// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "fmt" "sort" ) const ( cmpDepth = 4 ) // cse does common-subexpression elimination on the Function. // Values are just relinked, nothing is deleted. A subsequent deadcode // pass is required to actually remove duplicate expressions. func cse(f *Func) { // Two values are equivalent if they satisfy the following definition: // equivalent(v, w): // v.op == w.op // v.type == w.type // v.aux == w.aux // v.auxint == w.auxint // len(v.args) == len(w.args) // v.block == w.block if v.op == OpPhi // equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1 // The algorithm searches for a partition of f's values into // equivalence classes using the above definition. // It starts with a coarse partition and iteratively refines it // until it reaches a fixed point. // Make initial coarse partitions by using a subset of the conditions above. a := make([]*Value, 0, f.NumValues()) auxIDs := auxmap{} for _, b := range f.Blocks { for _, v := range b.Values { if auxIDs[v.Aux] == 0 { auxIDs[v.Aux] = int32(len(auxIDs)) + 1 } if v.Type.IsMemory() { continue // memory values can never cse } if opcodeTable[v.Op].commutative && len(v.Args) == 2 && v.Args[1].ID < v.Args[0].ID { // Order the arguments of binary commutative operations. v.Args[0], v.Args[1] = v.Args[1], v.Args[0] } a = append(a, v) } } partition := partitionValues(a, auxIDs) // map from value id back to eqclass id valueEqClass := make([]ID, f.NumValues()) for _, b := range f.Blocks { for _, v := range b.Values { // Use negative equivalence class #s for unique values. valueEqClass[v.ID] = -v.ID } } for i, e := range partition { if f.pass.debug > 1 && len(e) > 500 { fmt.Printf("CSE.large partition (%d): ", len(e)) for j := 0; j < 3; j++ { fmt.Printf("%s ", e[j].LongString()) } fmt.Println() } for _, v := range e { valueEqClass[v.ID] = ID(i) } if f.pass.debug > 2 && len(e) > 1 { fmt.Printf("CSE.partition #%d:", i) for _, v := range e { fmt.Printf(" %s", v.String()) } fmt.Printf("\n") } } // Find an equivalence class where some members of the class have // non-equivalent arguments. Split the equivalence class appropriately. // Repeat until we can't find any more splits. for { changed := false // partition can grow in the loop. By not using a range loop here, // we process new additions as they arrive, avoiding O(n^2) behavior. for i := 0; i < len(partition); i++ { e := partition[i] v := e[0] // all values in this equiv class that are not equivalent to v get moved // into another equiv class. // To avoid allocating while building that equivalence class, // move the values equivalent to v to the beginning of e // and other values to the end of e. allvals := e eqloop: for j := 1; j < len(e); { w := e[j] equivalent := true for i := 0; i < len(v.Args); i++ { if valueEqClass[v.Args[i].ID] != valueEqClass[w.Args[i].ID] { equivalent = false break } } if !equivalent || !v.Type.Equal(w.Type) { // w is not equivalent to v. // move it to the end and shrink e. e[j], e[len(e)-1] = e[len(e)-1], e[j] e = e[:len(e)-1] valueEqClass[w.ID] = ID(len(partition)) changed = true continue eqloop } // v and w are equivalent. Keep w in e. j++ } partition[i] = e if len(e) < len(allvals) { partition = append(partition, allvals[len(e):]) } } if !changed { break } } // Compute dominator tree idom := dominators(f) sdom := newSparseTree(f, idom) // Compute substitutions we would like to do. We substitute v for w // if v and w are in the same equivalence class and v dominates w. rewrite := make([]*Value, f.NumValues()) for _, e := range partition { for len(e) > 1 { // Find a maximal dominant element in e v := e[0] for _, w := range e[1:] { if sdom.isAncestorEq(w.Block, v.Block) { v = w } } // Replace all elements of e which v dominates for i := 0; i < len(e); { w := e[i] if w == v { e, e[i] = e[:len(e)-1], e[len(e)-1] } else if sdom.isAncestorEq(v.Block, w.Block) { rewrite[w.ID] = v e, e[i] = e[:len(e)-1], e[len(e)-1] } else { i++ } } } } rewrites := int64(0) // Apply substitutions for _, b := range f.Blocks { for _, v := range b.Values { for i, w := range v.Args { if x := rewrite[w.ID]; x != nil { v.SetArg(i, x) rewrites++ } } } if v := b.Control; v != nil { if x := rewrite[v.ID]; x != nil { if v.Op == OpNilCheck { // nilcheck pass will remove the nil checks and log // them appropriately, so don't mess with them here. continue } b.Control = x } } } if f.pass.stats > 0 { f.logStat("CSE REWRITES", rewrites) } } // An eqclass approximates an equivalence class. During the // algorithm it may represent the union of several of the // final equivalence classes. type eqclass []*Value // partitionValues partitions the values into equivalence classes // based on having all the following features match: // - opcode // - type // - auxint // - aux // - nargs // - block # if a phi op // - first two arg's opcodes and auxint // - NOT first two arg's aux; that can break CSE. // partitionValues returns a list of equivalence classes, each // being a sorted by ID list of *Values. The eqclass slices are // backed by the same storage as the input slice. // Equivalence classes of size 1 are ignored. func partitionValues(a []*Value, auxIDs auxmap) []eqclass { sort.Sort(sortvalues{a, auxIDs}) var partition []eqclass for len(a) > 0 { v := a[0] j := 1 for ; j < len(a); j++ { w := a[j] if cmpVal(v, w, auxIDs, cmpDepth) != CMPeq { break } } if j > 1 { partition = append(partition, a[:j]) } a = a[j:] } return partition } func lt2Cmp(isLt bool) Cmp { if isLt { return CMPlt } return CMPgt } type auxmap map[interface{}]int32 func cmpVal(v, w *Value, auxIDs auxmap, depth int) Cmp { // Try to order these comparison by cost (cheaper first) if v.Op != w.Op { return lt2Cmp(v.Op < w.Op) } if v.AuxInt != w.AuxInt { return lt2Cmp(v.AuxInt < w.AuxInt) } if len(v.Args) != len(w.Args) { return lt2Cmp(len(v.Args) < len(w.Args)) } if v.Op == OpPhi && v.Block != w.Block { return lt2Cmp(v.Block.ID < w.Block.ID) } if tc := v.Type.Compare(w.Type); tc != CMPeq { return tc } if v.Aux != w.Aux { if v.Aux == nil { return CMPlt } if w.Aux == nil { return CMPgt } return lt2Cmp(auxIDs[v.Aux] < auxIDs[w.Aux]) } if depth > 0 { for i := range v.Args { if v.Args[i] == w.Args[i] { // skip comparing equal args continue } if ac := cmpVal(v.Args[i], w.Args[i], auxIDs, depth-1); ac != CMPeq { return ac } } } return CMPeq } // Sort values to make the initial partition. type sortvalues struct { a []*Value // array of values auxIDs auxmap // aux -> aux ID map } func (sv sortvalues) Len() int { return len(sv.a) } func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] } func (sv sortvalues) Less(i, j int) bool { v := sv.a[i] w := sv.a[j] if cmp := cmpVal(v, w, sv.auxIDs, cmpDepth); cmp != CMPeq { return cmp == CMPlt } // Sort by value ID last to keep the sort result deterministic. return v.ID < w.ID }