/* Hardware capability support for run-time dynamic loader. Copyright (C) 2012-2020 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include /* Return an array of useful/necessary hardware capability names. */ const struct r_strlenpair * _dl_important_hwcaps (const char *platform, size_t platform_len, size_t *sz, size_t *max_capstrlen) { uint64_t hwcap_mask = GET_HWCAP_MASK(); /* Determine how many important bits are set. */ uint64_t masked = GLRO(dl_hwcap) & hwcap_mask; size_t cnt = platform != NULL; size_t n, m; size_t total; struct r_strlenpair *result; struct r_strlenpair *rp; char *cp; /* Count the number of bits set in the masked value. */ for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n) if ((masked & (1ULL << n)) != 0) ++cnt; /* For TLS enabled builds always add 'tls'. */ ++cnt; /* Create temporary data structure to generate result table. */ struct r_strlenpair temp[cnt]; m = 0; for (n = 0; masked != 0; ++n) if ((masked & (1ULL << n)) != 0) { temp[m].str = _dl_hwcap_string (n); temp[m].len = strlen (temp[m].str); masked ^= 1ULL << n; ++m; } if (platform != NULL) { temp[m].str = platform; temp[m].len = platform_len; ++m; } temp[m].str = "tls"; temp[m].len = 3; ++m; assert (m == cnt); /* Determine the total size of all strings together. */ if (cnt == 1) total = temp[0].len + 1; else { total = temp[0].len + temp[cnt - 1].len + 2; if (cnt > 2) { total <<= 1; for (n = 1; n + 1 < cnt; ++n) total += temp[n].len + 1; if (cnt > 3 && (cnt >= sizeof (size_t) * 8 || total + (sizeof (*result) << 3) >= (1UL << (sizeof (size_t) * 8 - cnt + 3)))) _dl_signal_error (ENOMEM, NULL, NULL, N_("cannot create capability list")); total <<= cnt - 3; } } /* The result structure: we use a very compressed way to store the various combinations of capability names. */ *sz = 1 << cnt; result = (struct r_strlenpair *) malloc (*sz * sizeof (*result) + total); if (result == NULL) _dl_signal_error (ENOMEM, NULL, NULL, N_("cannot create capability list")); if (cnt == 1) { result[0].str = (char *) (result + *sz); result[0].len = temp[0].len + 1; result[1].str = (char *) (result + *sz); result[1].len = 0; cp = __mempcpy ((char *) (result + *sz), temp[0].str, temp[0].len); *cp = '/'; *sz = 2; *max_capstrlen = result[0].len; return result; } /* Fill in the information. This follows the following scheme (indices from TEMP for four strings): entry #0: 0, 1, 2, 3 binary: 1111 #1: 0, 1, 3 1101 #2: 0, 2, 3 1011 #3: 0, 3 1001 This allows the representation of all possible combinations of capability names in the string. First generate the strings. */ result[1].str = result[0].str = cp = (char *) (result + *sz); #define add(idx) \ cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1); if (cnt == 2) { add (1); add (0); } else { n = 1 << (cnt - 1); do { n -= 2; /* We always add the last string. */ add (cnt - 1); /* Add the strings which have the bit set in N. */ for (m = cnt - 2; m > 0; --m) if ((n & (1 << m)) != 0) add (m); /* Always add the first string. */ add (0); } while (n != 0); } #undef add /* Now we are ready to install the string pointers and length. */ for (n = 0; n < (1UL << cnt); ++n) result[n].len = 0; n = cnt; do { size_t mask = 1 << --n; rp = result; for (m = 1 << cnt; m > 0; ++rp) if ((--m & mask) != 0) rp->len += temp[n].len + 1; } while (n != 0); /* The first half of the strings all include the first string. */ n = (1 << cnt) - 2; rp = &result[2]; while (n != (1UL << (cnt - 1))) { if ((--n & 1) != 0) rp[0].str = rp[-2].str + rp[-2].len; else rp[0].str = rp[-1].str; ++rp; } /* The second half starts right after the first part of the string of the corresponding entry in the first half. */ do { rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1; ++rp; } while (--n != 0); /* The maximum string length. */ *max_capstrlen = result[0].len; return result; }