// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" // From DragonFly's const ( _CTL_HW = 6 _HW_NCPU = 3 ) var sigset_none = sigset{} var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}} func getncpu() int32 { mib := [2]uint32{_CTL_HW, _HW_NCPU} out := uint32(0) nout := unsafe.Sizeof(out) ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 { return int32(out) } return 1 } //go:nosplit func futexsleep(addr *uint32, val uint32, ns int64) { systemstack(func() { futexsleep1(addr, val, ns) }) } func futexsleep1(addr *uint32, val uint32, ns int64) { var timeout int32 if ns >= 0 { // The timeout is specified in microseconds - ensure that we // do not end up dividing to zero, which would put us to sleep // indefinitely... timeout = timediv(ns, 1000, nil) if timeout == 0 { timeout = 1 } } // sys_umtx_sleep will return EWOULDBLOCK (EAGAIN) when the timeout // expires or EBUSY if the mutex value does not match. ret := sys_umtx_sleep(addr, int32(val), timeout) if ret >= 0 || ret == -_EINTR || ret == -_EAGAIN || ret == -_EBUSY { return } print("umtx_sleep addr=", addr, " val=", val, " ret=", ret, "\n") *(*int32)(unsafe.Pointer(uintptr(0x1005))) = 0x1005 } //go:nosplit func futexwakeup(addr *uint32, cnt uint32) { ret := sys_umtx_wakeup(addr, int32(cnt)) if ret >= 0 { return } systemstack(func() { print("umtx_wake_addr=", addr, " ret=", ret, "\n") *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 }) } func lwp_start(uintptr) func newosproc(mp *m, stk unsafe.Pointer) { if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " lwp_start=", funcPC(lwp_start), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n") } var oset sigset sigprocmask(&sigset_all, &oset) params := lwpparams{ start_func: funcPC(lwp_start), arg: unsafe.Pointer(mp), stack: uintptr(stk), tid1: unsafe.Pointer(&mp.procid), tid2: nil, } mp.tls[0] = uintptr(mp.id) // so 386 asm can find it lwp_create(¶ms) sigprocmask(&oset, nil) } func osinit() { ncpu = getncpu() } var urandom_data [_HashRandomBytes]byte var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes { *rnd = unsafe.Pointer(&urandom_data[0]) *rnd_len = _HashRandomBytes } else { *rnd = nil *rnd_len = 0 } close(fd) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) mp.gsignal.m = mp } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. func minit() { _g_ := getg() // m.procid is a uint64, but lwp_start writes an int32. Fix it up. _g_.m.procid = uint64(*(*int32)(unsafe.Pointer(&_g_.m.procid))) // Initialize signal handling signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024) sigprocmask(&sigset_none, nil) } // Called from dropm to undo the effect of an minit. func unminit() { signalstack(nil, 0) } func memlimit() uintptr { /* TODO: Convert to Go when something actually uses the result. Rlimit rl; extern byte runtime·text[], runtime·end[]; uintptr used; if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) return 0; if(rl.rlim_cur >= 0x7fffffff) return 0; // Estimate our VM footprint excluding the heap. // Not an exact science: use size of binary plus // some room for thread stacks. used = runtime·end - runtime·text + (64<<20); if(used >= rl.rlim_cur) return 0; // If there's not at least 16 MB left, we're probably // not going to be able to do much. Treat as no limit. rl.rlim_cur -= used; if(rl.rlim_cur < (16<<20)) return 0; return rl.rlim_cur - used; */ return 0 } func sigtramp() type sigactiont struct { sa_sigaction uintptr sa_flags int32 sa_mask sigset } func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = sigset_all if fn == funcPC(sighandler) { fn = funcPC(sigtramp) } sa.sa_sigaction = fn sigaction(i, &sa, nil) } func getsig(i int32) uintptr { var sa sigactiont sigaction(i, nil, &sa) if sa.sa_sigaction == funcPC(sigtramp) { return funcPC(sighandler) } return sa.sa_sigaction } func signalstack(p *byte, n int32) { var st sigaltstackt st.ss_sp = uintptr(unsafe.Pointer(p)) st.ss_size = uintptr(n) st.ss_flags = 0 if p == nil { st.ss_flags = _SS_DISABLE } sigaltstack(&st, nil) } func unblocksignals() { sigprocmask(&sigset_none, nil) }