// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" // _rt0_s390x_lib is common startup code for s390x systems when // using -buildmode=c-archive or -buildmode=c-shared. The linker will // arrange to invoke this function as a global constructor (for // c-archive) or when the shared library is loaded (for c-shared). // We expect argc and argv to be passed in the usual C ABI registers // R2 and R3. TEXT _rt0_s390x_lib(SB), NOSPLIT|NOFRAME, $0 STMG R6, R15, 48(R15) MOVD R2, _rt0_s390x_lib_argc<>(SB) MOVD R3, _rt0_s390x_lib_argv<>(SB) // Save R6-R15 in the register save area of the calling function. STMG R6, R15, 48(R15) // Allocate 80 bytes on the stack. MOVD $-80(R15), R15 // Save F8-F15 in our stack frame. FMOVD F8, 16(R15) FMOVD F9, 24(R15) FMOVD F10, 32(R15) FMOVD F11, 40(R15) FMOVD F12, 48(R15) FMOVD F13, 56(R15) FMOVD F14, 64(R15) FMOVD F15, 72(R15) // Synchronous initialization. MOVD $runtime·libpreinit(SB), R1 BL R1 // Create a new thread to finish Go runtime initialization. MOVD _cgo_sys_thread_create(SB), R1 CMP R1, $0 BEQ nocgo MOVD $_rt0_s390x_lib_go(SB), R2 MOVD $0, R3 BL R1 BR restore nocgo: MOVD $0x800000, R1 // stacksize MOVD R1, 0(R15) MOVD $_rt0_s390x_lib_go(SB), R1 MOVD R1, 8(R15) // fn MOVD $runtime·newosproc(SB), R1 BL R1 restore: // Restore F8-F15 from our stack frame. FMOVD 16(R15), F8 FMOVD 24(R15), F9 FMOVD 32(R15), F10 FMOVD 40(R15), F11 FMOVD 48(R15), F12 FMOVD 56(R15), F13 FMOVD 64(R15), F14 FMOVD 72(R15), F15 MOVD $80(R15), R15 // Restore R6-R15. LMG 48(R15), R6, R15 RET // _rt0_s390x_lib_go initializes the Go runtime. // This is started in a separate thread by _rt0_s390x_lib. TEXT _rt0_s390x_lib_go(SB), NOSPLIT|NOFRAME, $0 MOVD _rt0_s390x_lib_argc<>(SB), R2 MOVD _rt0_s390x_lib_argv<>(SB), R3 MOVD $runtime·rt0_go(SB), R1 BR R1 DATA _rt0_s390x_lib_argc<>(SB)/8, $0 GLOBL _rt0_s390x_lib_argc<>(SB), NOPTR, $8 DATA _rt0_s90x_lib_argv<>(SB)/8, $0 GLOBL _rt0_s390x_lib_argv<>(SB), NOPTR, $8 TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer // C TLS base pointer in AR0:AR1 // initialize essential registers XOR R0, R0 SUB $24, R15 MOVW R2, 8(R15) // argc MOVD R3, 16(R15) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD R15, R11 SUB $(64*1024), R11 MOVD R11, g_stackguard0(g) MOVD R11, g_stackguard1(g) MOVD R11, (g_stack+stack_lo)(g) MOVD R15, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R11 CMPBEQ R11, $0, nocgo MOVW AR0, R4 // (AR0 << 32 | AR1) is the TLS base pointer; MOVD is translated to EAR SLD $32, R4, R4 MOVW AR1, R4 // arg 2: TLS base pointer MOVD $setg_gcc<>(SB), R3 // arg 1: setg MOVD g, R2 // arg 0: G // C functions expect 160 bytes of space on caller stack frame // and an 8-byte aligned stack pointer MOVD R15, R9 // save current stack (R9 is preserved in the Linux ABI) SUB $160, R15 // reserve 160 bytes MOVD $~7, R6 AND R6, R15 // 8-byte align BL R11 // this call clobbers volatile registers according to Linux ABI (R0-R5, R14) MOVD R9, R15 // restore stack XOR R0, R0 // zero R0 nocgo: // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R2 ADD $const__StackGuard, R2 MOVD R2, g_stackguard0(g) MOVD R2, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R2 // save m->g0 = g0 MOVD g, m_g0(R2) // save m0 to g0->m MOVD R2, g_m(g) BL runtime·check(SB) // argc/argv are already prepared on stack BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R2 // entry SUB $24, R15 MOVD R2, 16(R15) MOVD $0, 8(R15) MOVD $0, 0(R15) BL runtime·newproc(SB) ADD $24, R15 // start this M BL runtime·mstart(SB) MOVD $0, 1(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 MOVD $0, 2(R0) RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $-8-8 MOVD buf+0(FP), R3 MOVD R15, gobuf_sp(R3) MOVD LR, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD $0, gobuf_lr(R3) MOVD $0, gobuf_ret(R3) // Assert ctxt is zero. See func save. MOVD gobuf_ctxt(R3), R3 CMPBEQ R3, $0, 2(PC) BL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $16-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g // make sure g is not nil BL runtime·save_g(SB) MOVD 0(g), R4 MOVD gobuf_sp(R5), R15 MOVD gobuf_lr(R5), LR MOVD gobuf_ret(R5), R3 MOVD gobuf_ctxt(R5), R12 MOVD $0, gobuf_sp(R5) MOVD $0, gobuf_ret(R5) MOVD $0, gobuf_lr(R5) MOVD $0, gobuf_ctxt(R5) CMP R0, R0 // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R6 BR (R6) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $-8-8 // Save caller state in g->sched MOVD R15, (g_sched+gobuf_sp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) BR runtime·badmcall(SB) MOVD fn+0(FP), R12 // context MOVD 0(R12), R4 // code pointer MOVD (g_sched+gobuf_sp)(g), R15 // sp = m->g0->sched.sp SUB $16, R15 MOVD R3, 8(R15) MOVD $0, 0(R15) BL (R4) BR runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R12 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMPBEQ g, R5, noswitch MOVD m_g0(R4), R5 // R5 = g0 CMPBEQ g, R5, noswitch MOVD m_curg(R4), R6 CMPBEQ g, R6, switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R3 BL (R3) BL runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVD $runtime·systemstack_switch(SB), R6 ADD $16, R6 // get past prologue MOVD R6, (g_sched+gobuf_pc)(g) MOVD R15, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $8, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, R15 // call target function MOVD 0(R12), R3 // code pointer BL (R3) // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R15 MOVD $0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVD 0(R12), R3 // code pointer MOVD 0(R15), LR // restore LR ADD $8, R15 BR (R3) /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3: framesize, R4: argsize, R5: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R7 MOVD m_g0(R7), R8 CMPBNE g, R8, 3(PC) BL runtime·badmorestackg0(SB) BL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R7), R8 CMP g, R8 BNE 3(PC) BL runtime·badmorestackgsignal(SB) BL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVD R15, (g_sched+gobuf_sp)(g) MOVD LR, R8 MOVD R8, (g_sched+gobuf_pc)(g) MOVD R5, (g_sched+gobuf_lr)(g) MOVD R12, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVD R15, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVD g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVD m_g0(R7), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R15 // Create a stack frame on g0 to call newstack. MOVD $0, -8(R15) // Zero saved LR in frame SUB $8, R15 BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVD $0, R12 BR runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R4; \ CMP R3, R4; \ BGT 3(PC); \ MOVD $NAME(SB), R5; \ BR (R5) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT, $-8-32 MOVWZ argsize+24(FP), R3 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R5 BR (R5) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+16(FP), R4; \ MOVWZ argsize+24(FP), R5; \ MOVD $stack-MAXSIZE(SP), R6; \ loopArgs: /* copy 256 bytes at a time */ \ CMP R5, $256; \ BLT tailArgs; \ SUB $256, R5; \ MVC $256, 0(R4), 0(R6); \ MOVD $256(R4), R4; \ MOVD $256(R6), R6; \ BR loopArgs; \ tailArgs: /* copy remaining bytes */ \ CMP R5, $0; \ BEQ callFunction; \ SUB $1, R5; \ EXRL $callfnMVC<>(SB), R5; \ callFunction: \ MOVD f+8(FP), R12; \ MOVD (R12), R8; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R8); \ /* copy return values back */ \ MOVD argtype+0(FP), R7; \ MOVD arg+16(FP), R6; \ MOVWZ n+24(FP), R5; \ MOVD $stack-MAXSIZE(SP), R4; \ MOVWZ retoffset+28(FP), R1; \ ADD R1, R4; \ ADD R1, R6; \ SUB R1, R5; \ BL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $32-0 MOVD R7, 8(R15) MOVD R6, 16(R15) MOVD R4, 24(R15) MOVD R5, 32(R15) BL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // Not a function: target for EXRL (execute relative long) instruction. TEXT callfnMVC<>(SB),NOSPLIT|NOFRAME,$0-0 MVC $1, 0(R4), 0(R6) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 6 bytes to get back to BL deferreturn (size of BRASL instruction) // 3. BR to fn TEXT runtime·jmpdefer(SB),NOSPLIT|NOFRAME,$0-16 MOVD 0(R15), R1 SUB $6, R1, LR MOVD fv+0(FP), R12 MOVD argp+8(FP), R15 SUB $8, R15 MOVD 0(R12), R3 BR (R3) // Save state of caller into g->sched. Smashes R1. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVD LR, (g_sched+gobuf_pc)(g) MOVD R15, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD $0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVD (g_sched+gobuf_ctxt)(g), R1 CMPBEQ R1, $0, 2(PC) BL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 // R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer // C TLS base pointer in AR0:AR1 MOVD fn+0(FP), R3 MOVD arg+8(FP), R4 MOVD R15, R2 // save original stack pointer MOVD g, R5 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVD g_m(g), R6 MOVD m_g0(R6), R6 CMPBEQ R6, g, g0 BL gosave<>(SB) MOVD R6, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R15 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers, plus 160 bytes of callee // save area that lives on the caller stack. SUB $176, R15 MOVD $~7, R6 AND R6, R15 // 8-byte alignment for gcc ABI MOVD R5, 168(R15) // save old g on stack MOVD (g_stack+stack_hi)(R5), R5 SUB R2, R5 MOVD R5, 160(R15) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) MOVD $0, 0(R15) // clear back chain pointer (TODO can we give it real back trace information?) MOVD R4, R2 // arg in R2 BL R3 // can clobber: R0-R5, R14, F0-F3, F5, F7-F15 XOR R0, R0 // set R0 back to 0. // Restore g, stack pointer. MOVD 168(R15), g BL runtime·save_g(SB) MOVD (g_stack+stack_hi)(g), R5 MOVD 160(R15), R6 SUB R6, R5 MOVD R5, R15 MOVW R2, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 MOVD $fn+0(FP), R3 MOVD R3, 8(R15) MOVD frame+8(FP), R3 MOVD R3, 16(R15) MOVD framesize+16(FP), R3 MOVD R3, 24(R15) MOVD ctxt+24(FP), R3 MOVD R3, 32(R15) MOVD $runtime·cgocallback_gofunc(SB), R3 BL (R3) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R3 CMPBEQ R3, $0, nocgo BL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMPBEQ g, $0, needm MOVD g_m(g), R8 MOVD R8, savedm-8(SP) BR havem needm: MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needm(SB), R3 BL (R3) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R8 MOVD m_g0(R8), R3 MOVD R15, (g_sched+gobuf_sp)(R3) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP). MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD R15, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -24(R4) MOVD ctxt+24(FP), R5 MOVD R5, -16(R4) MOVD $-24(R4), R15 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(R15), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD $24(R15), R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R15 MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVD savedm-8(SP), R6 CMPBNE R6, $0, droppedm MOVD $runtime·dropm(SB), R3 BL (R3) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET // void setg_gcc(G*); set g in C TLS. // Must obey the gcc calling convention. TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 // The standard prologue clobbers LR (R14), which is callee-save in // the C ABI, so we have to use NOFRAME and save LR ourselves. MOVD LR, R1 // Also save g, R10, and R11 since they're callee-save in C ABI MOVD R10, R3 MOVD g, R4 MOVD R11, R5 MOVD R2, g BL runtime·save_g(SB) MOVD R5, R11 MOVD R4, g MOVD R3, R10 MOVD R1, LR RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R0 UNDEF // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-8 // The TOD clock on s390 counts from the year 1900 in ~250ps intervals. // This means that since about 1972 the msb has been set, making the // result of a call to STORE CLOCK (stck) a negative number. // We clear the msb to make it positive. STCK ret+0(FP) // serialises before and after call MOVD ret+0(FP), R3 // R3 will wrap to 0 in the year 2043 SLD $1, R3 SRD $1, R3 MOVD R3, ret+0(FP) RET // AES hashing not implemented for s390x TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32 JMP runtime·memhashFallback(SB) TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·strhashFallback(SB) TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·memhash32Fallback(SB) TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·memhash64Fallback(SB) TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R3 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 // g (R13), R10, R11 and LR (R14) are callee-save in the C ABI, so save them MOVD g, R1 MOVD R10, R3 MOVD LR, R4 MOVD R11, R5 BL runtime·load_g(SB) // clobbers g (R13), R10, R11 MOVD g_m(g), R2 MOVD m_curg(R2), R2 MOVD (g_stack+stack_hi)(R2), R2 MOVD R1, g MOVD R3, R10 MOVD R4, LR MOVD R5, R11 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 BYTE $0x07; BYTE $0x00; // 2-byte nop BL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit BYTE $0x07; BYTE $0x00; // 2-byte nop TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0 // Stores are already ordered on s390x, so this is just a // compile barrier. RET // This is called from .init_array and follows the platform, not Go, ABI. // We are overly conservative. We could only save the registers we use. // However, since this function is only called once per loaded module // performance is unimportant. TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0 // Save R6-R15 in the register save area of the calling function. // Don't bother saving F8-F15 as we aren't doing any calls. STMG R6, R15, 48(R15) // append the argument (passed in R2, as per the ELF ABI) to the // moduledata linked list. MOVD runtime·lastmoduledatap(SB), R1 MOVD R2, moduledata_next(R1) MOVD R2, runtime·lastmoduledatap(SB) // Restore R6-R15. LMG 48(R15), R6, R15 RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVB $1, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - R2 is the destination of the write // - R3 is the value being written at R2. // It clobbers R10 (the temp register). // It does not clobber any other general-purpose registers, // but may clobber others (e.g., floating point registers). TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$104 // Save the registers clobbered by the fast path. MOVD R1, 96(R15) MOVD R4, 104(R15) MOVD g_m(g), R1 MOVD m_p(R1), R1 // Increment wbBuf.next position. MOVD $16, R4 ADD (p_wbBuf+wbBuf_next)(R1), R4 MOVD R4, (p_wbBuf+wbBuf_next)(R1) MOVD (p_wbBuf+wbBuf_end)(R1), R1 // Record the write. MOVD R3, -16(R4) // Record value MOVD (R2), R10 // TODO: This turns bad writes into bad reads. MOVD R10, -8(R4) // Record *slot // Is the buffer full? CMPBEQ R4, R1, flush ret: MOVD 96(R15), R1 MOVD 104(R15), R4 // Do the write. MOVD R3, (R2) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. STMG R2, R3, 8(R15) // set R2 and R3 as arguments for wbBufFlush MOVD R0, 24(R15) // R1 already saved. // R4 already saved. STMG R5, R12, 32(R15) // save R5 - R12 // R13 is g. // R14 is LR. // R15 is SP. // This takes arguments R2 and R3. CALL runtime·wbBufFlush(SB) LMG 8(R15), R2, R3 // restore R2 - R3 MOVD 24(R15), R0 // restore R0 LMG 32(R15), R5, R12 // restore R5 - R12 JMP ret // Note: these functions use a special calling convention to save generated code space. // Arguments are passed in registers, but the space for those arguments are allocated // in the caller's stack frame. These stubs write the args into that stack space and // then tail call to the corresponding runtime handler. // The tail call makes these stubs disappear in backtraces. TEXT runtime·panicIndex(SB),NOSPLIT,$0-16 MOVD R0, x+0(FP) MOVD R1, y+8(FP) JMP runtime·goPanicIndex(SB) TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16 MOVD R0, x+0(FP) MOVD R1, y+8(FP) JMP runtime·goPanicIndexU(SB) TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16 MOVD R1, x+0(FP) MOVD R2, y+8(FP) JMP runtime·goPanicSliceAlen(SB) TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16 MOVD R1, x+0(FP) MOVD R2, y+8(FP) JMP runtime·goPanicSliceAlenU(SB) TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16 MOVD R1, x+0(FP) MOVD R2, y+8(FP) JMP runtime·goPanicSliceAcap(SB) TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16 MOVD R1, x+0(FP) MOVD R2, y+8(FP) JMP runtime·goPanicSliceAcapU(SB) TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16 MOVD R0, x+0(FP) MOVD R1, y+8(FP) JMP runtime·goPanicSliceB(SB) TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16 MOVD R0, x+0(FP) MOVD R1, y+8(FP) JMP runtime·goPanicSliceBU(SB) TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16 MOVD R2, x+0(FP) MOVD R3, y+8(FP) JMP runtime·goPanicSlice3Alen(SB) TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16 MOVD R2, x+0(FP) MOVD R3, y+8(FP) JMP runtime·goPanicSlice3AlenU(SB) TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16 MOVD R2, x+0(FP) MOVD R3, y+8(FP) JMP runtime·goPanicSlice3Acap(SB) TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16 MOVD R2, x+0(FP) MOVD R3, y+8(FP) JMP runtime·goPanicSlice3AcapU(SB) TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16 MOVD R1, x+0(FP) MOVD R2, y+8(FP) JMP runtime·goPanicSlice3B(SB) TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16 MOVD R1, x+0(FP) MOVD R2, y+8(FP) JMP runtime·goPanicSlice3BU(SB) TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16 MOVD R0, x+0(FP) MOVD R1, y+8(FP) JMP runtime·goPanicSlice3C(SB) TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16 MOVD R0, x+0(FP) MOVD R1, y+8(FP) JMP runtime·goPanicSlice3CU(SB)