/* Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc. Contributed by David Mosberger (davidm@cs.arizona.edu). This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if !defined(_IEEE_FP_INEXACT) /* * This version is much faster than generic sqrt implementation, but * it doesn't handle the inexact flag. It doesn't handle exceptional * values either, but will defer to the full ieee754_sqrt routine which * can. */ /* Careful with rearranging this without consulting the assembly below. */ const static struct sqrt_data_struct { unsigned long dn, up, half, almost_three_half; unsigned long one_and_a_half, two_to_minus_30, one, nan; const int T2[64]; } sqrt_data = { 0x3fefffffffffffff, /* __dn = nextafter(1,-Inf) */ 0x3ff0000000000001, /* __up = nextafter(1,+Inf) */ 0x3fe0000000000000, /* half */ 0x3ff7ffffffc00000, /* almost_three_half = 1.5-2^-30 */ 0x3ff8000000000000, /* one_and_a_half */ 0x3e10000000000000, /* two_to_minus_30 */ 0x3ff0000000000000, /* one */ 0xffffffffffffffff, /* nan */ { 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd } }; asm ("\ /* Define offsets into the structure defined in C above. */ $DN = 0*8 $UP = 1*8 $HALF = 2*8 $ALMOST_THREE_HALF = 3*8 $NAN = 7*8 $T2 = 8*8 /* Stack variables. */ $K = 0 $Y = 8 .text .align 5 .globl __ieee754_sqrt .ent __ieee754_sqrt __ieee754_sqrt: ldgp $29, 0($27) subq $sp, 16, $sp .frame $sp, 16, $26, 0\n" #ifdef PROF " lda $28, _mcount jsr $28, ($28), _mcount\n" #endif " .prologue 1 .align 4 stt $f16, $K($sp) # e0 : mult $f31, $f31, $f31 # .. fm : lda $4, sqrt_data # e0 : fblt $f16, $fixup # .. fa : ldah $2, 0x5fe8 # e0 : ldq $3, $K($sp) # .. e1 : ldt $f12, $HALF($4) # e0 : ldt $f18, $ALMOST_THREE_HALF($4) # .. e1 : sll $3, 52, $5 # e0 : lda $6, 0x7fd # .. e1 : fnop # .. fa : fnop # .. fm : subq $5, 1, $5 # e1 : srl $3, 33, $1 # .. e0 : cmpule $5, $6, $5 # e0 : beq $5, $fixup # .. e1 : mult $f16, $f12, $f11 # fm : $f11 = x * 0.5 subl $2, $1, $2 # .. e0 : addt $f12, $f12, $f17 # .. fa : $f17 = 1.0 srl $2, 12, $1 # e0 : and $1, 0xfc, $1 # e0 : addq $1, $4, $1 # e1 : ldl $1, $T2($1) # e0 : addt $f12, $f17, $f15 # .. fa : $f15 = 1.5 subl $2, $1, $2 # e0 : ldt $f14, $DN($4) # .. e1 : sll $2, 32, $2 # e0 : stq $2, $Y($sp) # e0 : ldt $f13, $Y($sp) # e0 : mult/su $f11, $f13, $f10 # fm 2: $f10 = (x * 0.5) * y mult $f10, $f13, $f10 # fm 4: $f10 = ((x * 0.5) * y) * y subt $f15, $f10, $f1 # fa 4: $f1 = (1.5 - 0.5*x*y*y) mult $f13, $f1, $f13 # fm 4: yp = y*(1.5 - 0.5*x*y*y) mult/su $f11, $f13, $f1 # fm 4: $f11 = x * 0.5 * yp mult $f1, $f13, $f11 # fm 4: $f11 = (x * 0.5 * yp) * yp subt $f18, $f11, $f1 # fa 4: $f1= (1.5-2^-30) - 0.5*x*yp*yp mult $f13, $f1, $f13 # fm 4: ypp = $f13 = yp*$f1 subt $f15, $f12, $f1 # .. fa : $f1 = (1.5 - 0.5) ldt $f15, $UP($4) # .. e0 : mult/su $f16, $f13, $f10 # fm 4: z = $f10 = x * ypp mult $f10, $f13, $f11 # fm 4: $f11 = z*ypp mult $f10, $f12, $f12 # fm : $f12 = z*0.5 subt $f1, $f11, $f1 # fa 4: $f1 = 1 - z*ypp mult $f12, $f1, $f12 # fm 4: $f12 = z*0.5*(1 - z*ypp) addt $f10, $f12, $f0 # fa 4: zp=res= z + z*0.5*(1 - z*ypp) mult/c $f0, $f14, $f12 # fm 4: zmi = zp * DN mult/c $f0, $f15, $f11 # fm : zpl = zp * UP mult/c $f0, $f12, $f1 # fm : $f1 = zp * zmi mult/c $f0, $f11, $f15 # fm : $f15 = zp * zpl subt/su $f1, $f16, $f13 # .. fa : y1 = zp*zmi - x subt/su $f15, $f16, $f14 # fa 4: y2 = zp*zpl - x fcmovge $f13, $f12, $f0 # fa 3: res = (y1 >= 0) ? zmi : res fcmovlt $f14, $f11, $f0 # fa 4: res = (y2 < 0) ? zpl : res addq $sp, 16, $sp # .. e0 : ret # .. e1 : .align 4 $fixup: addq $sp, 16, $sp br "ASM_ALPHA_NG_SYMBOL_PREFIX"__full_ieee754_sqrt..ng .end __ieee754_sqrt"); static double __full_ieee754_sqrt(double) __attribute__((unused)); #define __ieee754_sqrt __full_ieee754_sqrt #endif /* _IEEE_FP_INEXACT */ #include