#include "cache.h" #include "dir.h" #include "tree.h" #include "tree-walk.h" #include "cache-tree.h" #include "unpack-trees.h" #define DBRT_DEBUG 1 struct tree_entry_list { struct tree_entry_list *next; unsigned directory : 1; unsigned executable : 1; unsigned symlink : 1; unsigned int mode; const char *name; const unsigned char *sha1; }; static struct tree_entry_list *create_tree_entry_list(struct tree *tree) { struct tree_desc desc; struct name_entry one; struct tree_entry_list *ret = NULL; struct tree_entry_list **list_p = &ret; if (!tree->object.parsed) parse_tree(tree); desc.buf = tree->buffer; desc.size = tree->size; while (tree_entry(&desc, &one)) { struct tree_entry_list *entry; entry = xmalloc(sizeof(struct tree_entry_list)); entry->name = one.path; entry->sha1 = one.sha1; entry->mode = one.mode; entry->directory = S_ISDIR(one.mode) != 0; entry->executable = (one.mode & S_IXUSR) != 0; entry->symlink = S_ISLNK(one.mode) != 0; entry->next = NULL; *list_p = entry; list_p = &entry->next; } return ret; } static int entcmp(const char *name1, int dir1, const char *name2, int dir2) { int len1 = strlen(name1); int len2 = strlen(name2); int len = len1 < len2 ? len1 : len2; int ret = memcmp(name1, name2, len); unsigned char c1, c2; if (ret) return ret; c1 = name1[len]; c2 = name2[len]; if (!c1 && dir1) c1 = '/'; if (!c2 && dir2) c2 = '/'; ret = (c1 < c2) ? -1 : (c1 > c2) ? 1 : 0; if (c1 && c2 && !ret) ret = len1 - len2; return ret; } static int unpack_trees_rec(struct tree_entry_list **posns, int len, const char *base, struct unpack_trees_options *o, int *indpos, struct tree_entry_list *df_conflict_list) { int baselen = strlen(base); int src_size = len + 1; int i_stk = i_stk; int retval = 0; if (o->dir) i_stk = push_exclude_per_directory(o->dir, base, strlen(base)); do { int i; const char *first; int firstdir = 0; int pathlen; unsigned ce_size; struct tree_entry_list **subposns; struct cache_entry **src; int any_files = 0; int any_dirs = 0; char *cache_name; int ce_stage; /* Find the first name in the input. */ first = NULL; cache_name = NULL; /* Check the cache */ if (o->merge && *indpos < active_nr) { /* This is a bit tricky: */ /* If the index has a subdirectory (with * contents) as the first name, it'll get a * filename like "foo/bar". But that's after * "foo", so the entry in trees will get * handled first, at which point we'll go into * "foo", and deal with "bar" from the index, * because the base will be "foo/". The only * way we can actually have "foo/bar" first of * all the things is if the trees don't * contain "foo" at all, in which case we'll * handle "foo/bar" without going into the * directory, but that's fine (and will return * an error anyway, with the added unknown * file case. */ cache_name = active_cache[*indpos]->name; if (strlen(cache_name) > baselen && !memcmp(cache_name, base, baselen)) { cache_name += baselen; first = cache_name; } else { cache_name = NULL; } } #if DBRT_DEBUG > 1 if (first) printf("index %s\n", first); #endif for (i = 0; i < len; i++) { if (!posns[i] || posns[i] == df_conflict_list) continue; #if DBRT_DEBUG > 1 printf("%d %s\n", i + 1, posns[i]->name); #endif if (!first || entcmp(first, firstdir, posns[i]->name, posns[i]->directory) > 0) { first = posns[i]->name; firstdir = posns[i]->directory; } } /* No name means we're done */ if (!first) goto leave_directory; pathlen = strlen(first); ce_size = cache_entry_size(baselen + pathlen); src = xcalloc(src_size, sizeof(struct cache_entry *)); subposns = xcalloc(len, sizeof(struct tree_list_entry *)); if (cache_name && !strcmp(cache_name, first)) { any_files = 1; src[0] = active_cache[*indpos]; remove_cache_entry_at(*indpos); } for (i = 0; i < len; i++) { struct cache_entry *ce; if (!posns[i] || (posns[i] != df_conflict_list && strcmp(first, posns[i]->name))) { continue; } if (posns[i] == df_conflict_list) { src[i + o->merge] = o->df_conflict_entry; continue; } if (posns[i]->directory) { struct tree *tree = lookup_tree(posns[i]->sha1); any_dirs = 1; parse_tree(tree); subposns[i] = create_tree_entry_list(tree); posns[i] = posns[i]->next; src[i + o->merge] = o->df_conflict_entry; continue; } if (!o->merge) ce_stage = 0; else if (i + 1 < o->head_idx) ce_stage = 1; else if (i + 1 > o->head_idx) ce_stage = 3; else ce_stage = 2; ce = xcalloc(1, ce_size); ce->ce_mode = create_ce_mode(posns[i]->mode); ce->ce_flags = create_ce_flags(baselen + pathlen, ce_stage); memcpy(ce->name, base, baselen); memcpy(ce->name + baselen, first, pathlen + 1); any_files = 1; hashcpy(ce->sha1, posns[i]->sha1); src[i + o->merge] = ce; subposns[i] = df_conflict_list; posns[i] = posns[i]->next; } if (any_files) { if (o->merge) { int ret; #if DBRT_DEBUG > 1 printf("%s:\n", first); for (i = 0; i < src_size; i++) { printf(" %d ", i); if (src[i]) printf("%s\n", sha1_to_hex(src[i]->sha1)); else printf("\n"); } #endif ret = o->fn(src, o); #if DBRT_DEBUG > 1 printf("Added %d entries\n", ret); #endif *indpos += ret; } else { for (i = 0; i < src_size; i++) { if (src[i]) { add_cache_entry(src[i], ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK); } } } } if (any_dirs) { char *newbase = xmalloc(baselen + 2 + pathlen); memcpy(newbase, base, baselen); memcpy(newbase + baselen, first, pathlen); newbase[baselen + pathlen] = '/'; newbase[baselen + pathlen + 1] = '\0'; if (unpack_trees_rec(subposns, len, newbase, o, indpos, df_conflict_list)) { retval = -1; goto leave_directory; } free(newbase); } free(subposns); free(src); } while (1); leave_directory: if (o->dir) pop_exclude_per_directory(o->dir, i_stk); return retval; } /* Unlink the last component and attempt to remove leading * directories, in case this unlink is the removal of the * last entry in the directory -- empty directories are removed. */ static void unlink_entry(char *name) { char *cp, *prev; if (unlink(name)) return; prev = NULL; while (1) { int status; cp = strrchr(name, '/'); if (prev) *prev = '/'; if (!cp) break; *cp = 0; status = rmdir(name); if (status) { *cp = '/'; break; } prev = cp; } } static volatile sig_atomic_t progress_update; static void progress_interval(int signum) { progress_update = 1; } static void setup_progress_signal(void) { struct sigaction sa; struct itimerval v; memset(&sa, 0, sizeof(sa)); sa.sa_handler = progress_interval; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART; sigaction(SIGALRM, &sa, NULL); v.it_interval.tv_sec = 1; v.it_interval.tv_usec = 0; v.it_value = v.it_interval; setitimer(ITIMER_REAL, &v, NULL); } static struct checkout state; static void check_updates(struct cache_entry **src, int nr, struct unpack_trees_options *o) { unsigned short mask = htons(CE_UPDATE); unsigned last_percent = 200, cnt = 0, total = 0; if (o->update && o->verbose_update) { for (total = cnt = 0; cnt < nr; cnt++) { struct cache_entry *ce = src[cnt]; if (!ce->ce_mode || ce->ce_flags & mask) total++; } /* Don't bother doing this for very small updates */ if (total < 250) total = 0; if (total) { fprintf(stderr, "Checking files out...\n"); setup_progress_signal(); progress_update = 1; } cnt = 0; } while (nr--) { struct cache_entry *ce = *src++; if (total) { if (!ce->ce_mode || ce->ce_flags & mask) { unsigned percent; cnt++; percent = (cnt * 100) / total; if (percent != last_percent || progress_update) { fprintf(stderr, "%4u%% (%u/%u) done\r", percent, cnt, total); last_percent = percent; progress_update = 0; } } } if (!ce->ce_mode) { if (o->update) unlink_entry(ce->name); continue; } if (ce->ce_flags & mask) { ce->ce_flags &= ~mask; if (o->update) checkout_entry(ce, &state, NULL); } } if (total) { signal(SIGALRM, SIG_IGN); fputc('\n', stderr); } } int unpack_trees(struct object_list *trees, struct unpack_trees_options *o) { int indpos = 0; unsigned len = object_list_length(trees); struct tree_entry_list **posns; int i; struct object_list *posn = trees; struct tree_entry_list df_conflict_list; static struct cache_entry *dfc; memset(&df_conflict_list, 0, sizeof(df_conflict_list)); df_conflict_list.next = &df_conflict_list; memset(&state, 0, sizeof(state)); state.base_dir = ""; state.force = 1; state.quiet = 1; state.refresh_cache = 1; o->merge_size = len; if (!dfc) dfc = xcalloc(1, sizeof(struct cache_entry) + 1); o->df_conflict_entry = dfc; if (len) { posns = xmalloc(len * sizeof(struct tree_entry_list *)); for (i = 0; i < len; i++) { posns[i] = create_tree_entry_list((struct tree *) posn->item); posn = posn->next; } if (unpack_trees_rec(posns, len, o->prefix ? o->prefix : "", o, &indpos, &df_conflict_list)) return -1; } if (o->trivial_merges_only && o->nontrivial_merge) die("Merge requires file-level merging"); check_updates(active_cache, active_nr, o); return 0; } /* Here come the merge functions */ static void reject_merge(struct cache_entry *ce) { die("Entry '%s' would be overwritten by merge. Cannot merge.", ce->name); } static int same(struct cache_entry *a, struct cache_entry *b) { if (!!a != !!b) return 0; if (!a && !b) return 1; return a->ce_mode == b->ce_mode && !hashcmp(a->sha1, b->sha1); } /* * When a CE gets turned into an unmerged entry, we * want it to be up-to-date */ static void verify_uptodate(struct cache_entry *ce, struct unpack_trees_options *o) { struct stat st; if (o->index_only || o->reset) return; if (!lstat(ce->name, &st)) { unsigned changed = ce_match_stat(ce, &st, 1); if (!changed) return; errno = 0; } if (o->reset) { ce->ce_flags |= htons(CE_UPDATE); return; } if (errno == ENOENT) return; die("Entry '%s' not uptodate. Cannot merge.", ce->name); } static void invalidate_ce_path(struct cache_entry *ce) { if (ce) cache_tree_invalidate_path(active_cache_tree, ce->name); } /* * We do not want to remove or overwrite a working tree file that * is not tracked, unless it is ignored. */ static void verify_absent(const char *path, const char *action, struct unpack_trees_options *o) { struct stat st; if (o->index_only || o->reset || !o->update) return; if (!lstat(path, &st) && !(o->dir && excluded(o->dir, path))) die("Untracked working tree file '%s' " "would be %s by merge.", path, action); } static int merged_entry(struct cache_entry *merge, struct cache_entry *old, struct unpack_trees_options *o) { merge->ce_flags |= htons(CE_UPDATE); if (old) { /* * See if we can re-use the old CE directly? * That way we get the uptodate stat info. * * This also removes the UPDATE flag on * a match. */ if (same(old, merge)) { *merge = *old; } else { verify_uptodate(old, o); invalidate_ce_path(old); } } else { verify_absent(merge->name, "overwritten", o); invalidate_ce_path(merge); } merge->ce_flags &= ~htons(CE_STAGEMASK); add_cache_entry(merge, ADD_CACHE_OK_TO_ADD|ADD_CACHE_OK_TO_REPLACE); return 1; } static int deleted_entry(struct cache_entry *ce, struct cache_entry *old, struct unpack_trees_options *o) { if (old) verify_uptodate(old, o); else verify_absent(ce->name, "removed", o); ce->ce_mode = 0; add_cache_entry(ce, ADD_CACHE_OK_TO_ADD|ADD_CACHE_OK_TO_REPLACE); invalidate_ce_path(ce); return 1; } static int keep_entry(struct cache_entry *ce) { add_cache_entry(ce, ADD_CACHE_OK_TO_ADD); return 1; } #if DBRT_DEBUG static void show_stage_entry(FILE *o, const char *label, const struct cache_entry *ce) { if (!ce) fprintf(o, "%s (missing)\n", label); else fprintf(o, "%s%06o %s %d\t%s\n", label, ntohl(ce->ce_mode), sha1_to_hex(ce->sha1), ce_stage(ce), ce->name); } #endif int threeway_merge(struct cache_entry **stages, struct unpack_trees_options *o) { struct cache_entry *index; struct cache_entry *head; struct cache_entry *remote = stages[o->head_idx + 1]; int count; int head_match = 0; int remote_match = 0; const char *path = NULL; int df_conflict_head = 0; int df_conflict_remote = 0; int any_anc_missing = 0; int no_anc_exists = 1; int i; for (i = 1; i < o->head_idx; i++) { if (!stages[i]) any_anc_missing = 1; else { if (!path) path = stages[i]->name; no_anc_exists = 0; } } index = stages[0]; head = stages[o->head_idx]; if (head == o->df_conflict_entry) { df_conflict_head = 1; head = NULL; } if (remote == o->df_conflict_entry) { df_conflict_remote = 1; remote = NULL; } if (!path && index) path = index->name; if (!path && head) path = head->name; if (!path && remote) path = remote->name; /* First, if there's a #16 situation, note that to prevent #13 * and #14. */ if (!same(remote, head)) { for (i = 1; i < o->head_idx; i++) { if (same(stages[i], head)) { head_match = i; } if (same(stages[i], remote)) { remote_match = i; } } } /* We start with cases where the index is allowed to match * something other than the head: #14(ALT) and #2ALT, where it * is permitted to match the result instead. */ /* #14, #14ALT, #2ALT */ if (remote && !df_conflict_head && head_match && !remote_match) { if (index && !same(index, remote) && !same(index, head)) reject_merge(index); return merged_entry(remote, index, o); } /* * If we have an entry in the index cache, then we want to * make sure that it matches head. */ if (index && !same(index, head)) { reject_merge(index); } if (head) { /* #5ALT, #15 */ if (same(head, remote)) return merged_entry(head, index, o); /* #13, #3ALT */ if (!df_conflict_remote && remote_match && !head_match) return merged_entry(head, index, o); } /* #1 */ if (!head && !remote && any_anc_missing) return 0; /* Under the new "aggressive" rule, we resolve mostly trivial * cases that we historically had git-merge-one-file resolve. */ if (o->aggressive) { int head_deleted = !head && !df_conflict_head; int remote_deleted = !remote && !df_conflict_remote; /* * Deleted in both. * Deleted in one and unchanged in the other. */ if ((head_deleted && remote_deleted) || (head_deleted && remote && remote_match) || (remote_deleted && head && head_match)) { if (index) return deleted_entry(index, index, o); else if (path && !head_deleted) verify_absent(path, "removed", o); return 0; } /* * Added in both, identically. */ if (no_anc_exists && head && remote && same(head, remote)) return merged_entry(head, index, o); } /* Below are "no merge" cases, which require that the index be * up-to-date to avoid the files getting overwritten with * conflict resolution files. */ if (index) { verify_uptodate(index, o); } o->nontrivial_merge = 1; /* #2, #3, #4, #6, #7, #9, #11. */ count = 0; if (!head_match || !remote_match) { for (i = 1; i < o->head_idx; i++) { if (stages[i]) { keep_entry(stages[i]); count++; break; } } } #if DBRT_DEBUG else { fprintf(stderr, "read-tree: warning #16 detected\n"); show_stage_entry(stderr, "head ", stages[head_match]); show_stage_entry(stderr, "remote ", stages[remote_match]); } #endif if (head) { count += keep_entry(head); } if (remote) { count += keep_entry(remote); } return count; } /* * Two-way merge. * * The rule is to "carry forward" what is in the index without losing * information across a "fast forward", favoring a successful merge * over a merge failure when it makes sense. For details of the * "carry forward" rule, please see <Documentation/git-read-tree.txt>. * */ int twoway_merge(struct cache_entry **src, struct unpack_trees_options *o) { struct cache_entry *current = src[0]; struct cache_entry *oldtree = src[1], *newtree = src[2]; if (o->merge_size != 2) return error("Cannot do a twoway merge of %d trees", o->merge_size); if (current) { if ((!oldtree && !newtree) || /* 4 and 5 */ (!oldtree && newtree && same(current, newtree)) || /* 6 and 7 */ (oldtree && newtree && same(oldtree, newtree)) || /* 14 and 15 */ (oldtree && newtree && !same(oldtree, newtree) && /* 18 and 19*/ same(current, newtree))) { return keep_entry(current); } else if (oldtree && !newtree && same(current, oldtree)) { /* 10 or 11 */ return deleted_entry(oldtree, current, o); } else if (oldtree && newtree && same(current, oldtree) && !same(current, newtree)) { /* 20 or 21 */ return merged_entry(newtree, current, o); } else { /* all other failures */ if (oldtree) reject_merge(oldtree); if (current) reject_merge(current); if (newtree) reject_merge(newtree); return -1; } } else if (newtree) return merged_entry(newtree, current, o); else return deleted_entry(oldtree, current, o); } /* * Bind merge. * * Keep the index entries at stage0, collapse stage1 but make sure * stage0 does not have anything there. */ int bind_merge(struct cache_entry **src, struct unpack_trees_options *o) { struct cache_entry *old = src[0]; struct cache_entry *a = src[1]; if (o->merge_size != 1) return error("Cannot do a bind merge of %d trees\n", o->merge_size); if (a && old) die("Entry '%s' overlaps. Cannot bind.", a->name); if (!a) return keep_entry(old); else return merged_entry(a, NULL, o); } /* * One-way merge. * * The rule is: * - take the stat information from stage0, take the data from stage1 */ int oneway_merge(struct cache_entry **src, struct unpack_trees_options *o) { struct cache_entry *old = src[0]; struct cache_entry *a = src[1]; if (o->merge_size != 1) return error("Cannot do a oneway merge of %d trees", o->merge_size); if (!a) return deleted_entry(old, old, o); if (old && same(old, a)) { if (o->reset) { struct stat st; if (lstat(old->name, &st) || ce_match_stat(old, &st, 1)) old->ce_flags |= htons(CE_UPDATE); } return keep_entry(old); } return merged_entry(a, old, o); }