// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package image implements a basic 2-D image library. // // The fundamental interface is called Image. An Image contains colors, which // are described in the image/color package. // // Values of the Image interface are created either by calling functions such // as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing // image data in a format such as GIF, JPEG or PNG. Decoding any particular // image format requires the prior registration of a decoder function. // Registration is typically automatic as a side effect of initializing that // format's package so that, to decode a PNG image, it suffices to have // import _ "image/png" // in a program's main package. The _ means to import a package purely for its // initialization side effects. // // See "The Go image package" for more details: // https://golang.org/doc/articles/image_package.html package image import ( "image/color" ) // Config holds an image's color model and dimensions. type Config struct { ColorModel color.Model Width, Height int } // Image is a finite rectangular grid of color.Color values taken from a color // model. type Image interface { // ColorModel returns the Image's color model. ColorModel() color.Model // Bounds returns the domain for which At can return non-zero color. // The bounds do not necessarily contain the point (0, 0). Bounds() Rectangle // At returns the color of the pixel at (x, y). // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. At(x, y int) color.Color } // PalettedImage is an image whose colors may come from a limited palette. // If m is a PalettedImage and m.ColorModel() returns a color.Palette p, // then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's // color model is not a color.Palette, then ColorIndexAt's behavior is // undefined. type PalettedImage interface { // ColorIndexAt returns the palette index of the pixel at (x, y). ColorIndexAt(x, y int) uint8 Image } // RGBA is an in-memory image whose At method returns color.RGBA values. type RGBA struct { // Pix holds the image's pixels, in R, G, B, A order. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *RGBA) ColorModel() color.Model { return color.RGBAModel } func (p *RGBA) Bounds() Rectangle { return p.Rect } func (p *RGBA) At(x, y int) color.Color { return p.RGBAAt(x, y) } func (p *RGBA) RGBAAt(x, y int) color.RGBA { if !(Point{x, y}.In(p.Rect)) { return color.RGBA{} } i := p.PixOffset(x, y) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 return color.RGBA{s[0], s[1], s[2], s[3]} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *RGBA) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 } func (p *RGBA) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.RGBAModel.Convert(c).(color.RGBA) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = c1.R s[1] = c1.G s[2] = c1.B s[3] = c1.A } func (p *RGBA) SetRGBA(x, y int, c color.RGBA) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = c.R s[1] = c.G s[2] = c.B s[3] = c.A } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *RGBA) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &RGBA{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &RGBA{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *RGBA) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 3, p.Rect.Dx()*4 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 4 { if p.Pix[i] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewRGBA returns a new RGBA image with the given bounds. func NewRGBA(r Rectangle) *RGBA { w, h := r.Dx(), r.Dy() buf := make([]uint8, 4*w*h) return &RGBA{buf, 4 * w, r} } // RGBA64 is an in-memory image whose At method returns color.RGBA64 values. type RGBA64 struct { // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model } func (p *RGBA64) Bounds() Rectangle { return p.Rect } func (p *RGBA64) At(x, y int) color.Color { return p.RGBA64At(x, y) } func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 { if !(Point{x, y}.In(p.Rect)) { return color.RGBA64{} } i := p.PixOffset(x, y) s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 return color.RGBA64{ uint16(s[0])<<8 | uint16(s[1]), uint16(s[2])<<8 | uint16(s[3]), uint16(s[4])<<8 | uint16(s[5]), uint16(s[6])<<8 | uint16(s[7]), } } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *RGBA64) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 } func (p *RGBA64) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.RGBA64Model.Convert(c).(color.RGBA64) s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = uint8(c1.R >> 8) s[1] = uint8(c1.R) s[2] = uint8(c1.G >> 8) s[3] = uint8(c1.G) s[4] = uint8(c1.B >> 8) s[5] = uint8(c1.B) s[6] = uint8(c1.A >> 8) s[7] = uint8(c1.A) } func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = uint8(c.R >> 8) s[1] = uint8(c.R) s[2] = uint8(c.G >> 8) s[3] = uint8(c.G) s[4] = uint8(c.B >> 8) s[5] = uint8(c.B) s[6] = uint8(c.A >> 8) s[7] = uint8(c.A) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *RGBA64) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &RGBA64{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &RGBA64{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *RGBA64) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 6, p.Rect.Dx()*8 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 8 { if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewRGBA64 returns a new RGBA64 image with the given bounds. func NewRGBA64(r Rectangle) *RGBA64 { w, h := r.Dx(), r.Dy() pix := make([]uint8, 8*w*h) return &RGBA64{pix, 8 * w, r} } // NRGBA is an in-memory image whose At method returns color.NRGBA values. type NRGBA struct { // Pix holds the image's pixels, in R, G, B, A order. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel } func (p *NRGBA) Bounds() Rectangle { return p.Rect } func (p *NRGBA) At(x, y int) color.Color { return p.NRGBAAt(x, y) } func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA { if !(Point{x, y}.In(p.Rect)) { return color.NRGBA{} } i := p.PixOffset(x, y) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 return color.NRGBA{s[0], s[1], s[2], s[3]} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *NRGBA) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 } func (p *NRGBA) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.NRGBAModel.Convert(c).(color.NRGBA) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = c1.R s[1] = c1.G s[2] = c1.B s[3] = c1.A } func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = c.R s[1] = c.G s[2] = c.B s[3] = c.A } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *NRGBA) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &NRGBA{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &NRGBA{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *NRGBA) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 3, p.Rect.Dx()*4 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 4 { if p.Pix[i] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewNRGBA returns a new NRGBA image with the given bounds. func NewNRGBA(r Rectangle) *NRGBA { w, h := r.Dx(), r.Dy() pix := make([]uint8, 4*w*h) return &NRGBA{pix, 4 * w, r} } // NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values. type NRGBA64 struct { // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model } func (p *NRGBA64) Bounds() Rectangle { return p.Rect } func (p *NRGBA64) At(x, y int) color.Color { return p.NRGBA64At(x, y) } func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 { if !(Point{x, y}.In(p.Rect)) { return color.NRGBA64{} } i := p.PixOffset(x, y) s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 return color.NRGBA64{ uint16(s[0])<<8 | uint16(s[1]), uint16(s[2])<<8 | uint16(s[3]), uint16(s[4])<<8 | uint16(s[5]), uint16(s[6])<<8 | uint16(s[7]), } } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *NRGBA64) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 } func (p *NRGBA64) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64) s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = uint8(c1.R >> 8) s[1] = uint8(c1.R) s[2] = uint8(c1.G >> 8) s[3] = uint8(c1.G) s[4] = uint8(c1.B >> 8) s[5] = uint8(c1.B) s[6] = uint8(c1.A >> 8) s[7] = uint8(c1.A) } func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = uint8(c.R >> 8) s[1] = uint8(c.R) s[2] = uint8(c.G >> 8) s[3] = uint8(c.G) s[4] = uint8(c.B >> 8) s[5] = uint8(c.B) s[6] = uint8(c.A >> 8) s[7] = uint8(c.A) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *NRGBA64) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &NRGBA64{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &NRGBA64{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *NRGBA64) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 6, p.Rect.Dx()*8 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 8 { if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewNRGBA64 returns a new NRGBA64 image with the given bounds. func NewNRGBA64(r Rectangle) *NRGBA64 { w, h := r.Dx(), r.Dy() pix := make([]uint8, 8*w*h) return &NRGBA64{pix, 8 * w, r} } // Alpha is an in-memory image whose At method returns color.Alpha values. type Alpha struct { // Pix holds the image's pixels, as alpha values. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Alpha) ColorModel() color.Model { return color.AlphaModel } func (p *Alpha) Bounds() Rectangle { return p.Rect } func (p *Alpha) At(x, y int) color.Color { return p.AlphaAt(x, y) } func (p *Alpha) AlphaAt(x, y int) color.Alpha { if !(Point{x, y}.In(p.Rect)) { return color.Alpha{} } i := p.PixOffset(x, y) return color.Alpha{p.Pix[i]} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *Alpha) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 } func (p *Alpha) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A } func (p *Alpha) SetAlpha(x, y int, c color.Alpha) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i] = c.A } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Alpha) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Alpha{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &Alpha{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *Alpha) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 0, p.Rect.Dx() for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i++ { if p.Pix[i] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewAlpha returns a new Alpha image with the given bounds. func NewAlpha(r Rectangle) *Alpha { w, h := r.Dx(), r.Dy() pix := make([]uint8, 1*w*h) return &Alpha{pix, 1 * w, r} } // Alpha16 is an in-memory image whose At method returns color.Alpha16 values. type Alpha16 struct { // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model } func (p *Alpha16) Bounds() Rectangle { return p.Rect } func (p *Alpha16) At(x, y int) color.Color { return p.Alpha16At(x, y) } func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 { if !(Point{x, y}.In(p.Rect)) { return color.Alpha16{} } i := p.PixOffset(x, y) return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *Alpha16) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 } func (p *Alpha16) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.Alpha16Model.Convert(c).(color.Alpha16) p.Pix[i+0] = uint8(c1.A >> 8) p.Pix[i+1] = uint8(c1.A) } func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i+0] = uint8(c.A >> 8) p.Pix[i+1] = uint8(c.A) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Alpha16) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Alpha16{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &Alpha16{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *Alpha16) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 0, p.Rect.Dx()*2 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 2 { if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewAlpha16 returns a new Alpha16 image with the given bounds. func NewAlpha16(r Rectangle) *Alpha16 { w, h := r.Dx(), r.Dy() pix := make([]uint8, 2*w*h) return &Alpha16{pix, 2 * w, r} } // Gray is an in-memory image whose At method returns color.Gray values. type Gray struct { // Pix holds the image's pixels, as gray values. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Gray) ColorModel() color.Model { return color.GrayModel } func (p *Gray) Bounds() Rectangle { return p.Rect } func (p *Gray) At(x, y int) color.Color { return p.GrayAt(x, y) } func (p *Gray) GrayAt(x, y int) color.Gray { if !(Point{x, y}.In(p.Rect)) { return color.Gray{} } i := p.PixOffset(x, y) return color.Gray{p.Pix[i]} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *Gray) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 } func (p *Gray) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y } func (p *Gray) SetGray(x, y int, c color.Gray) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i] = c.Y } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Gray) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Gray{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &Gray{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *Gray) Opaque() bool { return true } // NewGray returns a new Gray image with the given bounds. func NewGray(r Rectangle) *Gray { w, h := r.Dx(), r.Dy() pix := make([]uint8, 1*w*h) return &Gray{pix, 1 * w, r} } // Gray16 is an in-memory image whose At method returns color.Gray16 values. type Gray16 struct { // Pix holds the image's pixels, as gray values in big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Gray16) ColorModel() color.Model { return color.Gray16Model } func (p *Gray16) Bounds() Rectangle { return p.Rect } func (p *Gray16) At(x, y int) color.Color { return p.Gray16At(x, y) } func (p *Gray16) Gray16At(x, y int) color.Gray16 { if !(Point{x, y}.In(p.Rect)) { return color.Gray16{} } i := p.PixOffset(x, y) return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *Gray16) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 } func (p *Gray16) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.Gray16Model.Convert(c).(color.Gray16) p.Pix[i+0] = uint8(c1.Y >> 8) p.Pix[i+1] = uint8(c1.Y) } func (p *Gray16) SetGray16(x, y int, c color.Gray16) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i+0] = uint8(c.Y >> 8) p.Pix[i+1] = uint8(c.Y) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Gray16) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Gray16{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &Gray16{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *Gray16) Opaque() bool { return true } // NewGray16 returns a new Gray16 image with the given bounds. func NewGray16(r Rectangle) *Gray16 { w, h := r.Dx(), r.Dy() pix := make([]uint8, 2*w*h) return &Gray16{pix, 2 * w, r} } // CMYK is an in-memory image whose At method returns color.CMYK values. type CMYK struct { // Pix holds the image's pixels, in C, M, Y, K order. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *CMYK) ColorModel() color.Model { return color.CMYKModel } func (p *CMYK) Bounds() Rectangle { return p.Rect } func (p *CMYK) At(x, y int) color.Color { return p.CMYKAt(x, y) } func (p *CMYK) CMYKAt(x, y int) color.CMYK { if !(Point{x, y}.In(p.Rect)) { return color.CMYK{} } i := p.PixOffset(x, y) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 return color.CMYK{s[0], s[1], s[2], s[3]} } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *CMYK) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 } func (p *CMYK) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) c1 := color.CMYKModel.Convert(c).(color.CMYK) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = c1.C s[1] = c1.M s[2] = c1.Y s[3] = c1.K } func (p *CMYK) SetCMYK(x, y int, c color.CMYK) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 s[0] = c.C s[1] = c.M s[2] = c.Y s[3] = c.K } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *CMYK) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &CMYK{} } i := p.PixOffset(r.Min.X, r.Min.Y) return &CMYK{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *CMYK) Opaque() bool { return true } // NewCMYK returns a new CMYK image with the given bounds. func NewCMYK(r Rectangle) *CMYK { w, h := r.Dx(), r.Dy() buf := make([]uint8, 4*w*h) return &CMYK{buf, 4 * w, r} } // Paletted is an in-memory image of uint8 indices into a given palette. type Paletted struct { // Pix holds the image's pixels, as palette indices. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle // Palette is the image's palette. Palette color.Palette } func (p *Paletted) ColorModel() color.Model { return p.Palette } func (p *Paletted) Bounds() Rectangle { return p.Rect } func (p *Paletted) At(x, y int) color.Color { if len(p.Palette) == 0 { return nil } if !(Point{x, y}.In(p.Rect)) { return p.Palette[0] } i := p.PixOffset(x, y) return p.Palette[p.Pix[i]] } // PixOffset returns the index of the first element of Pix that corresponds to // the pixel at (x, y). func (p *Paletted) PixOffset(x, y int) int { return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 } func (p *Paletted) Set(x, y int, c color.Color) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i] = uint8(p.Palette.Index(c)) } func (p *Paletted) ColorIndexAt(x, y int) uint8 { if !(Point{x, y}.In(p.Rect)) { return 0 } i := p.PixOffset(x, y) return p.Pix[i] } func (p *Paletted) SetColorIndex(x, y int, index uint8) { if !(Point{x, y}.In(p.Rect)) { return } i := p.PixOffset(x, y) p.Pix[i] = index } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Paletted) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Paletted{ Palette: p.Palette, } } i := p.PixOffset(r.Min.X, r.Min.Y) return &Paletted{ Pix: p.Pix[i:], Stride: p.Stride, Rect: p.Rect.Intersect(r), Palette: p.Palette, } } // Opaque scans the entire image and reports whether it is fully opaque. func (p *Paletted) Opaque() bool { var present [256]bool i0, i1 := 0, p.Rect.Dx() for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { present[c] = true } i0 += p.Stride i1 += p.Stride } for i, c := range p.Palette { if !present[i] { continue } _, _, _, a := c.RGBA() if a != 0xffff { return false } } return true } // NewPaletted returns a new Paletted image with the given width, height and // palette. func NewPaletted(r Rectangle, p color.Palette) *Paletted { w, h := r.Dx(), r.Dy() pix := make([]uint8, 1*w*h) return &Paletted{pix, 1 * w, r, p} }