// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) const ( hashSize = 1009 ) var ( ifaceLock mutex // lock for accessing hash hash [hashSize]*itab ) func itabhash(inter *interfacetype, typ *_type) uint32 { // compiler has provided some good hash codes for us. h := inter.typ.hash h += 17 * typ.hash // TODO(rsc): h += 23 * x.mhash ? return h % hashSize } func getitab(inter *interfacetype, typ *_type, canfail bool) *itab { if len(inter.mhdr) == 0 { throw("internal error - misuse of itab") } // easy case if typ.tflag&tflagUncommon == 0 { if canfail { return nil } name := inter.typ.nameOff(inter.mhdr[0].name) panic(&TypeAssertionError{"", typ.string(), inter.typ.string(), name.name()}) } h := itabhash(inter, typ) // look twice - once without lock, once with. // common case will be no lock contention. var m *itab var locked int for locked = 0; locked < 2; locked++ { if locked != 0 { lock(&ifaceLock) } for m = (*itab)(atomic.Loadp(unsafe.Pointer(&hash[h]))); m != nil; m = m.link { if m.inter == inter && m._type == typ { if m.bad { if !canfail { // this can only happen if the conversion // was already done once using the , ok form // and we have a cached negative result. // the cached result doesn't record which // interface function was missing, so try // adding the itab again, which will throw an error. additab(m, locked != 0, false) } m = nil } if locked != 0 { unlock(&ifaceLock) } return m } } } m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys)) m.inter = inter m._type = typ additab(m, true, canfail) unlock(&ifaceLock) if m.bad { return nil } return m } func additab(m *itab, locked, canfail bool) { inter := m.inter typ := m._type x := typ.uncommon() // both inter and typ have method sorted by name, // and interface names are unique, // so can iterate over both in lock step; // the loop is O(ni+nt) not O(ni*nt). ni := len(inter.mhdr) nt := int(x.mcount) xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt] j := 0 for k := 0; k < ni; k++ { i := &inter.mhdr[k] itype := inter.typ.typeOff(i.ityp) name := inter.typ.nameOff(i.name) iname := name.name() ipkg := name.pkgPath() if ipkg == "" { ipkg = inter.pkgpath.name() } for ; j < nt; j++ { t := &xmhdr[j] tname := typ.nameOff(t.name) if typ.typeOff(t.mtyp) == itype && tname.name() == iname { pkgPath := tname.pkgPath() if pkgPath == "" { pkgPath = typ.nameOff(x.pkgpath).name() } if tname.isExported() || pkgPath == ipkg { if m != nil { ifn := typ.textOff(t.ifn) *(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = ifn } goto nextimethod } } } // didn't find method if !canfail { if locked { unlock(&ifaceLock) } panic(&TypeAssertionError{"", typ.string(), inter.typ.string(), iname}) } m.bad = true break nextimethod: } if !locked { throw("invalid itab locking") } h := itabhash(inter, typ) m.link = hash[h] m.inhash = true atomicstorep(unsafe.Pointer(&hash[h]), unsafe.Pointer(m)) } func itabsinit() { lock(&ifaceLock) for _, md := range activeModules() { for _, i := range md.itablinks { // itablinks is a slice of pointers to the itabs used in this // module. A given itab may be used in more than one module // and thanks to the way global symbol resolution works, the // pointed-to itab may already have been inserted into the // global 'hash'. if !i.inhash { additab(i, true, false) } } } unlock(&ifaceLock) } // panicdottypeE is called when doing an e.(T) conversion and the conversion fails. // have = the dynamic type we have. // want = the static type we're trying to convert to. // iface = the static type we're converting from. func panicdottypeE(have, want, iface *_type) { haveString := "" if have != nil { haveString = have.string() } panic(&TypeAssertionError{iface.string(), haveString, want.string(), ""}) } // panicdottypeI is called when doing an i.(T) conversion and the conversion fails. // Same args as panicdottypeE, but "have" is the dynamic itab we have. func panicdottypeI(have *itab, want, iface *_type) { var t *_type if have != nil { t = have._type } panicdottypeE(t, want, iface) } // panicnildottype is called when doing a i.(T) conversion and the interface i is nil. // want = the static type we're trying to convert to. func panicnildottype(want *_type) { panic(&TypeAssertionError{"", "", want.string(), ""}) // TODO: Add the static type we're converting from as well. // It might generate a better error message. // Just to match other nil conversion errors, we don't for now. } // The conv and assert functions below do very similar things. // The convXXX functions are guaranteed by the compiler to succeed. // The assertXXX functions may fail (either panicking or returning false, // depending on whether they are 1-result or 2-result). // The convXXX functions succeed on a nil input, whereas the assertXXX // functions fail on a nil input. func convT2E(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2E)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, true) // TODO: We allocate a zeroed object only to overwrite it with actual data. // Figure out how to avoid zeroing. Also below in convT2Eslice, convT2I, convT2Islice. typedmemmove(t, x, elem) e._type = t e.data = x return } func convT2E16(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2E16)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint16)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(2, t, false) *(*uint16)(x) = *(*uint16)(elem) } e._type = t e.data = x return } func convT2E32(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2E32)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint32)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(4, t, false) *(*uint32)(x) = *(*uint32)(elem) } e._type = t e.data = x return } func convT2E64(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2E64)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint64)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(8, t, false) *(*uint64)(x) = *(*uint64)(elem) } e._type = t e.data = x return } func convT2Estring(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2Estring)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*string)(elem) == "" { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*string)(x) = *(*string)(elem) } e._type = t e.data = x return } func convT2Eslice(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2Eslice)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if v := *(*slice)(elem); uintptr(v.array) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*slice)(x) = *(*slice)(elem) } e._type = t e.data = x return } func convT2Enoptr(t *_type, elem unsafe.Pointer) (e eface) { if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&t)), funcPC(convT2Enoptr)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, false) memmove(x, elem, t.size) e._type = t e.data = x return } func convT2I(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2I)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, true) typedmemmove(t, x, elem) i.tab = tab i.data = x return } func convT2I16(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2I16)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint16)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(2, t, false) *(*uint16)(x) = *(*uint16)(elem) } i.tab = tab i.data = x return } func convT2I32(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2I32)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint32)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(4, t, false) *(*uint32)(x) = *(*uint32)(elem) } i.tab = tab i.data = x return } func convT2I64(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2I64)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*uint64)(elem) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(8, t, false) *(*uint64)(x) = *(*uint64)(elem) } i.tab = tab i.data = x return } func convT2Istring(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2Istring)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if *(*string)(elem) == "" { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*string)(x) = *(*string)(elem) } i.tab = tab i.data = x return } func convT2Islice(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2Islice)) } if msanenabled { msanread(elem, t.size) } var x unsafe.Pointer if v := *(*slice)(elem); uintptr(v.array) == 0 { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(t.size, t, true) *(*slice)(x) = *(*slice)(elem) } i.tab = tab i.data = x return } func convT2Inoptr(tab *itab, elem unsafe.Pointer) (i iface) { t := tab._type if raceenabled { raceReadObjectPC(t, elem, getcallerpc(unsafe.Pointer(&tab)), funcPC(convT2Inoptr)) } if msanenabled { msanread(elem, t.size) } x := mallocgc(t.size, t, false) memmove(x, elem, t.size) i.tab = tab i.data = x return } func convI2I(inter *interfacetype, i iface) (r iface) { tab := i.tab if tab == nil { return } if tab.inter == inter { r.tab = tab r.data = i.data return } r.tab = getitab(inter, tab._type, false) r.data = i.data return } func assertI2I(inter *interfacetype, i iface) (r iface) { tab := i.tab if tab == nil { // explicit conversions require non-nil interface value. panic(&TypeAssertionError{"", "", inter.typ.string(), ""}) } if tab.inter == inter { r.tab = tab r.data = i.data return } r.tab = getitab(inter, tab._type, false) r.data = i.data return } func assertI2I2(inter *interfacetype, i iface) (r iface, b bool) { tab := i.tab if tab == nil { return } if tab.inter != inter { tab = getitab(inter, tab._type, true) if tab == nil { return } } r.tab = tab r.data = i.data b = true return } func assertE2I(inter *interfacetype, e eface) (r iface) { t := e._type if t == nil { // explicit conversions require non-nil interface value. panic(&TypeAssertionError{"", "", inter.typ.string(), ""}) } r.tab = getitab(inter, t, false) r.data = e.data return } func assertE2I2(inter *interfacetype, e eface) (r iface, b bool) { t := e._type if t == nil { return } tab := getitab(inter, t, true) if tab == nil { return } r.tab = tab r.data = e.data b = true return } //go:linkname reflect_ifaceE2I reflect.ifaceE2I func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) { *dst = assertE2I(inter, e) } func iterate_itabs(fn func(*itab)) { for _, h := range &hash { for ; h != nil; h = h.link { fn(h) } } } // staticbytes is used to avoid convT2E for byte-sized values. var staticbytes = [...]byte{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, }