument block, // so we can use metadata about the function f. // Not all, though: there are some variadic functions // in package runtime and reflect, and for those we use call-specific // metadata recorded by f's caller. if callback != nil || printing { frame.argp = frame.fp if usesLR { frame.argp += ptrSize } setArgInfo(&frame, f, callback != nil) } // Determine function SP where deferproc would find its arguments. var sparg uintptr if usesLR { // On link register architectures, that's the standard bottom-of-stack plus 1 word // for the saved LR. If the previous frame was a direct call to newproc/deferproc, // however, the SP is three words lower than normal. // If the function has no frame at all - perhaps it just started, or perhaps // it is a leaf with no local variables - then we cannot possibly find its // SP in a defer, and we might confuse its SP for its caller's SP, so // leave sparg=0 in that case. if frame.fp != frame.sp { sparg = frame.sp + regSize if wasnewproc { sparg += 3 * regSize } } } else { // On x86 that's the standard bottom-of-stack, so SP exactly. // If the previous frame was a direct call to newproc/deferproc, however, // the SP is two words lower than normal. sparg = frame.sp if wasnewproc { sparg += 2 * ptrSize } } // Determine frame's 'continuation PC', where it can continue. // Normally this is the return address on the stack, but if sigpanic // is immediately below this function on the stack, then the frame // stopped executing due to a trap, and frame.pc is probably not // a safe point for looking up liveness information. In this panicking case, // the function either doesn't return at all (if it has no defers or if the // defers do not recover) or it returns from one of the calls to // deferproc a second time (if the corresponding deferred func recovers). // It suffices to assume that the most recent deferproc is the one that // returns; everything live at earlier deferprocs is still live at that one. frame.continpc = frame.pc if waspanic { if _defer != nil && _defer.argp == sparg { frame.continpc = _defer.pc } else { frame.continpc = 0 } } // Unwind our local defer stack past this frame. for _defer != nil && (_defer.argp == sparg || _defer.argp == _NoArgs) { _defer = _defer.link } if skip > 0 { skip-- goto skipped } if pcbuf != nil { (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = frame.pc } if callback != nil { if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) { return n } } if printing { if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp) { // Print during crash. // main(0x1, 0x2, 0x3) // /home/rsc/go/src/runtime/x.go:23 +0xf // tracepc := frame.pc // back up to CALL instruction for funcline. if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry && !waspanic { tracepc-- } print(gofuncname(f), "(") argp := (*[100]uintptr)(unsafe.Pointer(frame.argp)) for i := uintptr(0); i < frame.arglen/ptrSize; i++ { if i >= 10 { print(", ...") break } if i != 0 { print(", ") } print(hex(argp[i])) } print(")\n") file, line := funcline(f, tracepc) print("\t", file, ":", line) if frame.pc > f.entry { print(" +", hex(frame.pc-f.entry)) } if g.m.throwing > 0 && gp == g.m.curg || gotraceback >= 2 { print(" fp=", hex(frame.fp), " sp=", hex(frame.sp)) } print("\n") nprint++ } } n++ skipped: waspanic = f.entry == sigpanicPC wasnewproc = f.entry == newprocPC || f.entry == deferprocPC // Do not unwind past the bottom of the stack. if flr == nil { break } // Unwind to next frame. frame.fn = flr frame.pc = frame.lr frame.lr = 0 frame.sp = frame.fp frame.fp = 0 frame.argmap = nil // On link register architectures, sighandler saves the LR on stack // before faking a call to sigpanic. if usesLR && waspanic { x := *(*uintptr)(unsafe.Pointer(frame.sp)) frame.sp += ptrSize f = findfunc(frame.pc) frame.fn = f if f == nil { frame.pc = x } else if f.frame == 0 { frame.lr = x } } } if pcbuf == nil && callback == nil { n = nprint } // If callback != nil, we're being called to gather stack information during // garbage collection or stack growth. In that context, require that we used // up the entire defer stack. If not, then there is a bug somewhere and the // garbage collection or stack growth may not have seen the correct picture // of the stack. Crash now instead of silently executing the garbage collection // or stack copy incorrectly and setting up for a mysterious crash later. // // Note that panic != nil is okay here: there can be leftover panics, // because the defers on the panic stack do not nest in frame order as // they do on the defer stack. If you have: // // frame 1 defers d1 // frame 2 defers d2 // frame 3 defers d3 // frame 4 panics // frame 4's panic starts running defers // frame 5, running d3, defers d4 // frame 5 panics // frame 5's panic starts running defers // frame 6, running d4, garbage collects // frame 6, running d2, garbage collects // // During the execution of d4, the panic stack is d4 -> d3, which // is nested properly, and we'll treat frame 3 as resumable, because we // can find d3. (And in fact frame 3 is resumable. If d4 recovers // and frame 5 continues running, d3, d3 can recover and we'll // resume execution in (returning from) frame 3.) // // During the execution of d2, however, the panic stack is d2 -> d3, // which is inverted. The scan will match d2 to frame 2 but having // d2 on the stack until then means it will not match d3 to frame 3. // This is okay: if we're running d2, then all the defers after d2 have // completed and their corresponding frames are dead. Not finding d3 // for frame 3 means we'll set frame 3's continpc == 0, which is correct // (frame 3 is dead). At the end of the walk the panic stack can thus // contain defers (d3 in this case) for dead frames. The inversion here // always indicates a dead frame, and the effect of the inversion on the // scan is to hide those dead frames, so the scan is still okay: // what's left on the panic stack are exactly (and only) the dead frames. // // We require callback != nil here because only when callback != nil // do we know that gentraceback is being called in a "must be correct" // context as opposed to a "best effort" context. The tracebacks with // callbacks only happen when everything is stopped nicely. // At other times, such as when gathering a stack for a profiling signal // or when printing a traceback during a crash, everything may not be // stopped nicely, and the stack walk may not be able to complete. // It's okay in those situations not to use up the entire defer stack: // incomplete information then is still better than nothing. if callback != nil && n < max && _defer != nil { if _defer != nil { print("runtime: g", gp.goid, ": leftover defer argp=", hex(_defer.argp), " pc=", hex(_defer.pc), "\n") } for _defer = gp._defer; _defer != nil; _defer = _defer.link { print("\tdefer ", _defer, " argp=", hex(_defer.argp), " pc=", hex(_defer.pc), "\n") } gothrow("traceback has leftover defers") } return n } func setArgInfo(frame *stkframe, f *_func, needArgMap bool) { frame.arglen = uintptr(f.args) if needArgMap && f.args == _ArgsSizeUnknown { // Extract argument bitmaps for reflect stubs from the calls they made to reflect. switch gofuncname(f) { case "reflect.makeFuncStub", "reflect.methodValueCall": arg0 := frame.sp if usesLR { arg0 += ptrSize } fn := *(**[2]uintptr)(unsafe.Pointer(arg0)) if fn[0] != f.entry { print("runtime: confused by ", gofuncname(f), "\n") gothrow("reflect mismatch") } bv := (*bitvector)(unsafe.Pointer(fn[1])) frame.arglen = uintptr(bv.n / 2 * ptrSize) frame.argmap = bv } } } func printcreatedby(gp *g) { // Show what created goroutine, except main goroutine (goid 1). pc := gp.gopc f := findfunc(pc) if f != nil && showframe(f, gp) && gp.goid != 1 { print("created by ", gofuncname(f), "\n") tracepc := pc // back up to CALL instruction for funcline. if pc > f.entry { tracepc -= _PCQuantum } file, line := funcline(f, tracepc) print("\t", file, ":", line) if pc > f.entry { print(" +", hex(pc-f.entry)) } print("\n") } } func traceback(pc uintptr, sp uintptr, lr uintptr, gp *g) { traceback1(pc, sp, lr, gp, 0) } // tracebacktrap is like traceback but expects that the PC and SP were obtained // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp. // Because they are from a trap instead of from a saved pair, // the initial PC must not be rewound to the previous instruction. // (All the saved pairs record a PC that is a return address, so we // rewind it into the CALL instruction.) func tracebacktrap(pc uintptr, sp uintptr, lr uintptr, gp *g) { traceback1(pc, sp, lr, gp, _TraceTrap) } func traceback1(pc uintptr, sp uintptr, lr uintptr, gp *g, flags uint) { var n int if readgstatus(gp)&^_Gscan == _Gsyscall { // Override registers if blocked in system call. pc = gp.syscallpc sp = gp.syscallsp flags &^= _TraceTrap } // Print traceback. By default, omits runtime frames. // If that means we print nothing at all, repeat forcing all frames printed. n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags) if n == 0 && (flags&_TraceRuntimeFrames) == 0 { n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames) } if n == _TracebackMaxFrames { print("...additional frames elided...\n") } printcreatedby(gp) } func callers(skip int, pcbuf *uintptr, m int) int { sp := getcallersp(unsafe.Pointer(&skip)) pc := uintptr(getcallerpc(unsafe.Pointer(&skip))) var n int systemstack(func() { n = gentraceback(pc, sp, 0, getg(), skip, pcbuf, m, nil, nil, 0) }) return n } func gcallers(gp *g, skip int, pcbuf *uintptr, m int) int { return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, pcbuf, m, nil, nil, 0) } func showframe(f *_func, gp *g) bool { g := getg() if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig) { return true } traceback := gotraceback(nil) name := gostringnocopy(funcname(f)) // Special case: always show runtime.panic frame, so that we can // see where a panic started in the middle of a stack trace. // See golang.org/issue/5832. if name == "runtime.panic" { return true } return traceback > 1 || f != nil && contains(name, ".") && (!hasprefix(name, "runtime.") || isExportedRuntime(name)) } // isExportedRuntime reports whether name is an exported runtime function. // It is only for runtime functions, so ASCII A-Z is fine. func isExportedRuntime(name string) bool { const n = len("runtime.") return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z' } var gStatusStrings = [...]string{ _Gidle: "idle", _Grunnable: "runnable", _Grunning: "running", _Gsyscall: "syscall", _Gwaiting: "waiting", _Gdead: "dead", _Genqueue: "enqueue", _Gcopystack: "copystack", } var gScanStatusStrings = [...]string{ 0: "scan", _Grunnable: "scanrunnable", _Grunning: "scanrunning", _Gsyscall: "scansyscall", _Gwaiting: "scanwaiting", _Gdead: "scandead", _Genqueue: "scanenqueue", } func goroutineheader(gp *g) { gpstatus := readgstatus(gp) // Basic string status var status string if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) { status = gStatusStrings[gpstatus] } else if gpstatus&_Gscan != 0 && 0 <= gpstatus&^_Gscan && gpstatus&^_Gscan < uint32(len(gStatusStrings)) { status = gStatusStrings[gpstatus&^_Gscan] } else { status = "???" } // Override. if (gpstatus == _Gwaiting || gpstatus == _Gscanwaiting) && gp.waitreason != "" { status = gp.waitreason } // approx time the G is blocked, in minutes var waitfor int64 gpstatus &^= _Gscan // drop the scan bit if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 { waitfor = (nanotime() - gp.waitsince) / 60e9 } print("goroutine ", gp.goid, " [", status) if waitfor >= 1 { print(", ", waitfor, " minutes") } if gp.lockedm != nil { print(", locked to thread") } print("]:\n") } func tracebackothers(me *g) { level := gotraceback(nil) // Show the current goroutine first, if we haven't already. g := getg() gp := g.m.curg if gp != nil && gp != me { print("\n") goroutineheader(gp) traceback(^uintptr(0), ^uintptr(0), 0, gp) } lock(&allglock) for _, gp := range allgs { if gp == me || gp == g.m.curg || readgstatus(gp) == _Gdead || gp.issystem && level < 2 { continue } print("\n") goroutineheader(gp) if readgstatus(gp)&^_Gscan == _Grunning { print("\tgoroutine running on other thread; stack unavailable\n") printcreatedby(gp) } else { traceback(^uintptr(0), ^uintptr(0), 0, gp) } } unlock(&allglock) } // Does f mark the top of a goroutine stack? func topofstack(f *_func) bool { pc := f.entry return pc == goexitPC || pc == mstartPC || pc == mcallPC || pc == morestackPC || pc == rt0_goPC || externalthreadhandlerp != 0 && pc == externalthreadhandlerp }