/* NEON/VFP/ARM version of memcpy optimized for Cortex-A15. Copyright (C) 2013-2015 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . This memcpy routine is optimised for Cortex-A15 cores and takes advantage of VFP or NEON when built with the appropriate flags. Assumptions: ARMv6 (ARMv7-a if using Neon) ARM state Unaligned accesses */ /* Thumb cannot encode negative immediate offsets in memory operations. */ #ifndef NO_THUMB #define NO_THUMB #endif #include #include .syntax unified /* This implementation requires ARM state. */ .arm #ifdef MEMCPY_NEON .fpu neon .arch armv7-a # define FRAME_SIZE 4 # define USE_VFP # define USE_NEON #elif defined (MEMCPY_VFP) .arch armv6 .fpu vfpv2 # define FRAME_SIZE 32 # define USE_VFP #else .arch armv6 # define FRAME_SIZE 32 #endif #define ALIGN(addr, align) addr:align #define INSN_SIZE 4 /* Call parameters. */ #define dstin r0 #define src r1 #define count r2 /* Locals. */ #define tmp1 r3 #define dst ip #define tmp2 r8 /* These two macros both work by repeated invocation of the macro dispatch_step (not defined here). That macro performs one "step", doing one load instruction and one store instruction to copy one "unit". On entry, TMP1 contains the number of bytes to be copied, a multiple of the unit size. The macro clobbers TMP1 in the process of doing a computed jump to the tail containing the appropriate number of steps. In dispatch_7_dword, dispatch_step is invoked seven times, with an argument that is 7 for the first and 1 for the last. Units are double-words (8 bytes). TMP1 is at most 56. In dispatch_15_word, dispatch_step is invoked fifteen times, with an argument that is 15 for the first and 1 for the last. Units are words (4 bytes). TMP1 is at most 60. */ #ifndef ARM_ALWAYS_BX # if ARM_BX_ALIGN_LOG2 != 2 # error case not handled # endif .macro dispatch_7_dword rsb tmp1, tmp1, #((7 * 8) - PC_OFS + INSN_SIZE) add pc, pc, tmp1 dispatch_step 7 dispatch_step 6 dispatch_step 5 dispatch_step 4 dispatch_step 3 dispatch_step 2 dispatch_step 1 .purgem dispatch_step .endm .macro dispatch_15_word rsb tmp1, tmp1, #((15 * 4) - PC_OFS/2 + INSN_SIZE/2) add pc, pc, tmp1, lsl #1 dispatch_step 15 dispatch_step 14 dispatch_step 13 dispatch_step 12 dispatch_step 11 dispatch_step 10 dispatch_step 9 dispatch_step 8 dispatch_step 7 dispatch_step 6 dispatch_step 5 dispatch_step 4 dispatch_step 3 dispatch_step 2 dispatch_step 1 .purgem dispatch_step .endm #else # if ARM_BX_ALIGN_LOG2 < 3 # error case not handled # endif .macro dispatch_helper steps, log2_bytes_per_step /* TMP1 gets (max_bytes - bytes_to_copy), where max_bytes is (STEPS << LOG2_BYTES_PER_STEP). So this is (steps_to_skip << LOG2_BYTES_PER_STEP). Then it needs further adjustment to compensate for the distance between the PC value taken below (0f + PC_OFS) and the first step's instructions (1f). */ rsb tmp1, tmp1, #((\steps << \log2_bytes_per_step) \ + ((1f - PC_OFS - 0f) \ >> (ARM_BX_ALIGN_LOG2 - \log2_bytes_per_step))) /* Shifting down LOG2_BYTES_PER_STEP gives us the number of steps to skip, then shifting up ARM_BX_ALIGN_LOG2 gives us the (byte) distance to add to the PC. */ 0: add tmp1, pc, tmp1, lsl #(ARM_BX_ALIGN_LOG2 - \log2_bytes_per_step) bx tmp1 .p2align ARM_BX_ALIGN_LOG2 1: .endm .macro dispatch_7_dword dispatch_helper 7, 3 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 7 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 6 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 5 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 4 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 3 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 2 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 1 .p2align ARM_BX_ALIGN_LOG2 .purgem dispatch_step .endm .macro dispatch_15_word dispatch_helper 15, 2 dispatch_step 15 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 14 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 13 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 12 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 11 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 10 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 9 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 8 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 7 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 6 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 5 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 4 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 3 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 2 .p2align ARM_BX_ALIGN_LOG2 dispatch_step 1 .p2align ARM_BX_ALIGN_LOG2 .purgem dispatch_step .endm #endif #ifndef USE_NEON /* For bulk copies using GP registers. */ #define A_l r2 /* Call-clobbered. */ #define A_h r3 /* Call-clobbered. */ #define B_l r4 #define B_h r5 #define C_l r6 #define C_h r7 /* Don't use the pair r8,r9 because in some EABI variants r9 is reserved. */ #define D_l r10 #define D_h r11 #endif /* Number of lines ahead to pre-fetch data. If you change this the code below will need adjustment to compensate. */ #define prefetch_lines 5 #ifdef USE_VFP .macro cpy_line_vfp vreg, base sfi_breg dst, \ vstr \vreg, [\B, #\base] sfi_breg src, \ vldr \vreg, [\B, #\base] sfi_breg dst, \ vstr d0, [\B, #\base + 8] sfi_breg src, \ vldr d0, [\B, #\base + 8] sfi_breg dst, \ vstr d1, [\B, #\base + 16] sfi_breg src, \ vldr d1, [\B, #\base + 16] sfi_breg dst, \ vstr d2, [\B, #\base + 24] sfi_breg src, \ vldr d2, [\B, #\base + 24] sfi_breg dst, \ vstr \vreg, [\B, #\base + 32] sfi_breg src, \ vldr \vreg, [\B, #\base + prefetch_lines * 64 - 32] sfi_breg dst, \ vstr d0, [\B, #\base + 40] sfi_breg src, \ vldr d0, [\B, #\base + 40] sfi_breg dst, \ vstr d1, [\B, #\base + 48] sfi_breg src, \ vldr d1, [\B, #\base + 48] sfi_breg dst, \ vstr d2, [\B, #\base + 56] sfi_breg src, \ vldr d2, [\B, #\base + 56] .endm .macro cpy_tail_vfp vreg, base sfi_breg dst, \ vstr \vreg, [\B, #\base] sfi_breg src, \ vldr \vreg, [\B, #\base] sfi_breg dst, \ vstr d0, [\B, #\base + 8] sfi_breg src, \ vldr d0, [\B, #\base + 8] sfi_breg dst, \ vstr d1, [\B, #\base + 16] sfi_breg src, \ vldr d1, [\B, #\base + 16] sfi_breg dst, \ vstr d2, [\B, #\base + 24] sfi_breg src, \ vldr d2, [\B, #\base + 24] sfi_breg dst, \ vstr \vreg, [\B, #\base + 32] sfi_breg dst, \ vstr d0, [\B, #\base + 40] sfi_breg src, \ vldr d0, [\B, #\base + 40] sfi_breg dst, \ vstr d1, [\B, #\base + 48] sfi_breg src, \ vldr d1, [\B, #\base + 48] sfi_breg dst, \ vstr d2, [\B, #\base + 56] sfi_breg src, \ vldr d2, [\B, #\base + 56] .endm #endif .p2align 6 ENTRY(memcpy) mov dst, dstin /* Preserve dstin, we need to return it. */ cmp count, #64 bge .Lcpy_not_short /* Deal with small copies quickly by dropping straight into the exit block. */ .Ltail63unaligned: #ifdef USE_NEON /* These need an extra layer of macro just to work around a bug in the assembler's parser when an operand starts with a {...}. http://sourceware.org/bugzilla/show_bug.cgi?id=15647 tracks that bug; it was not fixed as of binutils-2.23.2. */ .macro neon_load_d0 reg vld1.8 {d0}, [\reg]! .endm .macro neon_store_d0 reg vst1.8 {d0}, [\reg]! .endm /* These are used by the NaCl sfi_breg macro. */ .macro _sfi_breg_dmask_neon_load_d0 reg _sfi_dmask \reg .endm .macro _sfi_breg_dmask_neon_store_d0 reg _sfi_dmask \reg .endm and tmp1, count, #0x38 .macro dispatch_step i sfi_breg src, neon_load_d0 \B sfi_breg dst, neon_store_d0 \B .endm dispatch_7_dword tst count, #4 sfi_breg src, \ ldrne tmp1, [\B], #4 sfi_breg dst, \ strne tmp1, [\B], #4 #else /* Copy up to 15 full words of data. May not be aligned. */ /* Cannot use VFP for unaligned data. */ and tmp1, count, #0x3c add dst, dst, tmp1 add src, src, tmp1 /* Jump directly into the sequence below at the correct offset. */ .macro dispatch_step i sfi_breg src, \ ldr tmp1, [\B, #-(\i * 4)] sfi_breg dst, \ str tmp1, [\B, #-(\i * 4)] .endm dispatch_15_word #endif lsls count, count, #31 sfi_breg src, \ ldrhcs tmp1, [\B], #2 sfi_breg src, \ ldrbne src, [\B] /* Src is dead, use as a scratch. */ sfi_breg dst, \ strhcs tmp1, [\B], #2 sfi_breg dst, \ strbne src, [\B] bx lr .Lcpy_not_short: /* At least 64 bytes to copy, but don't know the alignment yet. */ str tmp2, [sp, #-FRAME_SIZE]! cfi_adjust_cfa_offset (FRAME_SIZE) cfi_rel_offset (tmp2, 0) cfi_remember_state and tmp2, src, #7 and tmp1, dst, #7 cmp tmp1, tmp2 bne .Lcpy_notaligned #ifdef USE_VFP /* Magic dust alert! Force VFP on Cortex-A9. Experiments show that the FP pipeline is much better at streaming loads and stores. This is outside the critical loop. */ vmov.f32 s0, s0 #endif /* SRC and DST have the same mutual 64-bit alignment, but we may still need to pre-copy some bytes to get to natural alignment. We bring SRC and DST into full 64-bit alignment. */ lsls tmp2, dst, #29 beq 1f rsbs tmp2, tmp2, #0 sub count, count, tmp2, lsr #29 sfi_breg src, \ ldrmi tmp1, [\B], #4 sfi_breg dst, \ strmi tmp1, [\B], #4 lsls tmp2, tmp2, #2 sfi_breg src, \ ldrhcs tmp1, [\B], #2 sfi_breg src, \ ldrbne tmp2, [\B], #1 sfi_breg dst, \ strhcs tmp1, [\B], #2 sfi_breg dst, \ strbne tmp2, [\B], #1 1: subs tmp2, count, #64 /* Use tmp2 for count. */ blt .Ltail63aligned cmp tmp2, #512 bge .Lcpy_body_long .Lcpy_body_medium: /* Count in tmp2. */ #ifdef USE_VFP 1: sfi_breg src, \ vldr d0, [\B, #0] subs tmp2, tmp2, #64 sfi_breg src, \ vldr d1, [\B, #8] sfi_breg dst, \ vstr d0, [\B, #0] sfi_breg src, \ vldr d0, [\B, #16] sfi_breg dst, \ vstr d1, [\B, #8] sfi_breg src, \ vldr d1, [\B, #24] sfi_breg dst, \ vstr d0, [\B, #16] sfi_breg src, \ vldr d0, [\B, #32] sfi_breg dst, \ vstr d1, [\B, #24] sfi_breg src, \ vldr d1, [\B, #40] sfi_breg dst, \ vstr d0, [\B, #32] sfi_breg src, \ vldr d0, [\B, #48] sfi_breg dst, \ vstr d1, [\B, #40] sfi_breg src, \ vldr d1, [\B, #56] sfi_breg dst, \ vstr d0, [\B, #48] add src, src, #64 sfi_breg dst, \ vstr d1, [\B, #56] add dst, dst, #64 bge 1b tst tmp2, #0x3f beq .Ldone .Ltail63aligned: /* Count in tmp2. */ and tmp1, tmp2, #0x38 add dst, dst, tmp1 add src, src, tmp1 .macro dispatch_step i sfi_breg src, \ vldr d0, [\B, #-(\i * 8)] sfi_breg dst, \ vstr d0, [\B, #-(\i * 8)] .endm dispatch_7_dword #else sub src, src, #8 sub dst, dst, #8 1: sfi_breg src, \ ldrd A_l, A_h, [\B, #8] sfi_breg dst, \ strd A_l, A_h, [\B, #8] sfi_breg src, \ ldrd A_l, A_h, [\B, #16] sfi_breg dst, \ strd A_l, A_h, [\B, #16] sfi_breg src, \ ldrd A_l, A_h, [\B, #24] sfi_breg dst, \ strd A_l, A_h, [\B, #24] sfi_breg src, \ ldrd A_l, A_h, [\B, #32] sfi_breg dst, \ strd A_l, A_h, [\B, #32] sfi_breg src, \ ldrd A_l, A_h, [\B, #40] sfi_breg dst, \ strd A_l, A_h, [\B, #40] sfi_breg src, \ ldrd A_l, A_h, [\B, #48] sfi_breg dst, \ strd A_l, A_h, [\B, #48] sfi_breg src, \ ldrd A_l, A_h, [\B, #56] sfi_breg dst, \ strd A_l, A_h, [\B, #56] sfi_breg src, \ ldrd A_l, A_h, [\B, #64]! sfi_breg dst, \ strd A_l, A_h, [\B, #64]! subs tmp2, tmp2, #64 bge 1b tst tmp2, #0x3f bne 1f ldr tmp2,[sp], #FRAME_SIZE cfi_adjust_cfa_offset (-FRAME_SIZE) cfi_restore (tmp2) bx lr cfi_restore_state cfi_remember_state 1: add src, src, #8 add dst, dst, #8 .Ltail63aligned: /* Count in tmp2. */ /* Copy up to 7 d-words of data. Similar to Ltail63unaligned, but we know that the src and dest are 64-bit aligned so we can use LDRD/STRD to improve efficiency. */ /* TMP2 is now negative, but we don't care about that. The bottom six bits still tell us how many bytes are left to copy. */ and tmp1, tmp2, #0x38 add dst, dst, tmp1 add src, src, tmp1 .macro dispatch_step i sfi_breg src, \ ldrd A_l, A_h, [\B, #-(\i * 8)] sfi_breg dst, \ strd A_l, A_h, [\B, #-(\i * 8)] .endm dispatch_7_dword #endif tst tmp2, #4 sfi_breg src, \ ldrne tmp1, [\B], #4 sfi_breg dst, \ strne tmp1, [\B], #4 lsls tmp2, tmp2, #31 /* Count (tmp2) now dead. */ sfi_breg src, \ ldrhcs tmp1, [\B], #2 sfi_breg src, \ ldrbne tmp2, [\B] sfi_breg dst, \ strhcs tmp1, [\B], #2 sfi_breg dst, \ strbne tmp2, [\B] .Ldone: ldr tmp2, [sp], #FRAME_SIZE cfi_adjust_cfa_offset (-FRAME_SIZE) cfi_restore (tmp2) bx lr cfi_restore_state cfi_remember_state .Lcpy_body_long: /* Count in tmp2. */ /* Long copy. We know that there's at least (prefetch_lines * 64) bytes to go. */ #ifdef USE_VFP /* Don't use PLD. Instead, read some data in advance of the current copy position into a register. This should act like a PLD operation but we won't have to repeat the transfer. */ sfi_breg src, \ vldr d3, [\B, #0] sfi_breg src, \ vldr d4, [\B, #64] sfi_breg src, \ vldr d5, [\B, #128] sfi_breg src, \ vldr d6, [\B, #192] sfi_breg src, \ vldr d7, [\B, #256] sfi_breg src, \ vldr d0, [\B, #8] sfi_breg src, \ vldr d1, [\B, #16] sfi_breg src, \ vldr d2, [\B, #24] add src, src, #32 subs tmp2, tmp2, #prefetch_lines * 64 * 2 blt 2f 1: cpy_line_vfp d3, 0 cpy_line_vfp d4, 64 cpy_line_vfp d5, 128 add dst, dst, #3 * 64 add src, src, #3 * 64 cpy_line_vfp d6, 0 cpy_line_vfp d7, 64 add dst, dst, #2 * 64 add src, src, #2 * 64 subs tmp2, tmp2, #prefetch_lines * 64 bge 1b 2: cpy_tail_vfp d3, 0 cpy_tail_vfp d4, 64 cpy_tail_vfp d5, 128 add src, src, #3 * 64 add dst, dst, #3 * 64 cpy_tail_vfp d6, 0 sfi_breg dst, \ vstr d7, [\B, #64] sfi_breg src, \ vldr d7, [\B, #64] sfi_breg dst, \ vstr d0, [\B, #64 + 8] sfi_breg src, \ vldr d0, [\B, #64 + 8] sfi_breg dst, \ vstr d1, [\B, #64 + 16] sfi_breg src, \ vldr d1, [\B, #64 + 16] sfi_breg dst, \ vstr d2, [\B, #64 + 24] sfi_breg src, \ vldr d2, [\B, #64 + 24] sfi_breg dst, \ vstr d7, [\B, #64 + 32] add src, src, #96 sfi_breg dst, \ vstr d0, [\B, #64 + 40] sfi_breg dst, \ vstr d1, [\B, #64 + 48] sfi_breg dst, \ vstr d2, [\B, #64 + 56] add dst, dst, #128 add tmp2, tmp2, #prefetch_lines * 64 b .Lcpy_body_medium #else /* Long copy. Use an SMS style loop to maximize the I/O bandwidth of the core. We don't have enough spare registers to synthesise prefetching, so use PLD operations. */ /* Pre-bias src and dst. */ sub src, src, #8 sub dst, dst, #8 sfi_pld src, #8 sfi_pld src, #72 subs tmp2, tmp2, #64 sfi_pld src, #136 sfi_breg src, \ ldrd A_l, A_h, [\B, #8] strd B_l, B_h, [sp, #8] cfi_rel_offset (B_l, 8) cfi_rel_offset (B_h, 12) sfi_breg src, \ ldrd B_l, B_h, [\B, #16] strd C_l, C_h, [sp, #16] cfi_rel_offset (C_l, 16) cfi_rel_offset (C_h, 20) sfi_breg src, \ ldrd C_l, C_h, [\B, #24] strd D_l, D_h, [sp, #24] cfi_rel_offset (D_l, 24) cfi_rel_offset (D_h, 28) sfi_pld src, #200 sfi_breg src, \ ldrd D_l, D_h, [\B, #32]! b 1f .p2align 6 2: sfi_pld src, #232 sfi_breg dst, \ strd A_l, A_h, [\B, #40] sfi_breg src, \ ldrd A_l, A_h, [\B, #40] sfi_breg dst, \ strd B_l, B_h, [\B, #48] sfi_breg src, \ ldrd B_l, B_h, [\B, #48] sfi_breg dst, \ strd C_l, C_h, [\B, #56] sfi_breg src, \ ldrd C_l, C_h, [\B, #56] sfi_breg dst, \ strd D_l, D_h, [\B, #64]! sfi_breg src, \ ldrd D_l, D_h, [\B, #64]! subs tmp2, tmp2, #64 1: sfi_breg dst, \ strd A_l, A_h, [\B, #8] sfi_breg src, \ ldrd A_l, A_h, [\B, #8] sfi_breg dst, \ strd B_l, B_h, [\B, #16] sfi_breg src, \ ldrd B_l, B_h, [\B, #16] sfi_breg dst, \ strd C_l, C_h, [\B, #24] sfi_breg src, \ ldrd C_l, C_h, [\B, #24] sfi_breg dst, \ strd D_l, D_h, [\B, #32] sfi_breg src, \ ldrd D_l, D_h, [\B, #32] bcs 2b /* Save the remaining bytes and restore the callee-saved regs. */ sfi_breg dst, \ strd A_l, A_h, [\B, #40] add src, src, #40 sfi_breg dst, \ strd B_l, B_h, [\B, #48] ldrd B_l, B_h, [sp, #8] cfi_restore (B_l) cfi_restore (B_h) sfi_breg dst, \ strd C_l, C_h, [\B, #56] ldrd C_l, C_h, [sp, #16] cfi_restore (C_l) cfi_restore (C_h) sfi_breg dst, \ strd D_l, D_h, [\B, #64] ldrd D_l, D_h, [sp, #24] cfi_restore (D_l) cfi_restore (D_h) add dst, dst, #72 tst tmp2, #0x3f bne .Ltail63aligned ldr tmp2, [sp], #FRAME_SIZE cfi_adjust_cfa_offset (-FRAME_SIZE) cfi_restore (tmp2) bx lr #endif cfi_restore_state cfi_remember_state .Lcpy_notaligned: sfi_pld src sfi_pld src, #64 /* There's at least 64 bytes to copy, but there is no mutual alignment. */ /* Bring DST to 64-bit alignment. */ lsls tmp2, dst, #29 sfi_pld src, #(2 * 64) beq 1f rsbs tmp2, tmp2, #0 sub count, count, tmp2, lsr #29 sfi_breg src, \ ldrmi tmp1, [\B], #4 sfi_breg dst, \ strmi tmp1, [\B], #4 lsls tmp2, tmp2, #2 sfi_breg src, \ ldrbne tmp1, [\B], #1 sfi_breg src, \ ldrhcs tmp2, [\B], #2 sfi_breg dst, \ strbne tmp1, [\B], #1 sfi_breg dst, \ strhcs tmp2, [\B], #2 1: sfi_pld src, #(3 * 64) subs count, count, #64 ldrmi tmp2, [sp], #FRAME_SIZE bmi .Ltail63unaligned sfi_pld src, #(4 * 64) #ifdef USE_NEON /* These need an extra layer of macro just to work around a bug in the assembler's parser when an operand starts with a {...}. */ .macro neon_load_multi reglist, basereg vld1.8 {\reglist}, [\basereg]! .endm .macro neon_store_multi reglist, basereg vst1.8 {\reglist}, [ALIGN (\basereg, 64)]! .endm /* These are used by the NaCl sfi_breg macro. */ .macro _sfi_breg_dmask_neon_load_multi reg _sfi_dmask \reg .endm .macro _sfi_breg_dmask_neon_store_multi reg _sfi_dmask \reg .endm sfi_breg src, neon_load_multi d0-d3, \B sfi_breg src, neon_load_multi d4-d7, \B subs count, count, #64 bmi 2f 1: sfi_pld src, #(4 * 64) sfi_breg dst, neon_store_multi d0-d3, \B sfi_breg src, neon_load_multi d0-d3, \B sfi_breg dst, neon_store_multi d4-d7, \B sfi_breg src, neon_load_multi d4-d7, \B subs count, count, #64 bpl 1b 2: sfi_breg dst, neon_store_multi d0-d3, \B sfi_breg dst, neon_store_multi d4-d7, \B ands count, count, #0x3f #else /* Use an SMS style loop to maximize the I/O bandwidth. */ sub src, src, #4 sub dst, dst, #8 subs tmp2, count, #64 /* Use tmp2 for count. */ sfi_breg src, \ ldr A_l, [\B, #4] sfi_breg src, \ ldr A_h, [\B, #8] strd B_l, B_h, [sp, #8] cfi_rel_offset (B_l, 8) cfi_rel_offset (B_h, 12) sfi_breg src, \ ldr B_l, [\B, #12] sfi_breg src, \ ldr B_h, [\B, #16] strd C_l, C_h, [sp, #16] cfi_rel_offset (C_l, 16) cfi_rel_offset (C_h, 20) sfi_breg src, \ ldr C_l, [\B, #20] sfi_breg src, \ ldr C_h, [\B, #24] strd D_l, D_h, [sp, #24] cfi_rel_offset (D_l, 24) cfi_rel_offset (D_h, 28) sfi_breg src, \ ldr D_l, [\B, #28] sfi_breg src, \ ldr D_h, [\B, #32]! b 1f .p2align 6 2: sfi_pld src, #(5 * 64) - (32 - 4) sfi_breg dst, \ strd A_l, A_h, [\B, #40] sfi_breg src, \ ldr A_l, [\B, #36] sfi_breg src, \ ldr A_h, [\B, #40] sfi_breg dst, \ strd B_l, B_h, [\B, #48] sfi_breg src, \ ldr B_l, [\B, #44] sfi_breg src, \ ldr B_h, [\B, #48] sfi_breg dst, \ strd C_l, C_h, [\B, #56] sfi_breg src, \ ldr C_l, [\B, #52] sfi_breg src, \ ldr C_h, [\B, #56] sfi_breg dst, \ strd D_l, D_h, [\B, #64]! sfi_breg src, \ ldr D_l, [\B, #60] sfi_breg src, \ ldr D_h, [\B, #64]! subs tmp2, tmp2, #64 1: sfi_breg dst, \ strd A_l, A_h, [\B, #8] sfi_breg src, \ ldr A_l, [\B, #4] sfi_breg src, \ ldr A_h, [\B, #8] sfi_breg dst, \ strd B_l, B_h, [\B, #16] sfi_breg src, \ ldr B_l, [\B, #12] sfi_breg src, \ ldr B_h, [\B, #16] sfi_breg dst, \ strd C_l, C_h, [\B, #24] sfi_breg src, \ ldr C_l, [\B, #20] sfi_breg src, \ ldr C_h, [\B, #24] sfi_breg dst, \ strd D_l, D_h, [\B, #32] sfi_breg src, \ ldr D_l, [\B, #28] sfi_breg src, \ ldr D_h, [\B, #32] bcs 2b /* Save the remaining bytes and restore the callee-saved regs. */ sfi_breg dst, \ strd A_l, A_h, [\B, #40] add src, src, #36 sfi_breg dst, \ strd B_l, B_h, [\B, #48] ldrd B_l, B_h, [sp, #8] cfi_restore (B_l) cfi_restore (B_h) sfi_breg dst, \ strd C_l, C_h, [\B, #56] ldrd C_l, C_h, [sp, #16] cfi_restore (C_l) cfi_restore (C_h) sfi_breg dst, \ strd D_l, D_h, [\B, #64] ldrd D_l, D_h, [sp, #24] cfi_restore (D_l) cfi_restore (D_h) add dst, dst, #72 ands count, tmp2, #0x3f #endif ldr tmp2, [sp], #FRAME_SIZE cfi_adjust_cfa_offset (-FRAME_SIZE) cfi_restore (tmp2) bne .Ltail63unaligned bx lr END(memcpy) libc_hidden_builtin_def (memcpy)