/* * Copyright (C) 2003-2012 Free Software Foundation, Inc. * Copyright (C) 2012-2015 Nikos Mavrogiannopoulos * * Author: Nikos Mavrogiannopoulos * * This file is part of GnuTLS. * * The GnuTLS is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see * */ #include "gnutls_int.h" #include #include #include "errors.h" #include #include #include #include #include #include #include #include #include /** * gnutls_x509_privkey_init: * @key: A pointer to the type to be initialized * * This function will initialize a private key type. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_init(gnutls_x509_privkey_t * key) { FAIL_IF_LIB_ERROR; *key = gnutls_calloc(1, sizeof(gnutls_x509_privkey_int)); if (*key) { (*key)->key = ASN1_TYPE_EMPTY; (*key)->pk_algorithm = GNUTLS_PK_UNKNOWN; return 0; /* success */ } return GNUTLS_E_MEMORY_ERROR; } void _gnutls_x509_privkey_reinit(gnutls_x509_privkey_t key) { gnutls_pk_params_clear(&key->params); gnutls_pk_params_release(&key->params); asn1_delete_structure2(&key->key, ASN1_DELETE_FLAG_ZEROIZE); key->key = ASN1_TYPE_EMPTY; } /** * gnutls_x509_privkey_deinit: * @key: The key to be deinitialized * * This function will deinitialize a private key structure. **/ void gnutls_x509_privkey_deinit(gnutls_x509_privkey_t key) { if (!key) return; _gnutls_x509_privkey_reinit(key); gnutls_free(key); } /** * gnutls_x509_privkey_cpy: * @dst: The destination key, which should be initialized. * @src: The source key * * This function will copy a private key from source to destination * key. Destination has to be initialized. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_cpy(gnutls_x509_privkey_t dst, gnutls_x509_privkey_t src) { unsigned int i; int ret; if (!src || !dst) return GNUTLS_E_INVALID_REQUEST; for (i = 0; i < src->params.params_nr; i++) { dst->params.params[i] = _gnutls_mpi_copy(src->params.params[i]); if (dst->params.params[i] == NULL) return GNUTLS_E_MEMORY_ERROR; } dst->params.params_nr = src->params.params_nr; dst->params.flags = src->params.flags; dst->pk_algorithm = src->pk_algorithm; ret = _gnutls_asn1_encode_privkey(dst->pk_algorithm, &dst->key, &dst->params, src->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT); if (ret < 0) { gnutls_assert(); return ret; } return 0; } /* Converts an RSA PKCS#1 key to * an internal structure (gnutls_private_key) */ ASN1_TYPE _gnutls_privkey_decode_pkcs1_rsa_key(const gnutls_datum_t * raw_key, gnutls_x509_privkey_t pkey) { int result; ASN1_TYPE pkey_asn; char tmp[64]; int tmp_size; gnutls_pk_params_init(&pkey->params); pkey->params.algo = GNUTLS_PK_RSA; if ((result = asn1_create_element(_gnutls_get_gnutls_asn(), "GNUTLS.RSAPrivateKey", &pkey_asn)) != ASN1_SUCCESS) { gnutls_assert(); return NULL; } result = _asn1_strict_der_decode(&pkey_asn, raw_key->data, raw_key->size, NULL); if (result != ASN1_SUCCESS) { gnutls_assert(); goto error; } if ((result = _gnutls_x509_read_int(pkey_asn, "modulus", &pkey->params.params[0])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_int(pkey_asn, "publicExponent", &pkey->params.params[1])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(pkey_asn, "privateExponent", &pkey->params.params[2])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(pkey_asn, "prime1", &pkey->params.params[3])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(pkey_asn, "prime2", &pkey->params.params[4])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(pkey_asn, "coefficient", &pkey->params.params[5])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(pkey_asn, "exponent1", &pkey->params.params[6])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(pkey_asn, "exponent2", &pkey->params.params[7])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; result = _gnutls_pk_fixup(GNUTLS_PK_RSA, GNUTLS_IMPORT, &pkey->params); if (result < 0) { gnutls_assert(); goto error; } pkey->params.params_nr = RSA_PRIVATE_PARAMS; tmp_size = sizeof(tmp); result = asn1_read_value(pkey_asn, "otherInfo", tmp, &tmp_size); if (result == ASN1_SUCCESS && strcmp(tmp, "seed") == 0) { gnutls_datum_t v; char oid[MAX_OID_SIZE]; int oid_size; oid_size = sizeof(oid); result = asn1_read_value(pkey_asn, "otherInfo.seed.algorithm", oid, &oid_size); if (result == ASN1_SUCCESS) { pkey->params.palgo = gnutls_oid_to_digest(oid); } result = _gnutls_x509_read_value(pkey_asn, "otherInfo.seed.seed", &v); if (result >= 0) { if (v.size <= sizeof(pkey->params.seed)) { memcpy(pkey->params.seed, v.data, v.size); pkey->params.seed_size = v.size; } gnutls_free(v.data); } } return pkey_asn; error: asn1_delete_structure2(&pkey_asn, ASN1_DELETE_FLAG_ZEROIZE); gnutls_pk_params_clear(&pkey->params); gnutls_pk_params_release(&pkey->params); return NULL; } /* Converts an ECC key to * an internal structure (gnutls_private_key) */ int _gnutls_privkey_decode_ecc_key(ASN1_TYPE* pkey_asn, const gnutls_datum_t * raw_key, gnutls_x509_privkey_t pkey, gnutls_ecc_curve_t curve) { int ret; unsigned int version; char oid[MAX_OID_SIZE]; int oid_size; gnutls_datum_t out; gnutls_pk_params_init(&pkey->params); pkey->params.algo = GNUTLS_PK_EC; if ((ret = asn1_create_element(_gnutls_get_gnutls_asn(), "GNUTLS.ECPrivateKey", pkey_asn)) != ASN1_SUCCESS) { gnutls_assert(); return _gnutls_asn2err(ret); } ret = _asn1_strict_der_decode(pkey_asn, raw_key->data, raw_key->size, NULL); if (ret != ASN1_SUCCESS) { gnutls_assert(); ret = _gnutls_asn2err(ret); goto error; } ret = _gnutls_x509_read_uint(*pkey_asn, "Version", &version); if (ret < 0) { gnutls_assert(); goto error; } if (version != 1) { _gnutls_debug_log ("ECC private key version %u is not supported\n", version); gnutls_assert(); ret = GNUTLS_E_ECC_UNSUPPORTED_CURVE; goto error; } /* read the curve */ if (curve == GNUTLS_ECC_CURVE_INVALID) { oid_size = sizeof(oid); ret = asn1_read_value(*pkey_asn, "parameters.namedCurve", oid, &oid_size); if (ret != ASN1_SUCCESS) { gnutls_assert(); ret = _gnutls_asn2err(ret); goto error; } pkey->params.flags = gnutls_oid_to_ecc_curve(oid); if (pkey->params.flags == GNUTLS_ECC_CURVE_INVALID) { _gnutls_debug_log("Curve %s is not supported\n", oid); gnutls_assert(); ret = GNUTLS_E_ECC_UNSUPPORTED_CURVE; goto error; } } else { pkey->params.flags = curve; } /* read the public key */ ret = _gnutls_x509_read_value(*pkey_asn, "publicKey", &out); if (ret < 0) { gnutls_assert(); goto error; } ret = _gnutls_ecc_ansi_x963_import(out.data, out.size, &pkey->params.params[ECC_X], &pkey->params.params[ECC_Y]); _gnutls_free_datum(&out); if (ret < 0) { gnutls_assert(); goto error; } pkey->params.params_nr += 2; /* read the private key */ ret = _gnutls_x509_read_key_int(*pkey_asn, "privateKey", &pkey->params.params[ECC_K]); if (ret < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; return 0; error: asn1_delete_structure2(pkey_asn, ASN1_DELETE_FLAG_ZEROIZE); gnutls_pk_params_clear(&pkey->params); gnutls_pk_params_release(&pkey->params); return ret; } static ASN1_TYPE decode_dsa_key(const gnutls_datum_t * raw_key, gnutls_x509_privkey_t pkey) { int result; ASN1_TYPE dsa_asn; gnutls_datum_t seed = {NULL,0}; char oid[MAX_OID_SIZE]; int oid_size; if ((result = asn1_create_element(_gnutls_get_gnutls_asn(), "GNUTLS.DSAPrivateKey", &dsa_asn)) != ASN1_SUCCESS) { gnutls_assert(); return NULL; } gnutls_pk_params_init(&pkey->params); pkey->params.algo = GNUTLS_PK_DSA; result = _asn1_strict_der_decode(&dsa_asn, raw_key->data, raw_key->size, NULL); if (result != ASN1_SUCCESS) { gnutls_assert(); goto error; } if ((result = _gnutls_x509_read_int(dsa_asn, "p", &pkey->params.params[0])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_int(dsa_asn, "q", &pkey->params.params[1])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_int(dsa_asn, "g", &pkey->params.params[2])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_int(dsa_asn, "Y", &pkey->params.params[3])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; if ((result = _gnutls_x509_read_key_int(dsa_asn, "priv", &pkey->params.params[4])) < 0) { gnutls_assert(); goto error; } pkey->params.params_nr++; oid_size = sizeof(oid); result = asn1_read_value(dsa_asn, "seed.algorithm", oid, &oid_size); if (result == ASN1_SUCCESS) { pkey->params.palgo = gnutls_oid_to_digest(oid); result = _gnutls_x509_read_value(dsa_asn, "seed.seed", &seed); if (result == ASN1_SUCCESS) { if (seed.size <= sizeof(pkey->params.seed)) { memcpy(pkey->params.seed, seed.data, seed.size); pkey->params.seed_size = seed.size; } gnutls_free(seed.data); } } return dsa_asn; error: asn1_delete_structure2(&dsa_asn, ASN1_DELETE_FLAG_ZEROIZE); gnutls_pk_params_clear(&pkey->params); gnutls_pk_params_release(&pkey->params); return NULL; } #define PEM_KEY_DSA "DSA PRIVATE KEY" #define PEM_KEY_RSA "RSA PRIVATE KEY" #define PEM_KEY_DSA_PROVABLE "FIPS186-4 DSA PRIVATE KEY" #define PEM_KEY_RSA_PROVABLE "FIPS186-4 RSA PRIVATE KEY" #define PEM_KEY_ECC "EC PRIVATE KEY" #define PEM_KEY_PKCS8 "PRIVATE KEY" #define MAX_PEM_HEADER_SIZE 25 #define IF_CHECK_FOR(pemstr, algo, cptr, bptr, size, key) \ if (left > sizeof(pemstr) && memcmp(cptr, pemstr, sizeof(pemstr)-1) == 0) { \ result = _gnutls_fbase64_decode(pemstr, bptr, size, &_data); \ if (result >= 0) \ key->pk_algorithm = algo; \ } /** * gnutls_x509_privkey_import: * @key: The data to store the parsed key * @data: The DER or PEM encoded certificate. * @format: One of DER or PEM * * This function will convert the given DER or PEM encoded key to the * native #gnutls_x509_privkey_t format. The output will be stored in * @key . * * If the key is PEM encoded it should have a header that contains "PRIVATE * KEY". Note that this function falls back to PKCS #8 decoding without * password, if the default format fails to import. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_import(gnutls_x509_privkey_t key, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format) { int result = 0, need_free = 0; gnutls_datum_t _data; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } _data.data = data->data; _data.size = data->size; key->pk_algorithm = GNUTLS_PK_UNKNOWN; /* If the Certificate is in PEM format then decode it */ if (format == GNUTLS_X509_FMT_PEM) { unsigned left; char *ptr; uint8_t *begin_ptr; ptr = memmem(data->data, data->size, "PRIVATE KEY-----", sizeof("PRIVATE KEY-----")-1); result = GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE; if (ptr != NULL) { left = data->size - ((ptrdiff_t)ptr - (ptrdiff_t)data->data); if (data->size - left > MAX_PEM_HEADER_SIZE) { ptr -= MAX_PEM_HEADER_SIZE; left += MAX_PEM_HEADER_SIZE; } else { ptr = (char*)data->data; left = data->size; } ptr = memmem(ptr, left, "-----BEGIN ", sizeof("-----BEGIN ")-1); if (ptr != NULL) { begin_ptr = (uint8_t*)ptr; left = data->size - ((ptrdiff_t)begin_ptr - (ptrdiff_t)data->data); ptr += sizeof("-----BEGIN ")-1; IF_CHECK_FOR(PEM_KEY_RSA, GNUTLS_PK_RSA, ptr, begin_ptr, left, key) else IF_CHECK_FOR(PEM_KEY_ECC, GNUTLS_PK_EC, ptr, begin_ptr, left, key) else IF_CHECK_FOR(PEM_KEY_DSA, GNUTLS_PK_DSA, ptr, begin_ptr, left, key) else IF_CHECK_FOR(PEM_KEY_RSA_PROVABLE, GNUTLS_PK_RSA, ptr, begin_ptr, left, key) else IF_CHECK_FOR(PEM_KEY_DSA_PROVABLE, GNUTLS_PK_DSA, ptr, begin_ptr, left, key) if (key->pk_algorithm == GNUTLS_PK_UNKNOWN && left >= sizeof(PEM_KEY_PKCS8)) { if (memcmp(ptr, PEM_KEY_PKCS8, sizeof(PEM_KEY_PKCS8)-1) == 0) { result = _gnutls_fbase64_decode(PEM_KEY_PKCS8, begin_ptr, left, &_data); if (result >= 0) { /* signal for PKCS #8 keys */ key->pk_algorithm = -1; } } } } } if (result < 0) { gnutls_assert(); return result; } need_free = 1; } if (key->expanded) { _gnutls_x509_privkey_reinit(key); } key->expanded = 1; if (key->pk_algorithm == (gnutls_pk_algorithm_t)-1) { result = gnutls_x509_privkey_import_pkcs8(key, data, format, NULL, GNUTLS_PKCS_PLAIN); if (result < 0) { gnutls_assert(); key->key = NULL; } } else if (key->pk_algorithm == GNUTLS_PK_RSA) { key->key = _gnutls_privkey_decode_pkcs1_rsa_key(&_data, key); if (key->key == NULL) gnutls_assert(); } else if (key->pk_algorithm == GNUTLS_PK_DSA) { key->key = decode_dsa_key(&_data, key); if (key->key == NULL) gnutls_assert(); } else if (key->pk_algorithm == GNUTLS_PK_EC) { result = _gnutls_privkey_decode_ecc_key(&key->key, &_data, key, 0); if (result < 0) { gnutls_assert(); key->key = NULL; } } else { /* Try decoding each of the keys, and accept the one that * succeeds. */ key->pk_algorithm = GNUTLS_PK_RSA; key->key = _gnutls_privkey_decode_pkcs1_rsa_key(&_data, key); if (key->key == NULL) { key->pk_algorithm = GNUTLS_PK_DSA; key->key = decode_dsa_key(&_data, key); if (key->key == NULL) { key->pk_algorithm = GNUTLS_PK_EC; result = _gnutls_privkey_decode_ecc_key(&key->key, &_data, key, 0); if (result < 0) { result = gnutls_x509_privkey_import_pkcs8(key, data, format, NULL, GNUTLS_PKCS_PLAIN); if (result < 0) { gnutls_assert(); key->key = NULL; } } } } } if (key->key == NULL) { gnutls_assert(); result = GNUTLS_E_ASN1_DER_ERROR; } else { result = 0; } if (need_free) _gnutls_free_datum(&_data); /* The key has now been decoded. */ return result; } static int import_pkcs12_privkey(gnutls_x509_privkey_t key, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *password, unsigned int flags) { int ret; gnutls_pkcs12_t p12; gnutls_x509_privkey_t newkey; ret = gnutls_pkcs12_init(&p12); if (ret < 0) return gnutls_assert_val(ret); ret = gnutls_pkcs12_import(p12, data, format, flags); if (ret < 0) { gnutls_assert(); goto fail; } ret = gnutls_pkcs12_simple_parse(p12, password, &newkey, NULL, NULL, NULL, NULL, NULL, 0); if (ret < 0) { gnutls_assert(); goto fail; } ret = gnutls_x509_privkey_cpy(key, newkey); gnutls_x509_privkey_deinit(newkey); if (ret < 0) { gnutls_assert(); goto fail; } ret = 0; fail: gnutls_pkcs12_deinit(p12); return ret; } /** * gnutls_x509_privkey_import2: * @key: The data to store the parsed key * @data: The DER or PEM encoded key. * @format: One of DER or PEM * @password: A password (optional) * @flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t * * This function will import the given DER or PEM encoded key, to * the native #gnutls_x509_privkey_t format, irrespective of the * input format. The input format is auto-detected. * * The supported formats are basic unencrypted key, PKCS8, PKCS12, * and the openssl format. * * If the provided key is encrypted but no password was given, then * %GNUTLS_E_DECRYPTION_FAILED is returned. Since GnuTLS 3.4.0 this * function will utilize the PIN callbacks if any. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_import2(gnutls_x509_privkey_t key, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *password, unsigned int flags) { int ret = 0; char pin[GNUTLS_PKCS11_MAX_PIN_LEN]; unsigned head_enc = 1; if (format == GNUTLS_X509_FMT_PEM) { size_t left; char *ptr; ptr = memmem(data->data, data->size, "PRIVATE KEY-----", sizeof("PRIVATE KEY-----")-1); if (ptr != NULL) { left = data->size - ((ptrdiff_t)ptr - (ptrdiff_t)data->data); if (data->size - left > 15) { ptr -= 15; left += 15; } else { ptr = (char*)data->data; left = data->size; } ptr = memmem(ptr, left, "-----BEGIN ", sizeof("-----BEGIN ")-1); if (ptr != NULL) { ptr += sizeof("-----BEGIN ")-1; left = data->size - ((ptrdiff_t)ptr - (ptrdiff_t)data->data); } if (ptr != NULL && left > sizeof(PEM_KEY_RSA)) { if (memcmp(ptr, PEM_KEY_RSA, sizeof(PEM_KEY_RSA)-1) == 0 || memcmp(ptr, PEM_KEY_ECC, sizeof(PEM_KEY_ECC)-1) == 0 || memcmp(ptr, PEM_KEY_DSA, sizeof(PEM_KEY_DSA)-1) == 0) { head_enc = 0; } } } } if (head_enc == 0 || (password == NULL && !(flags & GNUTLS_PKCS_NULL_PASSWORD))) { ret = gnutls_x509_privkey_import(key, data, format); if (ret >= 0) return ret; if (ret < 0) { gnutls_assert(); /* fall through to PKCS #8 decoding */ } } if ((password != NULL || (flags & GNUTLS_PKCS_NULL_PASSWORD)) || ret < 0) { ret = gnutls_x509_privkey_import_pkcs8(key, data, format, password, flags); if (ret == GNUTLS_E_DECRYPTION_FAILED && password == NULL && (!(flags & GNUTLS_PKCS_PLAIN))) { /* use the callback if any */ ret = _gnutls_retrieve_pin(&key->pin, "key:", "", 0, pin, sizeof(pin)); if (ret == 0) { password = pin; } ret = gnutls_x509_privkey_import_pkcs8(key, data, format, password, flags); } if (ret < 0) { if (ret == GNUTLS_E_DECRYPTION_FAILED) goto cleanup; ret = import_pkcs12_privkey(key, data, format, password, flags); if (ret < 0 && format == GNUTLS_X509_FMT_PEM) { if (ret == GNUTLS_E_DECRYPTION_FAILED) goto cleanup; ret = gnutls_x509_privkey_import_openssl(key, data, password); if (ret < 0) { gnutls_assert(); goto cleanup; } } else { gnutls_assert(); goto cleanup; } } } ret = 0; cleanup: return ret; } /** * gnutls_x509_privkey_import_rsa_raw: * @key: The data to store the parsed key * @m: holds the modulus * @e: holds the public exponent * @d: holds the private exponent * @p: holds the first prime (p) * @q: holds the second prime (q) * @u: holds the coefficient * * This function will convert the given RSA raw parameters to the * native #gnutls_x509_privkey_t format. The output will be stored in * @key. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_import_rsa_raw(gnutls_x509_privkey_t key, const gnutls_datum_t * m, const gnutls_datum_t * e, const gnutls_datum_t * d, const gnutls_datum_t * p, const gnutls_datum_t * q, const gnutls_datum_t * u) { return gnutls_x509_privkey_import_rsa_raw2(key, m, e, d, p, q, u, NULL, NULL); } /** * gnutls_x509_privkey_import_rsa_raw2: * @key: The data to store the parsed key * @m: holds the modulus * @e: holds the public exponent * @d: holds the private exponent * @p: holds the first prime (p) * @q: holds the second prime (q) * @u: holds the coefficient (optional) * @e1: holds e1 = d mod (p-1) (optional) * @e2: holds e2 = d mod (q-1) (optional) * * This function will convert the given RSA raw parameters to the * native #gnutls_x509_privkey_t format. The output will be stored in * @key. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_import_rsa_raw2(gnutls_x509_privkey_t key, const gnutls_datum_t * m, const gnutls_datum_t * e, const gnutls_datum_t * d, const gnutls_datum_t * p, const gnutls_datum_t * q, const gnutls_datum_t * u, const gnutls_datum_t * e1, const gnutls_datum_t * e2) { int ret; size_t siz = 0; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } gnutls_pk_params_init(&key->params); siz = m->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[0], m->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; siz = e->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[1], e->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; siz = d->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[2], d->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; siz = p->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[3], p->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; siz = q->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[4], q->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; if (u) { siz = u->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[RSA_COEF], u->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; } if (e1 && e2) { siz = e1->size; if (_gnutls_mpi_init_scan_nz (&key->params.params[RSA_E1], e1->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; siz = e2->size; if (_gnutls_mpi_init_scan_nz (&key->params.params[RSA_E2], e2->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; } ret = _gnutls_pk_fixup(GNUTLS_PK_RSA, GNUTLS_IMPORT, &key->params); if (ret < 0) { gnutls_assert(); goto cleanup; } ret = _gnutls_asn1_encode_privkey(GNUTLS_PK_RSA, &key->key, &key->params, key->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT); if (ret < 0) { gnutls_assert(); goto cleanup; } key->params.params_nr = RSA_PRIVATE_PARAMS; key->pk_algorithm = GNUTLS_PK_RSA; key->params.algo = key->pk_algorithm; return 0; cleanup: gnutls_pk_params_clear(&key->params); gnutls_pk_params_release(&key->params); return ret; } /** * gnutls_x509_privkey_import_dsa_raw: * @key: The data to store the parsed key * @p: holds the p * @q: holds the q * @g: holds the g * @y: holds the y * @x: holds the x * * This function will convert the given DSA raw parameters to the * native #gnutls_x509_privkey_t format. The output will be stored * in @key. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_import_dsa_raw(gnutls_x509_privkey_t key, const gnutls_datum_t * p, const gnutls_datum_t * q, const gnutls_datum_t * g, const gnutls_datum_t * y, const gnutls_datum_t * x) { int ret; size_t siz = 0; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } siz = p->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[0], p->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } siz = q->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[1], q->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } siz = g->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[2], g->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } siz = y->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[3], y->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } siz = x->size; if (_gnutls_mpi_init_scan_nz(&key->params.params[4], x->data, siz)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } ret = _gnutls_asn1_encode_privkey(GNUTLS_PK_DSA, &key->key, &key->params, key->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT); if (ret < 0) { gnutls_assert(); goto cleanup; } key->params.params_nr = DSA_PRIVATE_PARAMS; key->pk_algorithm = GNUTLS_PK_DSA; key->params.algo = key->pk_algorithm; return 0; cleanup: gnutls_pk_params_clear(&key->params); gnutls_pk_params_release(&key->params); return ret; } /** * gnutls_x509_privkey_import_ecc_raw: * @key: The data to store the parsed key * @curve: holds the curve * @x: holds the x * @y: holds the y * @k: holds the k * * This function will convert the given elliptic curve parameters to the * native #gnutls_x509_privkey_t format. The output will be stored * in @key. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. * * Since: 3.0 **/ int gnutls_x509_privkey_import_ecc_raw(gnutls_x509_privkey_t key, gnutls_ecc_curve_t curve, const gnutls_datum_t * x, const gnutls_datum_t * y, const gnutls_datum_t * k) { int ret; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } key->params.flags = curve; if (_gnutls_mpi_init_scan_nz (&key->params.params[ECC_X], x->data, x->size)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; if (_gnutls_mpi_init_scan_nz (&key->params.params[ECC_Y], y->data, y->size)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; if (_gnutls_mpi_init_scan_nz (&key->params.params[ECC_K], k->data, k->size)) { gnutls_assert(); ret = GNUTLS_E_MPI_SCAN_FAILED; goto cleanup; } key->params.params_nr++; key->pk_algorithm = GNUTLS_PK_EC; key->params.algo = key->pk_algorithm; return 0; cleanup: gnutls_pk_params_clear(&key->params); gnutls_pk_params_release(&key->params); return ret; } /** * gnutls_x509_privkey_get_pk_algorithm: * @key: should contain a #gnutls_x509_privkey_t type * * This function will return the public key algorithm of a private * key. * * Returns: a member of the #gnutls_pk_algorithm_t enumeration on * success, or a negative error code on error. **/ int gnutls_x509_privkey_get_pk_algorithm(gnutls_x509_privkey_t key) { if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } return key->pk_algorithm; } /** * gnutls_x509_privkey_get_pk_algorithm2: * @key: should contain a #gnutls_x509_privkey_t type * @bits: The number of bits in the public key algorithm * * This function will return the public key algorithm of a private * key. * * Returns: a member of the #gnutls_pk_algorithm_t enumeration on * success, or a negative error code on error. **/ int gnutls_x509_privkey_get_pk_algorithm2(gnutls_x509_privkey_t key, unsigned int *bits) { int ret; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } if (bits) { ret = pubkey_to_bits(key->pk_algorithm, &key->params); if (ret < 0) ret = 0; *bits = ret; } return key->pk_algorithm; } static const char *set_msg(gnutls_x509_privkey_t key) { if (key->pk_algorithm == GNUTLS_PK_RSA) { if (key->params.seed_size > 0 && !(key->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT)) return PEM_KEY_RSA_PROVABLE; else return PEM_KEY_RSA; } else if (key->pk_algorithm == GNUTLS_PK_DSA) { if (key->params.seed_size > 0 && !(key->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT)) return PEM_KEY_DSA_PROVABLE; else return PEM_KEY_DSA; } else if (key->pk_algorithm == GNUTLS_PK_EC) return PEM_KEY_ECC; else return "UNKNOWN"; } /** * gnutls_x509_privkey_export: * @key: Holds the key * @format: the format of output params. One of PEM or DER. * @output_data: will contain a private key PEM or DER encoded * @output_data_size: holds the size of output_data (and will be * replaced by the actual size of parameters) * * This function will export the private key to a PKCS1 structure for * RSA keys, or an integer sequence for DSA keys. The DSA keys are in * the same format with the parameters used by openssl. * * If the buffer provided is not long enough to hold the output, then * *@output_data_size is updated and %GNUTLS_E_SHORT_MEMORY_BUFFER * will be returned. * * If the structure is PEM encoded, it will have a header * of "BEGIN RSA PRIVATE KEY". * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_export(gnutls_x509_privkey_t key, gnutls_x509_crt_fmt_t format, void *output_data, size_t * output_data_size) { const char *msg; int ret; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } msg = set_msg(key); if (key->flags & GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT) { ret = gnutls_x509_privkey_fix(key); if (ret < 0) return gnutls_assert_val(ret); } return _gnutls_x509_export_int(key->key, format, msg, output_data, output_data_size); } /** * gnutls_x509_privkey_export2: * @key: Holds the key * @format: the format of output params. One of PEM or DER. * @out: will contain a private key PEM or DER encoded * * This function will export the private key to a PKCS1 structure for * RSA keys, or an integer sequence for DSA keys. The DSA keys are in * the same format with the parameters used by openssl. * * The output buffer is allocated using gnutls_malloc(). * * If the structure is PEM encoded, it will have a header * of "BEGIN RSA PRIVATE KEY". * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. * * Since 3.1.3 **/ int gnutls_x509_privkey_export2(gnutls_x509_privkey_t key, gnutls_x509_crt_fmt_t format, gnutls_datum_t * out) { const char *msg; int ret; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } msg = set_msg(key); if (key->flags & GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT) { ret = gnutls_x509_privkey_fix(key); if (ret < 0) return gnutls_assert_val(ret); } return _gnutls_x509_export_int2(key->key, format, msg, out); } /** * gnutls_x509_privkey_sec_param: * @key: a key * * This function will return the security parameter appropriate with * this private key. * * Returns: On success, a valid security parameter is returned otherwise * %GNUTLS_SEC_PARAM_UNKNOWN is returned. * * Since: 2.12.0 **/ gnutls_sec_param_t gnutls_x509_privkey_sec_param(gnutls_x509_privkey_t key) { int bits; bits = pubkey_to_bits(key->pk_algorithm, &key->params); if (bits <= 0) return GNUTLS_SEC_PARAM_UNKNOWN; return gnutls_pk_bits_to_sec_param(key->pk_algorithm, bits); } /** * gnutls_x509_privkey_export_ecc_raw: * @key: a key * @curve: will hold the curve * @x: will hold the x coordinate * @y: will hold the y coordinate * @k: will hold the private key * * This function will export the ECC private key's parameters found * in the given structure. The new parameters will be allocated using * gnutls_malloc() and will be stored in the appropriate datum. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. * * Since: 3.0 **/ int gnutls_x509_privkey_export_ecc_raw(gnutls_x509_privkey_t key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_datum_t * y, gnutls_datum_t * k) { if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } return _gnutls_params_get_ecc_raw(&key->params, curve, x, y, k); } /** * gnutls_x509_privkey_export_rsa_raw: * @key: a key * @m: will hold the modulus * @e: will hold the public exponent * @d: will hold the private exponent * @p: will hold the first prime (p) * @q: will hold the second prime (q) * @u: will hold the coefficient * * This function will export the RSA private key's parameters found * in the given structure. The new parameters will be allocated using * gnutls_malloc() and will be stored in the appropriate datum. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_export_rsa_raw(gnutls_x509_privkey_t key, gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * u) { return _gnutls_params_get_rsa_raw(&key->params, m, e, d, p, q, u, NULL, NULL); } /** * gnutls_x509_privkey_export_rsa_raw2: * @key: a key * @m: will hold the modulus * @e: will hold the public exponent * @d: will hold the private exponent * @p: will hold the first prime (p) * @q: will hold the second prime (q) * @u: will hold the coefficient * @e1: will hold e1 = d mod (p-1) * @e2: will hold e2 = d mod (q-1) * * This function will export the RSA private key's parameters found * in the given structure. The new parameters will be allocated using * gnutls_malloc() and will be stored in the appropriate datum. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. * * Since: 2.12.0 **/ int gnutls_x509_privkey_export_rsa_raw2(gnutls_x509_privkey_t key, gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * u, gnutls_datum_t * e1, gnutls_datum_t * e2) { return _gnutls_params_get_rsa_raw(&key->params, m, e, d, p, q, u, e1, e2); } /** * gnutls_x509_privkey_export_dsa_raw: * @key: a key * @p: will hold the p * @q: will hold the q * @g: will hold the g * @y: will hold the y * @x: will hold the x * * This function will export the DSA private key's parameters found * in the given structure. The new parameters will be allocated using * gnutls_malloc() and will be stored in the appropriate datum. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_export_dsa_raw(gnutls_x509_privkey_t key, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g, gnutls_datum_t * y, gnutls_datum_t * x) { return _gnutls_params_get_dsa_raw(&key->params, p, q, g, y, x); } #ifdef ENABLE_FIPS140 static int pct_test(gnutls_pk_algorithm_t algo, const gnutls_pk_params_st* params) { int ret; gnutls_datum_t sig = {NULL, 0}; const char const_data[20] = "onetwothreefourfive"; gnutls_datum_t ddata, tmp = {NULL,0}; char* gen_data = NULL; if (algo == GNUTLS_PK_DSA || algo == GNUTLS_PK_EC) { unsigned hash_len; _gnutls_dsa_q_to_hash(algo, params, &hash_len); gen_data = gnutls_malloc(hash_len); gnutls_rnd(GNUTLS_RND_NONCE, gen_data, hash_len); ddata.data = (void*)gen_data; ddata.size = hash_len; } else { ddata.data = (void*)const_data; ddata.size = sizeof(const_data); } switch (algo) { case GNUTLS_PK_RSA: ret = _gnutls_pk_encrypt(algo, &sig, &ddata, params); if (ret < 0) { ret = gnutls_assert_val(GNUTLS_E_PK_GENERATION_ERROR); goto cleanup; } if (ddata.size == sig.size && memcmp(ddata.data, sig.data, sig.size) == 0) { ret = gnutls_assert_val(GNUTLS_E_PK_GENERATION_ERROR); gnutls_assert(); goto cleanup; } ret = _gnutls_pk_decrypt(algo, &tmp, &sig, params); if (ret < 0) { ret = gnutls_assert_val(GNUTLS_E_PK_GENERATION_ERROR); gnutls_assert(); goto cleanup; } if (tmp.size != ddata.size || memcmp(tmp.data, ddata.data, tmp.size) != 0) { ret = gnutls_assert_val(GNUTLS_E_PK_GENERATION_ERROR); gnutls_assert(); goto cleanup; } free(sig.data); sig.data = NULL; /* Here we don't know the purpose of the key. Check both * signing and encryption. */ case GNUTLS_PK_EC: /* we only do keys for ECDSA */ case GNUTLS_PK_DSA: ret = _gnutls_pk_sign(algo, &sig, &ddata, params); if (ret < 0) { ret = gnutls_assert_val(GNUTLS_E_PK_GENERATION_ERROR); goto cleanup; } ret = _gnutls_pk_verify(algo, &ddata, &sig, params); if (ret < 0) { ret = gnutls_assert_val(GNUTLS_E_PK_GENERATION_ERROR); gnutls_assert(); goto cleanup; } break; default: ret = gnutls_assert_val(GNUTLS_E_UNKNOWN_PK_ALGORITHM); goto cleanup; } ret = 0; cleanup: if (ret == GNUTLS_E_PK_GENERATION_ERROR) { _gnutls_switch_lib_state(LIB_STATE_ERROR); } gnutls_free(gen_data); gnutls_free(sig.data); gnutls_free(tmp.data); return ret; } #endif /** * gnutls_x509_privkey_generate: * @key: an initialized key * @algo: is one of the algorithms in #gnutls_pk_algorithm_t. * @bits: the size of the parameters to generate * @flags: Must be zero or flags from #gnutls_privkey_flags_t. * * This function will generate a random private key. Note that this * function must be called on an empty private key. The flag %GNUTLS_PRIVKEY_FLAG_PROVABLE * instructs the key generation process to use algorithms like Shawe-Taylor * which generate provable parameters out of a seed. * * Note that when generating an elliptic curve key, the curve * can be substituted in the place of the bits parameter using the * GNUTLS_CURVE_TO_BITS() macro. The input to the macro is any curve from * %gnutls_ecc_curve_t. * * For DSA keys, if the subgroup size needs to be specified check * the GNUTLS_SUBGROUP_TO_BITS() macro. * * It is recommended to do not set the number of @bits directly, use gnutls_sec_param_to_pk_bits() instead . * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_generate(gnutls_x509_privkey_t key, gnutls_pk_algorithm_t algo, unsigned int bits, unsigned int flags) { return gnutls_x509_privkey_generate2(key, algo, bits, flags, NULL, 0); } /** * gnutls_x509_privkey_generate2: * @key: a key * @algo: is one of the algorithms in #gnutls_pk_algorithm_t. * @bits: the size of the modulus * @flags: Must be zero or flags from #gnutls_privkey_flags_t. * @data: Allow specifying %gnutls_keygen_data_st types such as the seed to be used. * @data_size: The number of @data available. * * This function will generate a random private key. Note that this * function must be called on an empty private key. The flag %GNUTLS_PRIVKEY_FLAG_PROVABLE * instructs the key generation process to use algorithms which generate * provable parameters out of a seed. * * Note that when generating an elliptic curve key, the curve * can be substituted in the place of the bits parameter using the * GNUTLS_CURVE_TO_BITS() macro. * * For DSA keys, if the subgroup size needs to be specified check * the GNUTLS_SUBGROUP_TO_BITS() macro. * * Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits(). * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_generate2(gnutls_x509_privkey_t key, gnutls_pk_algorithm_t algo, unsigned int bits, unsigned int flags, const gnutls_keygen_data_st *data, unsigned data_size) { int ret; unsigned i; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } gnutls_pk_params_init(&key->params); for (i=0;iparams.seed)) { key->params.seed_size = data[i].size; memcpy(key->params.seed, data[i].data, data[i].size); } else if (data[i].type == GNUTLS_KEYGEN_DIGEST) { key->params.palgo = data[i].size; } } if (algo == GNUTLS_PK_EC) { if (GNUTLS_BITS_ARE_CURVE(bits)) bits = GNUTLS_BITS_TO_CURVE(bits); else bits = _gnutls_ecc_bits_to_curve(bits); } if (flags & GNUTLS_PRIVKEY_FLAG_PROVABLE) { key->params.flags |= GNUTLS_PK_FLAG_PROVABLE; } ret = _gnutls_pk_generate_params(algo, bits, &key->params); if (ret < 0) { gnutls_assert(); return ret; } ret = _gnutls_pk_generate_keys(algo, bits, &key->params); if (ret < 0) { gnutls_assert(); goto cleanup; } #ifndef ENABLE_FIPS140 ret = _gnutls_pk_verify_priv_params(algo, &key->params); #else ret = pct_test(algo, &key->params); #endif if (ret < 0) { gnutls_assert(); goto cleanup; } ret = _gnutls_asn1_encode_privkey(algo, &key->key, &key->params, key->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT); if (ret < 0) { gnutls_assert(); goto cleanup; } key->pk_algorithm = algo; return 0; cleanup: key->pk_algorithm = GNUTLS_PK_UNKNOWN; gnutls_pk_params_clear(&key->params); gnutls_pk_params_release(&key->params); return ret; } /** * gnutls_x509_privkey_get_seed: * @key: should contain a #gnutls_x509_privkey_t type * @digest: if non-NULL it will contain the digest algorithm used for key generation (if applicable) * @seed: where seed will be copied to * @seed_size: originally holds the size of @seed, will be updated with actual size * * This function will return the seed that was used to generate the * given private key. That function will succeed only if the key was generated * as a provable key. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. * * Since: 3.5.0 **/ int gnutls_x509_privkey_get_seed(gnutls_x509_privkey_t key, gnutls_digest_algorithm_t *digest, void *seed, size_t *seed_size) { if (key->params.seed_size == 0) return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST); if (seed_size == NULL || seed == NULL) { if (key->params.seed_size) return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER); else return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST); } if (*seed_size < key->params.seed_size) { *seed_size = key->params.seed_size; return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER); } if (digest) *digest = key->params.palgo; memcpy(seed, key->params.seed, key->params.seed_size); *seed_size = key->params.seed_size; return 0; } static int cmp_rsa_key(gnutls_x509_privkey_t key1, gnutls_x509_privkey_t key2) { gnutls_datum_t m1 = {NULL, 0}, e1 = {NULL, 0}, d1 = {NULL, 0}, p1 = {NULL, 0}, q1 = {NULL, 0}; gnutls_datum_t m2 = {NULL, 0}, e2 = {NULL, 0}, d2 = {NULL, 0}, p2 = {NULL, 0}, q2 = {NULL, 0}; int ret; ret = gnutls_x509_privkey_export_rsa_raw(key1, &m1, &e1, &d1, &p1, &q1, NULL); if (ret < 0) { gnutls_assert(); return ret; } ret = gnutls_x509_privkey_export_rsa_raw(key2, &m2, &e2, &d2, &p2, &q2, NULL); if (ret < 0) { gnutls_assert(); goto cleanup; } if (m1.size != m2.size || memcmp(m1.data, m2.data, m1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } if (d1.size != d2.size || memcmp(d1.data, d2.data, d1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } if (e1.size != e2.size || memcmp(e1.data, e2.data, e1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } if (p1.size != p2.size || memcmp(p1.data, p2.data, p1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } if (q1.size != q2.size || memcmp(q1.data, q2.data, q1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } ret = 0; cleanup: gnutls_free(m1.data); gnutls_free(e1.data); gnutls_free(d1.data); gnutls_free(p1.data); gnutls_free(q1.data); gnutls_free(m2.data); gnutls_free(e2.data); gnutls_free(d2.data); gnutls_free(p2.data); gnutls_free(q2.data); return ret; } static int cmp_dsa_key(gnutls_x509_privkey_t key1, gnutls_x509_privkey_t key2) { gnutls_datum_t p1 = {NULL, 0}, q1 = {NULL, 0}, g1 = {NULL, 0}; gnutls_datum_t p2 = {NULL, 0}, q2 = {NULL, 0}, g2 = {NULL, 0}; int ret; ret = gnutls_x509_privkey_export_dsa_raw(key1, &p1, &q1, &g1, NULL, NULL); if (ret < 0) { gnutls_assert(); return ret; } ret = gnutls_x509_privkey_export_dsa_raw(key2, &p2, &q2, &g2, NULL, NULL); if (ret < 0) { gnutls_assert(); goto cleanup; } if (g1.size != g2.size || memcmp(g1.data, g2.data, g1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } if (p1.size != p2.size || memcmp(p1.data, p2.data, p1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } if (q1.size != q2.size || memcmp(q1.data, q2.data, q1.size) != 0) { gnutls_assert(); ret = GNUTLS_E_PRIVKEY_VERIFICATION_ERROR; goto cleanup; } ret = 0; cleanup: gnutls_free(g1.data); gnutls_free(p1.data); gnutls_free(q1.data); gnutls_free(g2.data); gnutls_free(p2.data); gnutls_free(q2.data); return ret; } /** * gnutls_x509_privkey_verify_seed: * @key: should contain a #gnutls_x509_privkey_t type * @digest: it contains the digest algorithm used for key generation (if applicable) * @seed: the seed of the key to be checked with * @seed_size: holds the size of @seed * * This function will verify that the given private key was generated from * the provided seed. If @seed is %NULL then the seed stored in the @key's structure * will be used for verification. * * Returns: In case of a verification failure %GNUTLS_E_PRIVKEY_VERIFICATION_ERROR * is returned, and zero or positive code on success. * * Since: 3.5.0 **/ int gnutls_x509_privkey_verify_seed(gnutls_x509_privkey_t key, gnutls_digest_algorithm_t digest, const void *seed, size_t seed_size) { int ret; gnutls_x509_privkey_t okey; unsigned bits; gnutls_keygen_data_st data; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } if (key->pk_algorithm != GNUTLS_PK_RSA && key->pk_algorithm != GNUTLS_PK_DSA) return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST); ret = gnutls_x509_privkey_get_pk_algorithm2(key, &bits); if (ret < 0) return gnutls_assert_val(ret); ret = gnutls_x509_privkey_init(&okey); if (ret < 0) return gnutls_assert_val(ret); if (seed == NULL) { seed = key->params.seed; seed_size = key->params.seed_size; } if (seed == NULL || seed_size == 0) return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST); data.type = GNUTLS_KEYGEN_SEED; data.data = (void*)seed; data.size = seed_size; ret = gnutls_x509_privkey_generate2(okey, key->pk_algorithm, bits, GNUTLS_PRIVKEY_FLAG_PROVABLE, &data, 1); if (ret < 0) { gnutls_assert(); goto cleanup; } if (key->pk_algorithm == GNUTLS_PK_RSA) ret = cmp_rsa_key(key, okey); else ret = cmp_dsa_key(key, okey); cleanup: gnutls_x509_privkey_deinit(okey); return ret; } /** * gnutls_x509_privkey_verify_params: * @key: a key * * This function will verify the private key parameters. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_verify_params(gnutls_x509_privkey_t key) { int ret; ret = _gnutls_pk_verify_priv_params(key->pk_algorithm, &key->params); if (ret < 0) { gnutls_assert(); return ret; } return 0; } /** * gnutls_x509_privkey_get_key_id: * @key: a key * @flags: should be one of the flags from %gnutls_keyid_flags_t * @output_data: will contain the key ID * @output_data_size: holds the size of output_data (and will be * replaced by the actual size of parameters) * * This function will return a unique ID that depends on the public key * parameters. This ID can be used in checking whether a certificate * corresponds to the given key. * * If the buffer provided is not long enough to hold the output, then * *@output_data_size is updated and %GNUTLS_E_SHORT_MEMORY_BUFFER will * be returned. The output will normally be a SHA-1 hash output, * which is 20 bytes. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_get_key_id(gnutls_x509_privkey_t key, unsigned int flags, unsigned char *output_data, size_t * output_data_size) { int ret; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } ret = _gnutls_get_key_id(key->pk_algorithm, &key->params, output_data, output_data_size, flags); if (ret < 0) { gnutls_assert(); } return ret; } /*- * _gnutls_x509_privkey_sign_hash2: * @signer: Holds the signer's key * @hash_algo: The hash algorithm used * @hash_data: holds the data to be signed * @signature: will contain newly allocated signature * @flags: (0) for now * * This function will sign the given hashed data using a signature algorithm * supported by the private key. Signature algorithms are always used * together with a hash functions. Different hash functions may be * used for the RSA algorithm, but only SHA-1,SHA-224 and SHA-256 * for the DSA keys, depending on their bit size. * * Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine * the hash algorithm. * * The RSA algorithm is used in PKCS #1 v1.5 mode. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. -*/ static int _gnutls_x509_privkey_sign_hash2(gnutls_x509_privkey_t signer, const mac_entry_st * me, unsigned int flags, const gnutls_datum_t * hash_data, gnutls_datum_t * signature) { int ret; gnutls_datum_t digest; digest.data = gnutls_malloc(hash_data->size); if (digest.data == NULL) { gnutls_assert(); return GNUTLS_E_MEMORY_ERROR; } digest.size = hash_data->size; memcpy(digest.data, hash_data->data, digest.size); ret = pk_prepare_hash(signer->pk_algorithm, me, &digest); if (ret < 0) { gnutls_assert(); goto cleanup; } ret = _gnutls_pk_sign(signer->pk_algorithm, signature, &digest, &signer->params); if (ret < 0) { gnutls_assert(); goto cleanup; } ret = 0; cleanup: _gnutls_free_datum(&digest); return ret; } /** * gnutls_x509_privkey_sign_hash: * @key: a key * @hash: holds the data to be signed * @signature: will contain newly allocated signature * * This function will sign the given hash using the private key. Do not * use this function directly unless you know what it is. Typical signing * requires the data to be hashed and stored in special formats * (e.g. BER Digest-Info for RSA). * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. * * Deprecated in: 2.12.0 */ int gnutls_x509_privkey_sign_hash(gnutls_x509_privkey_t key, const gnutls_datum_t * hash, gnutls_datum_t * signature) { int result; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } result = _gnutls_pk_sign(key->pk_algorithm, signature, hash, &key->params); if (result < 0) { gnutls_assert(); return result; } return 0; } /** * gnutls_x509_privkey_sign_data: * @key: a key * @digest: should be MD5 or SHA1 * @flags: should be 0 for now * @data: holds the data to be signed * @signature: will contain the signature * @signature_size: holds the size of signature (and will be replaced * by the new size) * * This function will sign the given data using a signature algorithm * supported by the private key. Signature algorithms are always used * together with a hash functions. Different hash functions may be * used for the RSA algorithm, but only SHA-1 for the DSA keys. * * If the buffer provided is not long enough to hold the output, then * *@signature_size is updated and %GNUTLS_E_SHORT_MEMORY_BUFFER will * be returned. * * Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine * the hash algorithm. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. */ int gnutls_x509_privkey_sign_data(gnutls_x509_privkey_t key, gnutls_digest_algorithm_t digest, unsigned int flags, const gnutls_datum_t * data, void *signature, size_t * signature_size) { int result; gnutls_datum_t sig = { NULL, 0 }; gnutls_datum_t hash; const mac_entry_st *me = hash_to_entry(digest); if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } result = pk_hash_data(key->pk_algorithm, me, &key->params, data, &hash); if (result < 0) { gnutls_assert(); return result; } result = _gnutls_x509_privkey_sign_hash2(key, me, flags, &hash, &sig); _gnutls_free_datum(&hash); if (result < 0) { gnutls_assert(); return result; } if (*signature_size < sig.size) { *signature_size = sig.size; _gnutls_free_datum(&sig); return GNUTLS_E_SHORT_MEMORY_BUFFER; } *signature_size = sig.size; memcpy(signature, sig.data, sig.size); _gnutls_free_datum(&sig); return 0; } /** * gnutls_x509_privkey_fix: * @key: a key * * This function will recalculate the secondary parameters in a key. * In RSA keys, this can be the coefficient and exponent1,2. * * Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a * negative error value. **/ int gnutls_x509_privkey_fix(gnutls_x509_privkey_t key) { int ret; if (key == NULL) { gnutls_assert(); return GNUTLS_E_INVALID_REQUEST; } asn1_delete_structure2(&key->key, ASN1_DELETE_FLAG_ZEROIZE); ret = _gnutls_asn1_encode_privkey(key->pk_algorithm, &key->key, &key->params, key->flags&GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT); if (ret < 0) { gnutls_assert(); return ret; } return 0; } /** * gnutls_x509_privkey_set_pin_function: * @privkey: The certificate structure * @fn: the callback * @userdata: data associated with the callback * * This function will set a callback function to be used when * it is required to access a protected object. This function overrides * the global function set using gnutls_pkcs11_set_pin_function(). * * Note that this callback is used when decrypting a key. * * Since: 3.4.0 * **/ void gnutls_x509_privkey_set_pin_function(gnutls_x509_privkey_t privkey, gnutls_pin_callback_t fn, void *userdata) { privkey->pin.cb = fn; privkey->pin.data = userdata; } /** * gnutls_x509_privkey_set_flags: * @key: A key of type #gnutls_x509_privkey_t * @flags: flags from the %gnutls_privkey_flags * * This function will set flags for the specified private key, after * it is generated. Currently this is useful for the %GNUTLS_PRIVKEY_FLAG_EXPORT_COMPAT * to allow exporting a "provable" private key in backwards compatible way. * * Since: 3.5.0 * **/ void gnutls_x509_privkey_set_flags(gnutls_x509_privkey_t key, unsigned int flags) { key->flags |= flags; }