// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build mips64 mips64le #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #define REGCTXT R22 TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R29 = stack; R1 = argc; R2 = argv // initialize essential registers JAL runtime·reginit(SB) ADDV $-24, R29 MOVW R1, 8(R29) // argc MOVV R2, 16(R29) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVV $runtime·g0(SB), g MOVV $(-64*1024), R28 ADDV R28, R29, R1 MOVV R1, g_stackguard0(g) MOVV R1, g_stackguard1(g) MOVV R1, (g_stack+stack_lo)(g) MOVV R29, (g_stack+stack_hi)(g) // no cgo yet nocgo: // update stackguard after _cgo_init MOVV (g_stack+stack_lo)(g), R1 ADDV $const__StackGuard, R1 MOVV R1, g_stackguard0(g) MOVV R1, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVV $runtime·m0(SB), R1 // save m->g0 = g0 MOVV g, m_g0(R1) // save m0 to g0->m MOVV R1, g_m(g) JAL runtime·check(SB) // args are already prepared JAL runtime·args(SB) JAL runtime·osinit(SB) JAL runtime·schedinit(SB) // create a new goroutine to start program MOVV $runtime·mainPC(SB), R1 // entry ADDV $-24, R29 MOVV R1, 16(R29) MOVV R0, 8(R29) MOVV R0, 0(R29) JAL runtime·newproc(SB) ADDV $24, R29 // start this M JAL runtime·mstart(SB) MOVV R0, 1(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$-8-0 MOVV R0, 2(R0) // TODO: TD RET TEXT runtime·asminit(SB),NOSPLIT,$-8-0 RET TEXT _cgo_reginit(SB),NOSPLIT,$-8-0 // crosscall_ppc64 and crosscall2 need to reginit, but can't // get at the 'runtime.reginit' symbol. JMP runtime·reginit(SB) TEXT runtime·reginit(SB),NOSPLIT,$-8-0 // initialize essential FP registers MOVD $0.5, F26 SUBD F26, F26, F24 ADDD F26, F26, F28 ADDD F28, F28, F30 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $-8-8 MOVV buf+0(FP), R1 MOVV R29, gobuf_sp(R1) MOVV R31, gobuf_pc(R1) MOVV g, gobuf_g(R1) MOVV R0, gobuf_lr(R1) MOVV R0, gobuf_ret(R1) MOVV R0, gobuf_ctxt(R1) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $-8-8 MOVV buf+0(FP), R3 MOVV gobuf_g(R3), g // make sure g is not nil JAL runtime·save_g(SB) MOVV 0(g), R2 MOVV gobuf_sp(R3), R29 MOVV gobuf_lr(R3), R31 MOVV gobuf_ret(R3), R1 MOVV gobuf_ctxt(R3), REGCTXT MOVV R0, gobuf_sp(R3) MOVV R0, gobuf_ret(R3) MOVV R0, gobuf_lr(R3) MOVV R0, gobuf_ctxt(R3) MOVV gobuf_pc(R3), R4 JMP (R4) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $-8-8 // Save caller state in g->sched MOVV R29, (g_sched+gobuf_sp)(g) MOVV R31, (g_sched+gobuf_pc)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVV g, R1 MOVV g_m(g), R3 MOVV m_g0(R3), g JAL runtime·save_g(SB) BNE g, R1, 2(PC) JMP runtime·badmcall(SB) MOVV fn+0(FP), REGCTXT // context MOVV 0(REGCTXT), R4 // code pointer MOVV (g_sched+gobuf_sp)(g), R29 // sp = m->g0->sched.sp ADDV $-16, R29 MOVV R1, 8(R29) MOVV R0, 0(R29) JAL (R4) JMP runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF JAL (R31) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVV fn+0(FP), R1 // R1 = fn MOVV R1, REGCTXT // context MOVV g_m(g), R2 // R2 = m MOVV m_gsignal(R2), R3 // R3 = gsignal BEQ g, R3, noswitch MOVV m_g0(R2), R3 // R3 = g0 BEQ g, R3, noswitch MOVV m_curg(R2), R4 BEQ g, R4, switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVV $runtime·badsystemstack(SB), R4 JAL (R4) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVV $runtime·systemstack_switch(SB), R4 ADDV $8, R4 // get past prologue MOVV R4, (g_sched+gobuf_pc)(g) MOVV R29, (g_sched+gobuf_sp)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV g, (g_sched+gobuf_g)(g) // switch to g0 MOVV R3, g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R1 // make it look like mstart called systemstack on g0, to stop traceback ADDV $-8, R1 MOVV $runtime·mstart(SB), R2 MOVV R2, 0(R1) MOVV R1, R29 // call target function MOVV 0(REGCTXT), R4 // code pointer JAL (R4) // switch back to g MOVV g_m(g), R1 MOVV m_curg(R1), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 MOVV R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly MOVV 0(REGCTXT), R4 // code pointer JAL (R4) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R1: framesize, R2: argsize, R3: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$-8-0 // Cannot grow scheduler stack (m->g0). MOVV g_m(g), R7 MOVV m_g0(R7), R8 BNE g, R8, 2(PC) JAL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVV m_gsignal(R7), R8 BNE g, R8, 2(PC) JAL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVV REGCTXT, (g_sched+gobuf_ctxt)(g) MOVV R29, (g_sched+gobuf_sp)(g) MOVV R31, (g_sched+gobuf_pc)(g) MOVV R3, (g_sched+gobuf_lr)(g) // Called from f. // Set m->morebuf to f's caller. MOVV R3, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVV R29, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVV g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVV m_g0(R7), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 JAL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-8-0 MOVV R0, REGCTXT JMP runtime·morestack(SB) TEXT runtime·stackBarrier(SB),NOSPLIT,$0 // We came here via a RET to an overwritten LR. // R1 may be live. Other registers are available. // Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal. MOVV (g_stkbar+slice_array)(g), R2 MOVV g_stkbarPos(g), R3 MOVV $stkbar__size, R4 MULVU R3, R4 MOVV LO, R4 ADDV R2, R4 MOVV stkbar_savedLRVal(R4), R4 // Record that this stack barrier was hit. ADDV $1, R3 MOVV R3, g_stkbarPos(g) // Jump to the original return PC. JMP (R4) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVV $MAXSIZE, R28; \ SGTU R1, R28, R28; \ BNE R28, 3(PC); \ MOVV $NAME(SB), R4; \ JMP (R4) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 JMP ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT, $-8-32 MOVWU argsize+24(FP), R1 // NOTE(rsc): No call16, because CALLFN needs four words // of argument space to invoke callwritebarrier. DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVV $runtime·badreflectcall(SB), R4 JMP (R4) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVV arg+16(FP), R1; \ MOVWU argsize+24(FP), R2; \ MOVV R29, R3; \ ADDV $8, R3; \ ADDV R3, R2; \ BEQ R3, R2, 6(PC); \ MOVBU (R1), R4; \ ADDV $1, R1; \ MOVBU R4, (R3); \ ADDV $1, R3; \ JMP -5(PC); \ /* call function */ \ MOVV f+8(FP), REGCTXT; \ MOVV (REGCTXT), R4; \ PCDATA $PCDATA_StackMapIndex, $0; \ JAL (R4); \ /* copy return values back */ \ MOVV arg+16(FP), R1; \ MOVWU n+24(FP), R2; \ MOVWU retoffset+28(FP), R4; \ MOVV R29, R3; \ ADDV R4, R3; \ ADDV R4, R1; \ SUBVU R4, R2; \ ADDV $8, R3; \ ADDV R3, R2; \ loop: \ BEQ R3, R2, end; \ MOVBU (R3), R4; \ ADDV $1, R3; \ MOVBU R4, (R1); \ ADDV $1, R1; \ JMP loop; \ end: \ /* execute write barrier updates */ \ MOVV argtype+0(FP), R5; \ MOVV arg+16(FP), R1; \ MOVWU n+24(FP), R2; \ MOVWU retoffset+28(FP), R4; \ MOVV R5, 8(R29); \ MOVV R1, 16(R29); \ MOVV R2, 24(R29); \ MOVV R4, 32(R29); \ JAL runtime·callwritebarrier(SB); \ RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 8 bytes to get back to JAL deferreturn // 3. JMP to fn TEXT runtime·jmpdefer(SB), NOSPLIT, $-8-16 MOVV 0(R29), R31 ADDV $-8, R31 MOVV fv+0(FP), REGCTXT MOVV argp+8(FP), R29 ADDV $-8, R29 NOR R0, R0 // prevent scheduling MOVV 0(REGCTXT), R4 JMP (R4) // Save state of caller into g->sched. Smashes R31. TEXT gosave<>(SB),NOSPLIT,$-8 MOVV R31, (g_sched+gobuf_pc)(g) MOVV R29, (g_sched+gobuf_sp)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV R0, (g_sched+gobuf_ret)(g) MOVV R0, (g_sched+gobuf_ctxt)(g) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 UNDEF // no cgo yet RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$24-24 MOVV $fn+0(FP), R1 MOVV R1, 8(R29) MOVV frame+8(FP), R1 MOVV R1, 16(R29) MOVV framesize+16(FP), R1 MOVV R1, 24(R29) MOVV $runtime·cgocallback_gofunc(SB), R1 JAL (R1) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-24 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R1 BEQ R1, nocgo JAL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. BEQ g, needm MOVV g_m(g), R3 MOVV R3, savedm-8(SP) JMP havem needm: MOVV g, savedm-8(SP) // g is zero, so is m. MOVV $runtime·needm(SB), R4 JAL (R4) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVV g_m(g), R1 MOVV m_g0(R1), R1 MOVV R29, (g_sched+gobuf_sp)(R1) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R29) aka savedsp-16(SP). MOVV m_g0(R3), R1 MOVV (g_sched+gobuf_sp)(R1), R2 MOVV R2, savedsp-16(SP) MOVV R29, (g_sched+gobuf_sp)(R1) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -16(SP) and -8(SP) are unused. MOVV m_curg(R3), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R2 // prepare stack as R2 MOVV (g_sched+gobuf_pc)(g), R3 MOVV R3, -24(R2) MOVV $-24(R2), R29 JAL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVV 0(R29), R3 MOVV R3, (g_sched+gobuf_pc)(g) MOVV $24(R29), R2 MOVV R2, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVV g_m(g), R3 MOVV m_g0(R3), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 MOVV savedsp-16(SP), R2 MOVV R2, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVV savedm-8(SP), R3 BNE R3, droppedm MOVV $runtime·dropm(SB), R4 JAL (R4) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVV gg+0(FP), g // This only happens if iscgo, so jump straight to save_g JAL runtime·save_g(SB) RET // void setg_gcc(G*); set g in C TLS. // Must obey the gcc calling convention. TEXT setg_gcc<>(SB),NOSPLIT,$-8-0 UNDEF // no cgo yet RET TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16 MOVV 16(R29), R1 // LR saved by caller MOVV runtime·stackBarrierPC(SB), R2 BNE R1, R2, nobar // Get original return PC. JAL runtime·nextBarrierPC(SB) MOVV 8(R29), R1 nobar: MOVV R1, ret+8(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16 MOVV pc+8(FP), R1 MOVV 16(R29), R2 MOVV runtime·stackBarrierPC(SB), R3 BEQ R2, R3, setbar MOVV R1, 16(R29) // set LR in caller RET setbar: // Set the stack barrier return PC. MOVV R1, 8(R29) JAL runtime·setNextBarrierPC(SB) RET TEXT runtime·getcallersp(SB),NOSPLIT,$0-16 MOVV argp+0(FP), R1 ADDV $-8, R1 MOVV R1, ret+8(FP) RET TEXT runtime·abort(SB),NOSPLIT,$-8-0 MOVW (R0), R0 UNDEF // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24 GO_ARGS NO_LOCAL_POINTERS MOVV p+0(FP), R1 MOVV h+8(FP), R2 MOVV 8(REGCTXT), R3 MOVV R1, 8(R29) MOVV R2, 16(R29) MOVV R3, 24(R29) JAL runtime·memhash(SB) MOVV 32(R29), R1 MOVV R1, ret+16(FP) RET // AES hashing not implemented for mips64 TEXT runtime·aeshash(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·memeq(SB),NOSPLIT,$-8-25 MOVV a+0(FP), R1 MOVV b+8(FP), R2 MOVV size+16(FP), R3 ADDV R1, R3, R4 loop: BNE R1, R4, test MOVV $1, R1 MOVB R1, ret+24(FP) RET test: MOVBU (R1), R6 ADDV $1, R1 MOVBU (R2), R7 ADDV $1, R2 BEQ R6, R7, loop MOVB R0, ret+24(FP) RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17 MOVV a+0(FP), R1 MOVV b+8(FP), R2 BEQ R1, R2, eq MOVV 8(REGCTXT), R3 // compiler stores size at offset 8 in the closure MOVV R1, 8(R29) MOVV R2, 16(R29) MOVV R3, 24(R29) JAL runtime·memeq(SB) MOVBU 32(R29), R1 MOVB R1, ret+16(FP) RET eq: MOVV $1, R1 MOVB R1, ret+16(FP) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-33 MOVV s1str+0(FP), R1 MOVV s2str+16(FP), R2 MOVV $1, R3 MOVB R3, ret+32(FP) BNE R1, R2, 2(PC) RET MOVV s1len+8(FP), R3 ADDV R1, R3, R4 loop: BNE R1, R4, 2(PC) RET MOVBU (R1), R6 ADDV $1, R1 MOVBU (R2), R7 ADDV $1, R2 BEQ R6, R7, loop MOVB R0, ret+32(FP) RET // TODO: share code with memeq? TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVV a_len+8(FP), R3 MOVV b_len+32(FP), R4 BNE R3, R4, noteq // unequal lengths are not equal MOVV a+0(FP), R1 MOVV b+24(FP), R2 ADDV R1, R3 // end loop: BEQ R1, R3, equal // reached the end MOVBU (R1), R6 ADDV $1, R1 MOVBU (R2), R7 ADDV $1, R2 BEQ R6, R7, loop noteq: MOVB R0, ret+48(FP) RET equal: MOVV $1, R1 MOVB R1, ret+48(FP) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 MOVV s+0(FP), R1 MOVV s_len+8(FP), R2 MOVBU c+24(FP), R3 // byte to find MOVV R1, R4 // store base for later ADDV R1, R2 // end ADDV $-1, R1 loop: ADDV $1, R1 BEQ R1, R2, notfound MOVBU (R1), R5 BNE R3, R5, loop SUBV R4, R1 // remove base MOVV R1, ret+32(FP) RET notfound: MOVV $-1, R1 MOVV R1, ret+32(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0-32 MOVV p+0(FP), R1 MOVV b_len+8(FP), R2 MOVBU c+16(FP), R3 // byte to find MOVV R1, R4 // store base for later ADDV R1, R2 // end ADDV $-1, R1 loop: ADDV $1, R1 BEQ R1, R2, notfound MOVBU (R1), R5 BNE R3, R5, loop SUBV R4, R1 // remove base MOVV R1, ret+24(FP) RET notfound: MOVV $-1, R1 MOVV R1, ret+24(FP) RET TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 MOVV g_m(g), R2 MOVWU m_fastrand(R2), R1 ADDU R1, R1 BGEZ R1, 2(PC) XOR $0x88888eef, R1 MOVW R1, m_fastrand(R2) MOVW R1, ret+0(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R1 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$-8 UNDEF // no cgo yet RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$-8-0 NOR R0, R0 // NOP JAL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit NOR R0, R0 // NOP TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8 RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R1 MOVB R1, ret+0(FP) RET