/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #include #include #include #include "glib.h" #include "gthreadinit.h" #include "galias.h" /* notes on macros: * having DISABLE_MEM_POOLS defined, disables mem_chunks alltogether, their * allocations are performed through ordinary g_malloc/g_free. * having G_DISABLE_CHECKS defined disables use of glib_mem_profiler_table and * g_mem_profile(). * REALLOC_0_WORKS is defined if g_realloc (NULL, x) works. * SANE_MALLOC_PROTOS is defined if the systems malloc() and friends functions * match the corresponding GLib prototypes, keep configure.in and gmem.h in sync here. * if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped. */ #define MEM_PROFILE_TABLE_SIZE 4096 #define MEM_AREA_SIZE 4L #ifdef G_DISABLE_CHECKS # define ENTER_MEM_CHUNK_ROUTINE() # define LEAVE_MEM_CHUNK_ROUTINE() # define IN_MEM_CHUNK_ROUTINE() FALSE #else /* !G_DISABLE_CHECKS */ static GPrivate* mem_chunk_recursion = NULL; # define MEM_CHUNK_ROUTINE_COUNT() GPOINTER_TO_UINT (g_private_get (mem_chunk_recursion)) # define ENTER_MEM_CHUNK_ROUTINE() g_private_set (mem_chunk_recursion, GUINT_TO_POINTER (MEM_CHUNK_ROUTINE_COUNT () + 1)) # define LEAVE_MEM_CHUNK_ROUTINE() g_private_set (mem_chunk_recursion, GUINT_TO_POINTER (MEM_CHUNK_ROUTINE_COUNT () - 1)) #endif /* !G_DISABLE_CHECKS */ #ifndef REALLOC_0_WORKS static gpointer standard_realloc (gpointer mem, gsize n_bytes) { if (!mem) return malloc (n_bytes); else return realloc (mem, n_bytes); } #endif /* !REALLOC_0_WORKS */ #ifdef SANE_MALLOC_PROTOS # define standard_malloc malloc # ifdef REALLOC_0_WORKS # define standard_realloc realloc # endif /* REALLOC_0_WORKS */ # define standard_free free # define standard_calloc calloc # define standard_try_malloc malloc # define standard_try_realloc realloc #else /* !SANE_MALLOC_PROTOS */ static gpointer standard_malloc (gsize n_bytes) { return malloc (n_bytes); } # ifdef REALLOC_0_WORKS static gpointer standard_realloc (gpointer mem, gsize n_bytes) { return realloc (mem, n_bytes); } # endif /* REALLOC_0_WORKS */ static void standard_free (gpointer mem) { free (mem); } static gpointer standard_calloc (gsize n_blocks, gsize n_bytes) { return calloc (n_blocks, n_bytes); } #define standard_try_malloc standard_malloc #define standard_try_realloc standard_realloc #endif /* !SANE_MALLOC_PROTOS */ /* --- variables --- */ static GMemVTable glib_mem_vtable = { standard_malloc, standard_realloc, standard_free, standard_calloc, standard_try_malloc, standard_try_realloc, }; /* --- functions --- */ gpointer g_malloc (gulong n_bytes) { if (n_bytes) { gpointer mem; mem = glib_mem_vtable.malloc (n_bytes); if (mem) return mem; g_error ("%s: failed to allocate %lu bytes", G_STRLOC, n_bytes); } return NULL; } gpointer g_malloc0 (gulong n_bytes) { if (n_bytes) { gpointer mem; mem = glib_mem_vtable.calloc (1, n_bytes); if (mem) return mem; g_error ("%s: failed to allocate %lu bytes", G_STRLOC, n_bytes); } return NULL; } gpointer g_realloc (gpointer mem, gulong n_bytes) { if (n_bytes) { mem = glib_mem_vtable.realloc (mem, n_bytes); if (mem) return mem; g_error ("%s: failed to allocate %lu bytes", G_STRLOC, n_bytes); } if (mem) glib_mem_vtable.free (mem); return NULL; } void g_free (gpointer mem) { if (mem) glib_mem_vtable.free (mem); } gpointer g_try_malloc (gulong n_bytes) { if (n_bytes) return glib_mem_vtable.try_malloc (n_bytes); else return NULL; } gpointer g_try_malloc0 (gulong n_bytes) { gpointer mem; mem = g_try_malloc (n_bytes); if (mem) memset (mem, 0, n_bytes); return mem; } gpointer g_try_realloc (gpointer mem, gulong n_bytes) { if (n_bytes) return glib_mem_vtable.try_realloc (mem, n_bytes); if (mem) glib_mem_vtable.free (mem); return NULL; } static gpointer fallback_calloc (gsize n_blocks, gsize n_block_bytes) { gsize l = n_blocks * n_block_bytes; gpointer mem = glib_mem_vtable.malloc (l); if (mem) memset (mem, 0, l); return mem; } static gboolean vtable_set = FALSE; /** * g_mem_is_system_malloc * * Checks whether the allocator used by g_malloc() is the system's * malloc implementation. If it returns %TRUE memory allocated with * malloc() can be used interchangeable with memory allocated using g_malloc(). * This function is useful for avoiding an extra copy of allocated memory returned * by a non-GLib-based API. * * A different allocator can be set using g_mem_set_vtable(). * * Return value: if %TRUE, malloc() and g_malloc() can be mixed. **/ gboolean g_mem_is_system_malloc (void) { return !vtable_set; } void g_mem_set_vtable (GMemVTable *vtable) { if (!vtable_set) { if (vtable->malloc && vtable->realloc && vtable->free) { glib_mem_vtable.malloc = vtable->malloc; glib_mem_vtable.realloc = vtable->realloc; glib_mem_vtable.free = vtable->free; glib_mem_vtable.calloc = vtable->calloc ? vtable->calloc : fallback_calloc; glib_mem_vtable.try_malloc = vtable->try_malloc ? vtable->try_malloc : glib_mem_vtable.malloc; glib_mem_vtable.try_realloc = vtable->try_realloc ? vtable->try_realloc : glib_mem_vtable.realloc; vtable_set = TRUE; } else g_warning (G_STRLOC ": memory allocation vtable lacks one of malloc(), realloc() or free()"); } else g_warning (G_STRLOC ": memory allocation vtable can only be set once at startup"); } /* --- memory profiling and checking --- */ #ifdef G_DISABLE_CHECKS GMemVTable *glib_mem_profiler_table = &glib_mem_vtable; void g_mem_profile (void) { } #else /* !G_DISABLE_CHECKS */ typedef enum { PROFILER_FREE = 0, PROFILER_ALLOC = 1, PROFILER_RELOC = 2, PROFILER_ZINIT = 4 } ProfilerJob; static guint *profile_data = NULL; static gulong profile_allocs = 0; static gulong profile_mc_allocs = 0; static gulong profile_zinit = 0; static gulong profile_frees = 0; static gulong profile_mc_frees = 0; static GMutex *g_profile_mutex = NULL; #ifdef G_ENABLE_DEBUG static volatile gulong g_trap_free_size = 0; static volatile gulong g_trap_realloc_size = 0; static volatile gulong g_trap_malloc_size = 0; #endif /* G_ENABLE_DEBUG */ #define PROFILE_TABLE(f1,f2,f3) ( ( ((f3) << 2) | ((f2) << 1) | (f1) ) * (MEM_PROFILE_TABLE_SIZE + 1)) static void profiler_log (ProfilerJob job, gulong n_bytes, gboolean success) { g_mutex_lock (g_profile_mutex); if (!profile_data) { profile_data = standard_malloc ((MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])); if (!profile_data) /* memory system kiddin' me, eh? */ { g_mutex_unlock (g_profile_mutex); return; } } if (MEM_CHUNK_ROUTINE_COUNT () == 0) { if (n_bytes < MEM_PROFILE_TABLE_SIZE) profile_data[n_bytes + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0, (job & PROFILER_RELOC) != 0, success != 0)] += 1; else profile_data[MEM_PROFILE_TABLE_SIZE + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0, (job & PROFILER_RELOC) != 0, success != 0)] += 1; if (success) { if (job & PROFILER_ALLOC) { profile_allocs += n_bytes; if (job & PROFILER_ZINIT) profile_zinit += n_bytes; } else profile_frees += n_bytes; } } else if (success) { if (job & PROFILER_ALLOC) profile_mc_allocs += n_bytes; else profile_mc_frees += n_bytes; } g_mutex_unlock (g_profile_mutex); } static void profile_print_locked (guint *local_data, gboolean success) { gboolean need_header = TRUE; guint i; for (i = 0; i <= MEM_PROFILE_TABLE_SIZE; i++) { glong t_malloc = local_data[i + PROFILE_TABLE (1, 0, success)]; glong t_realloc = local_data[i + PROFILE_TABLE (1, 1, success)]; glong t_free = local_data[i + PROFILE_TABLE (0, 0, success)]; glong t_refree = local_data[i + PROFILE_TABLE (0, 1, success)]; if (!t_malloc && !t_realloc && !t_free && !t_refree) continue; else if (need_header) { need_header = FALSE; g_print (" blocks of | allocated | freed | allocated | freed | n_bytes \n"); g_print (" n_bytes | n_times by | n_times by | n_times by | n_times by | remaining \n"); g_print (" | malloc() | free() | realloc() | realloc() | \n"); g_print ("===========|============|============|============|============|===========\n"); } if (i < MEM_PROFILE_TABLE_SIZE) g_print ("%10u | %10ld | %10ld | %10ld | %10ld |%+11ld\n", i, t_malloc, t_free, t_realloc, t_refree, (t_malloc - t_free + t_realloc - t_refree) * i); else if (i >= MEM_PROFILE_TABLE_SIZE) g_print (" >%6u | %10ld | %10ld | %10ld | %10ld | ***\n", i, t_malloc, t_free, t_realloc, t_refree); } if (need_header) g_print (" --- none ---\n"); } void g_mem_profile (void) { guint local_data[(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])]; gulong local_allocs; gulong local_zinit; gulong local_frees; gulong local_mc_allocs; gulong local_mc_frees; g_mutex_lock (g_profile_mutex); local_allocs = profile_allocs; local_zinit = profile_zinit; local_frees = profile_frees; local_mc_allocs = profile_mc_allocs; local_mc_frees = profile_mc_frees; if (!profile_data) { g_mutex_unlock (g_profile_mutex); return; } memcpy (local_data, profile_data, (MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])); g_mutex_unlock (g_profile_mutex); g_print ("GLib Memory statistics (successful operations):\n"); profile_print_locked (local_data, TRUE); g_print ("GLib Memory statistics (failing operations):\n"); profile_print_locked (local_data, FALSE); g_print ("Total bytes: allocated=%lu, zero-initialized=%lu (%.2f%%), freed=%lu (%.2f%%), remaining=%lu\n", local_allocs, local_zinit, ((gdouble) local_zinit) / local_allocs * 100.0, local_frees, ((gdouble) local_frees) / local_allocs * 100.0, local_allocs - local_frees); g_print ("MemChunk bytes: allocated=%lu, freed=%lu (%.2f%%), remaining=%lu\n", local_mc_allocs, local_mc_frees, ((gdouble) local_mc_frees) / local_mc_allocs * 100.0, local_mc_allocs - local_mc_frees); } static gpointer profiler_try_malloc (gsize n_bytes) { gulong *p; #ifdef G_ENABLE_DEBUG if (g_trap_malloc_size == n_bytes) G_BREAKPOINT (); #endif /* G_ENABLE_DEBUG */ p = standard_malloc (sizeof (gulong) * 2 + n_bytes); if (p) { p[0] = 0; /* free count */ p[1] = n_bytes; /* length */ profiler_log (PROFILER_ALLOC, n_bytes, TRUE); p += 2; } else profiler_log (PROFILER_ALLOC, n_bytes, FALSE); return p; } static gpointer profiler_malloc (gsize n_bytes) { gpointer mem = profiler_try_malloc (n_bytes); if (!mem) g_mem_profile (); return mem; } static gpointer profiler_calloc (gsize n_blocks, gsize n_block_bytes) { gsize l = n_blocks * n_block_bytes; gulong *p; #ifdef G_ENABLE_DEBUG if (g_trap_malloc_size == l) G_BREAKPOINT (); #endif /* G_ENABLE_DEBUG */ p = standard_calloc (1, sizeof (gulong) * 2 + l); if (p) { p[0] = 0; /* free count */ p[1] = l; /* length */ profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, TRUE); p += 2; } else { profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, FALSE); g_mem_profile (); } return p; } static void profiler_free (gpointer mem) { gulong *p = mem; p -= 2; if (p[0]) /* free count */ { g_warning ("free(%p): memory has been freed %lu times already", p + 2, p[0]); profiler_log (PROFILER_FREE, p[1], /* length */ FALSE); } else { #ifdef G_ENABLE_DEBUG if (g_trap_free_size == p[1]) G_BREAKPOINT (); #endif /* G_ENABLE_DEBUG */ profiler_log (PROFILER_FREE, p[1], /* length */ TRUE); memset (p + 2, 0xaa, p[1]); /* for all those that miss standard_free (p); in this place, yes, * we do leak all memory when profiling, and that is intentional * to catch double frees. patch submissions are futile. */ } p[0] += 1; } static gpointer profiler_try_realloc (gpointer mem, gsize n_bytes) { gulong *p = mem; p -= 2; #ifdef G_ENABLE_DEBUG if (g_trap_realloc_size == n_bytes) G_BREAKPOINT (); #endif /* G_ENABLE_DEBUG */ if (mem && p[0]) /* free count */ { g_warning ("realloc(%p, %lu): memory has been freed %lu times already", p + 2, (gulong)n_bytes, p[0]); profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE); return NULL; } else { p = standard_realloc (mem ? p : NULL, sizeof (gulong) * 2 + n_bytes); if (p) { if (mem) profiler_log (PROFILER_FREE | PROFILER_RELOC, p[1], TRUE); p[0] = 0; p[1] = n_bytes; profiler_log (PROFILER_ALLOC | PROFILER_RELOC, p[1], TRUE); p += 2; } else profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE); return p; } } static gpointer profiler_realloc (gpointer mem, gsize n_bytes) { mem = profiler_try_realloc (mem, n_bytes); if (!mem) g_mem_profile (); return mem; } static GMemVTable profiler_table = { profiler_malloc, profiler_realloc, profiler_free, profiler_calloc, profiler_try_malloc, profiler_try_realloc, }; GMemVTable *glib_mem_profiler_table = &profiler_table; #endif /* !G_DISABLE_CHECKS */ /* --- MemChunks --- */ typedef struct _GFreeAtom GFreeAtom; typedef struct _GMemArea GMemArea; struct _GFreeAtom { GFreeAtom *next; }; struct _GMemArea { GMemArea *next; /* the next mem area */ GMemArea *prev; /* the previous mem area */ gulong index; /* the current index into the "mem" array */ gulong free; /* the number of free bytes in this mem area */ gulong allocated; /* the number of atoms allocated from this area */ gulong mark; /* is this mem area marked for deletion */ gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated * the actual size of this array is determined by * the mem chunk "area_size". ANSI says that it * must be declared to be the maximum size it * can possibly be (even though the actual size * may be less). */ }; struct _GMemChunk { const gchar *name; /* name of this MemChunk...used for debugging output */ gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */ gint num_mem_areas; /* the number of memory areas */ gint num_marked_areas; /* the number of areas marked for deletion */ guint atom_size; /* the size of an atom */ gulong area_size; /* the size of a memory area */ GMemArea *mem_area; /* the current memory area */ GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */ GMemArea *free_mem_area; /* the free area...which is about to be destroyed */ GFreeAtom *free_atoms; /* the free atoms list */ GTree *mem_tree; /* tree of mem areas sorted by memory address */ GMemChunk *next; /* pointer to the next chunk */ GMemChunk *prev; /* pointer to the previous chunk */ }; #ifndef DISABLE_MEM_POOLS static gulong g_mem_chunk_compute_size (gulong size, gulong min_size) G_GNUC_CONST; static gint g_mem_chunk_area_compare (GMemArea *a, GMemArea *b); static gint g_mem_chunk_area_search (GMemArea *a, gchar *addr); /* here we can't use StaticMutexes, as they depend upon a working * g_malloc, the same holds true for StaticPrivate */ static GMutex *mem_chunks_lock = NULL; static GMemChunk *mem_chunks = NULL; GMemChunk* g_mem_chunk_new (const gchar *name, gint atom_size, gulong area_size, gint type) { GMemChunk *mem_chunk; gulong rarea_size; g_return_val_if_fail (atom_size > 0, NULL); g_return_val_if_fail (area_size >= atom_size, NULL); ENTER_MEM_CHUNK_ROUTINE (); area_size = (area_size + atom_size - 1) / atom_size; area_size *= atom_size; mem_chunk = g_new (GMemChunk, 1); mem_chunk->name = name; mem_chunk->type = type; mem_chunk->num_mem_areas = 0; mem_chunk->num_marked_areas = 0; mem_chunk->mem_area = NULL; mem_chunk->free_mem_area = NULL; mem_chunk->free_atoms = NULL; mem_chunk->mem_tree = NULL; mem_chunk->mem_areas = NULL; mem_chunk->atom_size = atom_size; if (mem_chunk->type == G_ALLOC_AND_FREE) mem_chunk->mem_tree = g_tree_new ((GCompareFunc) g_mem_chunk_area_compare); if (mem_chunk->atom_size % G_MEM_ALIGN) mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN); rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE; rarea_size = g_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE); mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE); g_mutex_lock (mem_chunks_lock); mem_chunk->next = mem_chunks; mem_chunk->prev = NULL; if (mem_chunks) mem_chunks->prev = mem_chunk; mem_chunks = mem_chunk; g_mutex_unlock (mem_chunks_lock); LEAVE_MEM_CHUNK_ROUTINE (); return mem_chunk; } void g_mem_chunk_destroy (GMemChunk *mem_chunk) { GMemArea *mem_areas; GMemArea *temp_area; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE (); mem_areas = mem_chunk->mem_areas; while (mem_areas) { temp_area = mem_areas; mem_areas = mem_areas->next; g_free (temp_area); } g_mutex_lock (mem_chunks_lock); if (mem_chunk->next) mem_chunk->next->prev = mem_chunk->prev; if (mem_chunk->prev) mem_chunk->prev->next = mem_chunk->next; if (mem_chunk == mem_chunks) mem_chunks = mem_chunks->next; g_mutex_unlock (mem_chunks_lock); if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_destroy (mem_chunk->mem_tree); g_free (mem_chunk); LEAVE_MEM_CHUNK_ROUTINE (); } gpointer g_mem_chunk_alloc (GMemChunk *mem_chunk) { GMemArea *temp_area; gpointer mem; ENTER_MEM_CHUNK_ROUTINE (); g_return_val_if_fail (mem_chunk != NULL, NULL); while (mem_chunk->free_atoms) { /* Get the first piece of memory on the "free_atoms" list. * We can go ahead and destroy the list node we used to keep * track of it with and to update the "free_atoms" list to * point to its next element. */ mem = mem_chunk->free_atoms; mem_chunk->free_atoms = mem_chunk->free_atoms->next; /* Determine which area this piece of memory is allocated from */ temp_area = g_tree_search (mem_chunk->mem_tree, (GCompareFunc) g_mem_chunk_area_search, mem); /* If the area has been marked, then it is being destroyed. * (ie marked to be destroyed). * We check to see if all of the segments on the free list that * reference this area have been removed. This occurs when * the ammount of free memory is less than the allocatable size. * If the chunk should be freed, then we place it in the "free_mem_area". * This is so we make sure not to free the mem area here and then * allocate it again a few lines down. * If we don't allocate a chunk a few lines down then the "free_mem_area" * will be freed. * If there is already a "free_mem_area" then we'll just free this mem area. */ if (temp_area->mark) { /* Update the "free" memory available in that area */ temp_area->free += mem_chunk->atom_size; if (temp_area->free == mem_chunk->area_size) { if (temp_area == mem_chunk->mem_area) mem_chunk->mem_area = NULL; if (mem_chunk->free_mem_area) { mem_chunk->num_mem_areas -= 1; if (temp_area->next) temp_area->next->prev = temp_area->prev; if (temp_area->prev) temp_area->prev->next = temp_area->next; if (temp_area == mem_chunk->mem_areas) mem_chunk->mem_areas = mem_chunk->mem_areas->next; if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_remove (mem_chunk->mem_tree, temp_area); g_free (temp_area); } else mem_chunk->free_mem_area = temp_area; mem_chunk->num_marked_areas -= 1; } } else { /* Update the number of allocated atoms count. */ temp_area->allocated += 1; /* The area wasn't marked...return the memory */ goto outa_here; } } /* If there isn't a current mem area or the current mem area is out of space * then allocate a new mem area. We'll first check and see if we can use * the "free_mem_area". Otherwise we'll just malloc the mem area. */ if ((!mem_chunk->mem_area) || ((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size)) { if (mem_chunk->free_mem_area) { mem_chunk->mem_area = mem_chunk->free_mem_area; mem_chunk->free_mem_area = NULL; } else { #ifdef ENABLE_GC_FRIENDLY mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) - MEM_AREA_SIZE + mem_chunk->area_size); #else /* !ENABLE_GC_FRIENDLY */ mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) - MEM_AREA_SIZE + mem_chunk->area_size); #endif /* ENABLE_GC_FRIENDLY */ mem_chunk->num_mem_areas += 1; mem_chunk->mem_area->next = mem_chunk->mem_areas; mem_chunk->mem_area->prev = NULL; if (mem_chunk->mem_areas) mem_chunk->mem_areas->prev = mem_chunk->mem_area; mem_chunk->mem_areas = mem_chunk->mem_area; if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area); } mem_chunk->mem_area->index = 0; mem_chunk->mem_area->free = mem_chunk->area_size; mem_chunk->mem_area->allocated = 0; mem_chunk->mem_area->mark = 0; } /* Get the memory and modify the state variables appropriately. */ mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index]; mem_chunk->mem_area->index += mem_chunk->atom_size; mem_chunk->mem_area->free -= mem_chunk->atom_size; mem_chunk->mem_area->allocated += 1; outa_here: LEAVE_MEM_CHUNK_ROUTINE (); return mem; } gpointer g_mem_chunk_alloc0 (GMemChunk *mem_chunk) { gpointer mem; mem = g_mem_chunk_alloc (mem_chunk); if (mem) { memset (mem, 0, mem_chunk->atom_size); } return mem; } void g_mem_chunk_free (GMemChunk *mem_chunk, gpointer mem) { GMemArea *temp_area; GFreeAtom *free_atom; g_return_if_fail (mem_chunk != NULL); g_return_if_fail (mem != NULL); ENTER_MEM_CHUNK_ROUTINE (); #ifdef ENABLE_GC_FRIENDLY memset (mem, 0, mem_chunk->atom_size); #endif /* ENABLE_GC_FRIENDLY */ /* Don't do anything if this is an ALLOC_ONLY chunk */ if (mem_chunk->type == G_ALLOC_AND_FREE) { /* Place the memory on the "free_atoms" list */ free_atom = (GFreeAtom*) mem; free_atom->next = mem_chunk->free_atoms; mem_chunk->free_atoms = free_atom; temp_area = g_tree_search (mem_chunk->mem_tree, (GCompareFunc) g_mem_chunk_area_search, mem); temp_area->allocated -= 1; if (temp_area->allocated == 0) { temp_area->mark = 1; mem_chunk->num_marked_areas += 1; } } LEAVE_MEM_CHUNK_ROUTINE (); } /* This doesn't free the free_area if there is one */ void g_mem_chunk_clean (GMemChunk *mem_chunk) { GMemArea *mem_area; GFreeAtom *prev_free_atom; GFreeAtom *temp_free_atom; gpointer mem; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE (); if (mem_chunk->type == G_ALLOC_AND_FREE) { prev_free_atom = NULL; temp_free_atom = mem_chunk->free_atoms; while (temp_free_atom) { mem = (gpointer) temp_free_atom; mem_area = g_tree_search (mem_chunk->mem_tree, (GCompareFunc) g_mem_chunk_area_search, mem); /* If this mem area is marked for destruction then delete the * area and list node and decrement the free mem. */ if (mem_area->mark) { if (prev_free_atom) prev_free_atom->next = temp_free_atom->next; else mem_chunk->free_atoms = temp_free_atom->next; temp_free_atom = temp_free_atom->next; mem_area->free += mem_chunk->atom_size; if (mem_area->free == mem_chunk->area_size) { mem_chunk->num_mem_areas -= 1; mem_chunk->num_marked_areas -= 1; if (mem_area->next) mem_area->next->prev = mem_area->prev; if (mem_area->prev) mem_area->prev->next = mem_area->next; if (mem_area == mem_chunk->mem_areas) mem_chunk->mem_areas = mem_chunk->mem_areas->next; if (mem_area == mem_chunk->mem_area) mem_chunk->mem_area = NULL; if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_remove (mem_chunk->mem_tree, mem_area); g_free (mem_area); } } else { prev_free_atom = temp_free_atom; temp_free_atom = temp_free_atom->next; } } } LEAVE_MEM_CHUNK_ROUTINE (); } void g_mem_chunk_reset (GMemChunk *mem_chunk) { GMemArea *mem_areas; GMemArea *temp_area; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE (); mem_areas = mem_chunk->mem_areas; mem_chunk->num_mem_areas = 0; mem_chunk->mem_areas = NULL; mem_chunk->mem_area = NULL; while (mem_areas) { temp_area = mem_areas; mem_areas = mem_areas->next; g_free (temp_area); } mem_chunk->free_atoms = NULL; if (mem_chunk->mem_tree) { g_tree_destroy (mem_chunk->mem_tree); mem_chunk->mem_tree = g_tree_new ((GCompareFunc) g_mem_chunk_area_compare); } LEAVE_MEM_CHUNK_ROUTINE (); } void g_mem_chunk_print (GMemChunk *mem_chunk) { GMemArea *mem_areas; gulong mem; g_return_if_fail (mem_chunk != NULL); mem_areas = mem_chunk->mem_areas; mem = 0; while (mem_areas) { mem += mem_chunk->area_size - mem_areas->free; mem_areas = mem_areas->next; } g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%s: %ld bytes using %d mem areas", mem_chunk->name, mem, mem_chunk->num_mem_areas); } void g_mem_chunk_info (void) { GMemChunk *mem_chunk; gint count; count = 0; g_mutex_lock (mem_chunks_lock); mem_chunk = mem_chunks; while (mem_chunk) { count += 1; mem_chunk = mem_chunk->next; } g_mutex_unlock (mem_chunks_lock); g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count); g_mutex_lock (mem_chunks_lock); mem_chunk = mem_chunks; g_mutex_unlock (mem_chunks_lock); while (mem_chunk) { g_mem_chunk_print ((GMemChunk*) mem_chunk); mem_chunk = mem_chunk->next; } } void g_blow_chunks (void) { GMemChunk *mem_chunk; g_mutex_lock (mem_chunks_lock); mem_chunk = mem_chunks; g_mutex_unlock (mem_chunks_lock); while (mem_chunk) { g_mem_chunk_clean ((GMemChunk*) mem_chunk); mem_chunk = mem_chunk->next; } } static gulong g_mem_chunk_compute_size (gulong size, gulong min_size) { gulong power_of_2; gulong lower, upper; power_of_2 = 16; while (power_of_2 < size) power_of_2 <<= 1; lower = power_of_2 >> 1; upper = power_of_2; if (size - lower < upper - size && lower >= min_size) return lower; else return upper; } static gint g_mem_chunk_area_compare (GMemArea *a, GMemArea *b) { if (a->mem > b->mem) return 1; else if (a->mem < b->mem) return -1; return 0; } static gint g_mem_chunk_area_search (GMemArea *a, gchar *addr) { if (a->mem <= addr) { if (addr < &a->mem[a->index]) return 0; return 1; } return -1; } #else /* DISABLE_MEM_POOLS */ typedef struct { guint alloc_size; /* the size of an atom */ } GMinimalMemChunk; GMemChunk* g_mem_chunk_new (const gchar *name, gint atom_size, gulong area_size, gint type) { GMinimalMemChunk *mem_chunk; g_return_val_if_fail (atom_size > 0, NULL); mem_chunk = g_new (GMinimalMemChunk, 1); mem_chunk->alloc_size = atom_size; return ((GMemChunk*) mem_chunk); } void g_mem_chunk_destroy (GMemChunk *mem_chunk) { g_return_if_fail (mem_chunk != NULL); g_free (mem_chunk); } gpointer g_mem_chunk_alloc (GMemChunk *mem_chunk) { GMinimalMemChunk *minimal = (GMinimalMemChunk *)mem_chunk; g_return_val_if_fail (mem_chunk != NULL, NULL); return g_malloc (minimal->alloc_size); } gpointer g_mem_chunk_alloc0 (GMemChunk *mem_chunk) { GMinimalMemChunk *minimal = (GMinimalMemChunk *)mem_chunk; g_return_val_if_fail (mem_chunk != NULL, NULL); return g_malloc0 (minimal->alloc_size); } void g_mem_chunk_free (GMemChunk *mem_chunk, gpointer mem) { g_return_if_fail (mem_chunk != NULL); g_free (mem); } void g_mem_chunk_clean (GMemChunk *mem_chunk) {} void g_mem_chunk_reset (GMemChunk *mem_chunk) {} void g_mem_chunk_print (GMemChunk *mem_chunk) {} void g_mem_chunk_info (void) {} void g_blow_chunks (void) {} #endif /* DISABLE_MEM_POOLS */ /* generic allocators */ struct _GAllocator /* from gmem.c */ { gchar *name; guint16 n_preallocs; guint is_unused : 1; guint type : 4; GAllocator *last; GMemChunk *mem_chunk; gpointer dummy; /* implementation specific */ }; GAllocator* g_allocator_new (const gchar *name, guint n_preallocs) { GAllocator *allocator; g_return_val_if_fail (name != NULL, NULL); allocator = g_new0 (GAllocator, 1); allocator->name = g_strdup (name); allocator->n_preallocs = CLAMP (n_preallocs, 1, 65535); allocator->is_unused = TRUE; allocator->type = 0; allocator->last = NULL; allocator->mem_chunk = NULL; allocator->dummy = NULL; return allocator; } void g_allocator_free (GAllocator *allocator) { g_return_if_fail (allocator != NULL); g_return_if_fail (allocator->is_unused == TRUE); g_free (allocator->name); if (allocator->mem_chunk) g_mem_chunk_destroy (allocator->mem_chunk); g_free (allocator); } void _g_mem_thread_init (void) { #ifndef DISABLE_MEM_POOLS mem_chunks_lock = g_mutex_new (); #endif #ifndef G_DISABLE_CHECKS g_profile_mutex = g_mutex_new (); #endif } void _g_mem_thread_private_init (void) { #ifndef G_DISABLE_CHECKS g_assert (mem_chunk_recursion == NULL); mem_chunk_recursion = g_private_new (NULL); #endif } #define __G_MEM_C__ #include "galiasdef.c"