/* strnlen - calculate the length of a string with limit. Copyright (C) 2013-2020 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library. If not, see . */ #include /* Assumptions: * * ARMv8-a, AArch64 */ /* Arguments and results. */ #define srcin x0 #define len x0 #define limit x1 /* Locals and temporaries. */ #define src x2 #define data1 x3 #define data2 x4 #define data2a x5 #define has_nul1 x6 #define has_nul2 x7 #define tmp1 x8 #define tmp2 x9 #define tmp3 x10 #define tmp4 x11 #define zeroones x12 #define pos x13 #define limit_wd x14 #define dataq q2 #define datav v2 #define datab2 b3 #define dataq2 q3 #define datav2 v3 #define REP8_01 0x0101010101010101 #define REP8_7f 0x7f7f7f7f7f7f7f7f #define REP8_80 0x8080808080808080 ENTRY_ALIGN_AND_PAD (__strnlen, 6, 9) PTR_ARG (0) SIZE_ARG (1) cbz limit, L(hit_limit) mov zeroones, #REP8_01 bic src, srcin, #15 ands tmp1, srcin, #15 b.ne L(misaligned) /* Calculate the number of full and partial words -1. */ sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */ lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */ /* NUL detection works on the principle that (X - 1) & (~X) & 0x80 (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and can be done in parallel across the entire word. */ /* The inner loop deals with two Dwords at a time. This has a slightly higher start-up cost, but we should win quite quickly, especially on cores with a high number of issue slots per cycle, as we get much better parallelism out of the operations. */ /* Start of critial section -- keep to one 64Byte cache line. */ ldp data1, data2, [src], #16 L(realigned): sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f sub tmp3, data2, zeroones orr tmp4, data2, #REP8_7f bic has_nul1, tmp1, tmp2 bic has_nul2, tmp3, tmp4 subs limit_wd, limit_wd, #1 orr tmp1, has_nul1, has_nul2 ccmp tmp1, #0, #0, pl /* NZCV = 0000 */ b.eq L(loop) /* End of critical section -- keep to one 64Byte cache line. */ orr tmp1, has_nul1, has_nul2 cbz tmp1, L(hit_limit) /* No null in final Qword. */ /* We know there's a null in the final Qword. The easiest thing to do now is work out the length of the string and return MIN (len, limit). */ sub len, src, srcin cbz has_nul1, L(nul_in_data2) #ifdef __AARCH64EB__ mov data2, data1 #endif sub len, len, #8 mov has_nul2, has_nul1 L(nul_in_data2): #ifdef __AARCH64EB__ /* For big-endian, carry propagation (if the final byte in the string is 0x01) means we cannot use has_nul directly. The easiest way to get the correct byte is to byte-swap the data and calculate the syndrome a second time. */ rev data2, data2 sub tmp1, data2, zeroones orr tmp2, data2, #REP8_7f bic has_nul2, tmp1, tmp2 #endif sub len, len, #8 rev has_nul2, has_nul2 clz pos, has_nul2 add len, len, pos, lsr #3 /* Bits to bytes. */ cmp len, limit csel len, len, limit, ls /* Return the lower value. */ RET L(loop): ldr dataq, [src], #16 uminv datab2, datav.16b mov tmp1, datav2.d[0] subs limit_wd, limit_wd, #1 ccmp tmp1, #0, #4, pl /* NZCV = 0000 */ b.eq L(loop_end) ldr dataq, [src], #16 uminv datab2, datav.16b mov tmp1, datav2.d[0] subs limit_wd, limit_wd, #1 ccmp tmp1, #0, #4, pl /* NZCV = 0000 */ b.ne L(loop) L(loop_end): /* End of critical section -- keep to one 64Byte cache line. */ cbnz tmp1, L(hit_limit) /* No null in final Qword. */ /* We know there's a null in the final Qword. The easiest thing to do now is work out the length of the string and return MIN (len, limit). */ #ifdef __AARCH64EB__ rev64 datav.16b, datav.16b #endif /* Set te NULL byte as 0xff and the rest as 0x00, move the data into a pair of scalars and then compute the length from the earliest NULL byte. */ cmeq datav.16b, datav.16b, #0 #ifdef __AARCH64EB__ mov data1, datav.d[1] mov data2, datav.d[0] #else mov data1, datav.d[0] mov data2, datav.d[1] #endif cmp data1, 0 csel data1, data1, data2, ne sub len, src, srcin sub len, len, #16 rev data1, data1 add tmp2, len, 8 clz tmp1, data1 csel len, len, tmp2, ne add len, len, tmp1, lsr 3 cmp len, limit csel len, len, limit, ls /* Return the lower value. */ RET L(misaligned): /* Deal with a partial first word. We're doing two things in parallel here; 1) Calculate the number of words (but avoiding overflow if limit is near ULONG_MAX) - to do this we need to work out limit + tmp1 - 1 as a 65-bit value before shifting it; 2) Load and mask the initial data words - we force the bytes before the ones we are interested in to 0xff - this ensures early bytes will not hit any zero detection. */ sub limit_wd, limit, #1 neg tmp4, tmp1 cmp tmp1, #8 and tmp3, limit_wd, #15 lsr limit_wd, limit_wd, #4 mov tmp2, #~0 ldp data1, data2, [src], #16 lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */ add tmp3, tmp3, tmp1 #ifdef __AARCH64EB__ /* Big-endian. Early bytes are at MSB. */ lsl tmp2, tmp2, tmp4 /* Shift (tmp1 & 63). */ #else /* Little-endian. Early bytes are at LSB. */ lsr tmp2, tmp2, tmp4 /* Shift (tmp1 & 63). */ #endif add limit_wd, limit_wd, tmp3, lsr #4 orr data1, data1, tmp2 orr data2a, data2, tmp2 csinv data1, data1, xzr, le csel data2, data2, data2a, le b L(realigned) L(hit_limit): mov len, limit RET END (__strnlen) libc_hidden_def (__strnlen) weak_alias (__strnlen, strnlen) libc_hidden_def (strnlen)