// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "math/big" "math/bits" ) // So you want to compute x / c for some constant c? // Machine division instructions are slow, so we try to // compute this division with a multiplication + a few // other cheap instructions instead. // (We assume here that c != 0, +/- 1, or +/- 2^i. Those // cases are easy to handle in different ways). // Technique from https://gmplib.org/~tege/divcnst-pldi94.pdf // First consider unsigned division. // Our strategy is to precompute 1/c then do // ⎣x / c⎦ = ⎣x * (1/c)⎦. // 1/c is less than 1, so we can't compute it directly in // integer arithmetic. Let's instead compute 2^e/c // for a value of e TBD (^ = exponentiation). Then // ⎣x / c⎦ = ⎣x * (2^e/c) / 2^e⎦. // Dividing by 2^e is easy. 2^e/c isn't an integer, unfortunately. // So we must approximate it. Let's call its approximation m. // We'll then compute // ⎣x * m / 2^e⎦ // Which we want to be equal to ⎣x / c⎦ for 0 <= x < 2^n-1 // where n is the word size. // Setting x = c gives us c * m >= 2^e. // We'll chose m = ⎡2^e/c⎤ to satisfy that equation. // What remains is to choose e. // Let m = 2^e/c + delta, 0 <= delta < 1 // ⎣x * (2^e/c + delta) / 2^e⎦ // ⎣x / c + x * delta / 2^e⎦ // We must have x * delta / 2^e < 1/c so that this // additional term never rounds differently than ⎣x / c⎦ does. // Rearranging, // 2^e > x * delta * c // x can be at most 2^n-1 and delta can be at most 1. // So it is sufficient to have 2^e >= 2^n*c. // So we'll choose e = n + s, with s = ⎡log2(c)⎤. // // An additional complication arises because m has n+1 bits in it. // Hardware restricts us to n bit by n bit multiplies. // We divide into 3 cases: // // Case 1: m is even. // ⎣x / c⎦ = ⎣x * m / 2^(n+s)⎦ // ⎣x / c⎦ = ⎣x * (m/2) / 2^(n+s-1)⎦ // ⎣x / c⎦ = ⎣x * (m/2) / 2^n / 2^(s-1)⎦ // ⎣x / c⎦ = ⎣⎣x * (m/2) / 2^n⎦ / 2^(s-1)⎦ // multiply + shift // // Case 2: c is even. // ⎣x / c⎦ = ⎣(x/2) / (c/2)⎦ // ⎣x / c⎦ = ⎣⎣x/2⎦ / (c/2)⎦ // This is just the original problem, with x' = ⎣x/2⎦, c' = c/2, n' = n-1. // s' = s-1 // m' = ⎡2^(n'+s')/c'⎤ // = ⎡2^(n+s-1)/c⎤ // = ⎡m/2⎤ // ⎣x / c⎦ = ⎣x' * m' / 2^(n'+s')⎦ // ⎣x / c⎦ = ⎣⎣x/2⎦ * ⎡m/2⎤ / 2^(n+s-2)⎦ // ⎣x / c⎦ = ⎣⎣⎣x/2⎦ * ⎡m/2⎤ / 2^n⎦ / 2^(s-2)⎦ // shift + multiply + shift // // Case 3: everything else // let k = m - 2^n. k fits in n bits. // ⎣x / c⎦ = ⎣x * m / 2^(n+s)⎦ // ⎣x / c⎦ = ⎣x * (2^n + k) / 2^(n+s)⎦ // ⎣x / c⎦ = ⎣(x + x * k / 2^n) / 2^s⎦ // ⎣x / c⎦ = ⎣(x + ⎣x * k / 2^n⎦) / 2^s⎦ // ⎣x / c⎦ = ⎣(x + ⎣x * k / 2^n⎦) / 2^s⎦ // ⎣x / c⎦ = ⎣⎣(x + ⎣x * k / 2^n⎦) / 2⎦ / 2^(s-1)⎦ // multiply + avg + shift // // These can be implemented in hardware using: // ⎣a * b / 2^n⎦ - aka high n bits of an n-bit by n-bit multiply. // ⎣(a+b) / 2⎦ - aka "average" of two n-bit numbers. // (Not just a regular add & shift because the intermediate result // a+b has n+1 bits in it. Nevertheless, can be done // in 2 instructions on x86.) // umagicOK reports whether we should strength reduce a n-bit divide by c. func umagicOK(n uint, c int64) bool { // Convert from ConstX auxint values to the real uint64 constant they represent. d := uint64(c) << (64 - n) >> (64 - n) // Doesn't work for 0. // Don't use for powers of 2. return d&(d-1) != 0 } // umagicOKn reports whether we should strength reduce an unsigned n-bit divide by c. // We can strength reduce when c != 0 and c is not a power of two. func umagicOK8(c int8) bool { return c&(c-1) != 0 } func umagicOK16(c int16) bool { return c&(c-1) != 0 } func umagicOK32(c int32) bool { return c&(c-1) != 0 } func umagicOK64(c int64) bool { return c&(c-1) != 0 } type umagicData struct { s int64 // ⎡log2(c)⎤ m uint64 // ⎡2^(n+s)/c⎤ - 2^n } // umagic computes the constants needed to strength reduce unsigned n-bit divides by the constant uint64(c). // The return values satisfy for all 0 <= x < 2^n // // floor(x / uint64(c)) = x * (m + 2^n) >> (n+s) func umagic(n uint, c int64) umagicData { // Convert from ConstX auxint values to the real uint64 constant they represent. d := uint64(c) << (64 - n) >> (64 - n) C := new(big.Int).SetUint64(d) s := C.BitLen() M := big.NewInt(1) M.Lsh(M, n+uint(s)) // 2^(n+s) M.Add(M, C) // 2^(n+s)+c M.Sub(M, big.NewInt(1)) // 2^(n+s)+c-1 M.Div(M, C) // ⎡2^(n+s)/c⎤ if M.Bit(int(n)) != 1 { panic("n+1st bit isn't set") } M.SetBit(M, int(n), 0) m := M.Uint64() return umagicData{s: int64(s), m: m} } func umagic8(c int8) umagicData { return umagic(8, int64(c)) } func umagic16(c int16) umagicData { return umagic(16, int64(c)) } func umagic32(c int32) umagicData { return umagic(32, int64(c)) } func umagic64(c int64) umagicData { return umagic(64, c) } // For signed division, we use a similar strategy. // First, we enforce a positive c. // x / c = -(x / (-c)) // This will require an additional Neg op for c<0. // // If x is positive we're in a very similar state // to the unsigned case above. We define: // s = ⎡log2(c)⎤-1 // m = ⎡2^(n+s)/c⎤ // Then // ⎣x / c⎦ = ⎣x * m / 2^(n+s)⎦ // If x is negative we have // ⎡x / c⎤ = ⎣x * m / 2^(n+s)⎦ + 1 // (TODO: derivation?) // // The multiply is a bit odd, as it is a signed n-bit value // times an unsigned n-bit value. For n smaller than the // word size, we can extend x and m appropriately and use the // signed multiply instruction. For n == word size, // we must use the signed multiply high and correct // the result by adding x*2^n. // // Adding 1 if x<0 is done by subtracting x>>(n-1). func smagicOK(n uint, c int64) bool { if c < 0 { // Doesn't work for negative c. return false } // Doesn't work for 0. // Don't use it for powers of 2. return c&(c-1) != 0 } // smagicOKn reports whether we should strength reduce an signed n-bit divide by c. func smagicOK8(c int8) bool { return smagicOK(8, int64(c)) } func smagicOK16(c int16) bool { return smagicOK(16, int64(c)) } func smagicOK32(c int32) bool { return smagicOK(32, int64(c)) } func smagicOK64(c int64) bool { return smagicOK(64, c) } type smagicData struct { s int64 // ⎡log2(c)⎤-1 m uint64 // ⎡2^(n+s)/c⎤ } // magic computes the constants needed to strength reduce signed n-bit divides by the constant c. // Must have c>0. // The return values satisfy for all -2^(n-1) <= x < 2^(n-1) // // trunc(x / c) = x * m >> (n+s) + (x < 0 ? 1 : 0) func smagic(n uint, c int64) smagicData { C := new(big.Int).SetInt64(c) s := C.BitLen() - 1 M := big.NewInt(1) M.Lsh(M, n+uint(s)) // 2^(n+s) M.Add(M, C) // 2^(n+s)+c M.Sub(M, big.NewInt(1)) // 2^(n+s)+c-1 M.Div(M, C) // ⎡2^(n+s)/c⎤ if M.Bit(int(n)) != 0 { panic("n+1st bit is set") } if M.Bit(int(n-1)) == 0 { panic("nth bit is not set") } m := M.Uint64() return smagicData{s: int64(s), m: m} } func smagic8(c int8) smagicData { return smagic(8, int64(c)) } func smagic16(c int16) smagicData { return smagic(16, int64(c)) } func smagic32(c int32) smagicData { return smagic(32, int64(c)) } func smagic64(c int64) smagicData { return smagic(64, c) } // Divisibility x%c == 0 can be checked more efficiently than directly computing // the modulus x%c and comparing against 0. // // The same "Division by invariant integers using multiplication" paper // by Granlund and Montgomery referenced above briefly mentions this method // and it is further elaborated in "Hacker's Delight" by Warren Section 10-17 // // The first thing to note is that for odd integers, exact division can be computed // by using the modular inverse with respect to the word size 2^n. // // Given c, compute m such that (c * m) mod 2^n == 1 // Then if c divides x (x%c ==0), the quotient is given by q = x/c == x*m mod 2^n // // x can range from 0, c, 2c, 3c, ... ⎣(2^n - 1)/c⎦ * c the maximum multiple // Thus, x*m mod 2^n is 0, 1, 2, 3, ... ⎣(2^n - 1)/c⎦ // i.e. the quotient takes all values from zero up to max = ⎣(2^n - 1)/c⎦ // // If x is not divisible by c, then x*m mod 2^n must take some larger value than max. // // This gives x*m mod 2^n <= ⎣(2^n - 1)/c⎦ as a test for divisibility // involving one multiplication and compare. // // To extend this to even integers, consider c = d0 * 2^k where d0 is odd. // We can test whether x is divisible by both d0 and 2^k. // For d0, the test is the same as above. Let m be such that m*d0 mod 2^n == 1 // Then x*m mod 2^n <= ⎣(2^n - 1)/d0⎦ is the first test. // The test for divisibility by 2^k is a check for k trailing zeroes. // Note that since d0 is odd, m is odd and thus x*m will have the same number of // trailing zeroes as x. So the two tests are, // // x*m mod 2^n <= ⎣(2^n - 1)/d0⎦ // and x*m ends in k zero bits // // These can be combined into a single comparison by the following // (theorem ZRU in Hacker's Delight) for unsigned integers. // // x <= a and x ends in k zero bits if and only if RotRight(x ,k) <= ⎣a/(2^k)⎦ // Where RotRight(x ,k) is right rotation of x by k bits. // // To prove the first direction, x <= a -> ⎣x/(2^k)⎦ <= ⎣a/(2^k)⎦ // But since x ends in k zeroes all the rotated bits would be zero too. // So RotRight(x, k) == ⎣x/(2^k)⎦ <= ⎣a/(2^k)⎦ // // If x does not end in k zero bits, then RotRight(x, k) // has some non-zero bits in the k highest bits. // ⎣x/(2^k)⎦ has all zeroes in the k highest bits, // so RotRight(x, k) > ⎣x/(2^k)⎦ // // Finally, if x > a and has k trailing zero bits, then RotRight(x, k) == ⎣x/(2^k)⎦ // and ⎣x/(2^k)⎦ must be greater than ⎣a/(2^k)⎦, that is the top n-k bits of x must // be greater than the top n-k bits of a because the rest of x bits are zero. // // So the two conditions about can be replaced with the single test // // RotRight(x*m mod 2^n, k) <= ⎣(2^n - 1)/c⎦ // // Where d0*2^k was replaced by c on the right hand side. // udivisibleOK reports whether we should strength reduce an unsigned n-bit divisibilty check by c. func udivisibleOK(n uint, c int64) bool { // Convert from ConstX auxint values to the real uint64 constant they represent. d := uint64(c) << (64 - n) >> (64 - n) // Doesn't work for 0. // Don't use for powers of 2. return d&(d-1) != 0 } func udivisibleOK8(c int8) bool { return udivisibleOK(8, int64(c)) } func udivisibleOK16(c int16) bool { return udivisibleOK(16, int64(c)) } func udivisibleOK32(c int32) bool { return udivisibleOK(32, int64(c)) } func udivisibleOK64(c int64) bool { return udivisibleOK(64, c) } type udivisibleData struct { k int64 // trailingZeros(c) m uint64 // m * (c>>k) mod 2^n == 1 multiplicative inverse of odd portion modulo 2^n max uint64 // ⎣(2^n - 1)/ c⎦ max value to for divisibility } func udivisible(n uint, c int64) udivisibleData { // Convert from ConstX auxint values to the real uint64 constant they represent. d := uint64(c) << (64 - n) >> (64 - n) k := bits.TrailingZeros64(d) d0 := d >> uint(k) // the odd portion of the divisor mask := ^uint64(0) >> (64 - n) // Calculate the multiplicative inverse via Newton's method. // Quadratic convergence doubles the number of correct bits per iteration. m := d0 // initial guess correct to 3-bits d0*d0 mod 8 == 1 m = m * (2 - m*d0) // 6-bits m = m * (2 - m*d0) // 12-bits m = m * (2 - m*d0) // 24-bits m = m * (2 - m*d0) // 48-bits m = m * (2 - m*d0) // 96-bits >= 64-bits m = m & mask max := mask / d return udivisibleData{ k: int64(k), m: m, max: max, } } func udivisible8(c int8) udivisibleData { return udivisible(8, int64(c)) } func udivisible16(c int16) udivisibleData { return udivisible(16, int64(c)) } func udivisible32(c int32) udivisibleData { return udivisible(32, int64(c)) } func udivisible64(c int64) udivisibleData { return udivisible(64, c) } // For signed integers, a similar method follows. // // Given c > 1 and odd, compute m such that (c * m) mod 2^n == 1 // Then if c divides x (x%c ==0), the quotient is given by q = x/c == x*m mod 2^n // // x can range from ⎡-2^(n-1)/c⎤ * c, ... -c, 0, c, ... ⎣(2^(n-1) - 1)/c⎦ * c // Thus, x*m mod 2^n is ⎡-2^(n-1)/c⎤, ... -2, -1, 0, 1, 2, ... ⎣(2^(n-1) - 1)/c⎦ // // So, x is a multiple of c if and only if: // ⎡-2^(n-1)/c⎤ <= x*m mod 2^n <= ⎣(2^(n-1) - 1)/c⎦ // // Since c > 1 and odd, this can be simplified by // ⎡-2^(n-1)/c⎤ == ⎡(-2^(n-1) + 1)/c⎤ == -⎣(2^(n-1) - 1)/c⎦ // // -⎣(2^(n-1) - 1)/c⎦ <= x*m mod 2^n <= ⎣(2^(n-1) - 1)/c⎦ // // To extend this to even integers, consider c = d0 * 2^k where d0 is odd. // We can test whether x is divisible by both d0 and 2^k. // // Let m be such that (d0 * m) mod 2^n == 1. // Let q = x*m mod 2^n. Then c divides x if: // // -⎣(2^(n-1) - 1)/d0⎦ <= q <= ⎣(2^(n-1) - 1)/d0⎦ and q ends in at least k 0-bits // // To transform this to a single comparison, we use the following theorem (ZRS in Hacker's Delight). // // For a >= 0 the following conditions are equivalent: // 1) -a <= x <= a and x ends in at least k 0-bits // 2) RotRight(x+a', k) <= ⎣2a'/2^k⎦ // // Where a' = a & -2^k (a with its right k bits set to zero) // // To see that 1 & 2 are equivalent, note that -a <= x <= a is equivalent to // -a' <= x <= a' if and only if x ends in at least k 0-bits. Adding -a' to each side gives, // 0 <= x + a' <= 2a' and x + a' ends in at least k 0-bits if and only if x does since a' has // k 0-bits by definition. We can use theorem ZRU above with x -> x + a' and a -> 2a' giving 1) == 2). // // Let m be such that (d0 * m) mod 2^n == 1. // Let q = x*m mod 2^n. // Let a' = ⎣(2^(n-1) - 1)/d0⎦ & -2^k // // Then the divisibility test is: // // RotRight(q+a', k) <= ⎣2a'/2^k⎦ // // Note that the calculation is performed using unsigned integers. // Since a' can have n-1 bits, 2a' may have n bits and there is no risk of overflow. // sdivisibleOK reports whether we should strength reduce a signed n-bit divisibilty check by c. func sdivisibleOK(n uint, c int64) bool { if c < 0 { // Doesn't work for negative c. return false } // Doesn't work for 0. // Don't use it for powers of 2. return c&(c-1) != 0 } func sdivisibleOK8(c int8) bool { return sdivisibleOK(8, int64(c)) } func sdivisibleOK16(c int16) bool { return sdivisibleOK(16, int64(c)) } func sdivisibleOK32(c int32) bool { return sdivisibleOK(32, int64(c)) } func sdivisibleOK64(c int64) bool { return sdivisibleOK(64, c) } type sdivisibleData struct { k int64 // trailingZeros(c) m uint64 // m * (c>>k) mod 2^n == 1 multiplicative inverse of odd portion modulo 2^n a uint64 // ⎣(2^(n-1) - 1)/ (c>>k)⎦ & -(1<> uint(k) // the odd portion of the divisor mask := ^uint64(0) >> (64 - n) // Calculate the multiplicative inverse via Newton's method. // Quadratic convergence doubles the number of correct bits per iteration. m := d0 // initial guess correct to 3-bits d0*d0 mod 8 == 1 m = m * (2 - m*d0) // 6-bits m = m * (2 - m*d0) // 12-bits m = m * (2 - m*d0) // 24-bits m = m * (2 - m*d0) // 48-bits m = m * (2 - m*d0) // 96-bits >= 64-bits m = m & mask a := ((mask >> 1) / d0) & -(1 << uint(k)) max := (2 * a) >> uint(k) return sdivisibleData{ k: int64(k), m: m, a: a, max: max, } } func sdivisible8(c int8) sdivisibleData { return sdivisible(8, int64(c)) } func sdivisible16(c int16) sdivisibleData { return sdivisible(16, int64(c)) } func sdivisible32(c int32) sdivisibleData { return sdivisible(32, int64(c)) } func sdivisible64(c int64) sdivisibleData { return sdivisible(64, c) }