/*
 * Copyright (c) 2005, Jon Seymour
 *
 * For more information about epoch theory on which this module is based,
 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
 * for some of the algorithms used here.
 *
 */
#include <stdlib.h>
#include <openssl/bn.h>		// provides arbitrary precision integers
				// required to accurately represent fractional 
				//mass

#include "cache.h"
#include "commit.h"
#include "epoch.h"

struct fraction {
	BIGNUM numerator;
	BIGNUM denominator;
};

#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)

static BN_CTX *context = NULL;
static struct fraction *one = NULL;
static struct fraction *zero = NULL;

static BN_CTX *get_BN_CTX()
{
	if (!context) {
		context = BN_CTX_new();
	}
	return context;
}

static struct fraction *new_zero()
{
	struct fraction *result = xmalloc(sizeof(*result));
	BN_init(&result->numerator);
	BN_init(&result->denominator);
	BN_zero(&result->numerator);
	BN_one(&result->denominator);
	return result;
}

static void clear_fraction(struct fraction *fraction)
{
	BN_clear(&fraction->numerator);
	BN_clear(&fraction->denominator);
}

static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor)
{
	BIGNUM bn_divisor;

	BN_init(&bn_divisor);
	BN_set_word(&bn_divisor, divisor);

	BN_copy(&result->numerator, &fraction->numerator);
	BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX());

	BN_clear(&bn_divisor);
	return result;
}

static struct fraction *init_fraction(struct fraction *fraction)
{
	BN_init(&fraction->numerator);
	BN_init(&fraction->denominator);
	BN_zero(&fraction->numerator);
	BN_one(&fraction->denominator);
	return fraction;
}

static struct fraction *get_one()
{
	if (!one) {
		one = new_zero();
		BN_one(&one->numerator);
	}
	return one;
}

static struct fraction *get_zero()
{
	if (!zero) {
		zero = new_zero();
	}
	return zero;
}

static struct fraction *copy(struct fraction *to, struct fraction *from)
{
	BN_copy(&to->numerator, &from->numerator);
	BN_copy(&to->denominator, &from->denominator);
	return to;
}

static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right)
{
	BIGNUM a, b, gcd;

	BN_init(&a);
	BN_init(&b);
	BN_init(&gcd);

	BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
	BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
	BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX());
	BN_add(&result->numerator, &a, &b);

	BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX());
	BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX());
	BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX());

	BN_clear(&a);
	BN_clear(&b);
	BN_clear(&gcd);

	return result;
}

static int compare(struct fraction *left, struct fraction *right)
{
	BIGNUM a, b;

	int result;

	BN_init(&a);
	BN_init(&b);

	BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
	BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());

	result = BN_cmp(&a, &b);

	BN_clear(&a);
	BN_clear(&b);

	return result;
}

struct mass_counter {
	struct fraction seen;
	struct fraction pending;
};

static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending)
{
	struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter));
	memset(mass_counter, 0, sizeof(*mass_counter));

	init_fraction(&mass_counter->seen);
	init_fraction(&mass_counter->pending);

	copy(&mass_counter->pending, pending);
	copy(&mass_counter->seen, get_zero());

	if (commit->object.util) {
		die("multiple attempts to initialize mass counter for %s\n", sha1_to_hex(commit->object.sha1));
	}

	commit->object.util = mass_counter;

	return mass_counter;
}

static void free_mass_counter(struct mass_counter *counter)
{
	clear_fraction(&counter->seen);
	clear_fraction(&counter->pending);
	free(counter);
}

//
// Finds the base commit of a list of commits.
//
// One property of the commit being searched for is that every commit reachable 
// from the base commit is reachable from the commits in the starting list only 
// via paths that include the base commit.
//
// This algorithm uses a conservation of mass approach to find the base commit.
//
// We start by injecting one unit of mass into the graph at each
// of the commits in the starting list. Injecting mass into a commit
// is achieved by adding to its pending mass counter and, if it is not already
// enqueued, enqueuing the commit in a list of pending commits, in latest 
// commit date first order.
//
// The algorithm then preceeds to visit each commit in the pending queue.
// Upon each visit, the pending mass is added to the mass already seen for that 
// commit and then divided into N equal portions, where N is the number of 
// parents of the commit being visited. The divided portions are then injected 
// into each of the parents.
//
// The algorithm continues until we discover a commit which has seen all the
// mass originally injected or until we run out of things to do. 
//
// If we find a commit that has seen all the original mass, we have found
// the common base of all the commits in the starting list. 
//
// The algorithm does _not_ depend on accurate timestamps for correct operation.
// However, reasonably sane (e.g. non-random) timestamps are required in order 
// to prevent an exponential performance characteristic. The occasional 
// timestamp inaccuracy will not dramatically affect performance but may 
// result in more nodes being processed than strictly necessary.
//
// This procedure sets *boundary to the address of the base commit. It returns 
// non-zero if, and only if, there was a problem parsing one of the 
// commits discovered during the traversal.
//
static int find_base_for_list(struct commit_list *list, struct commit **boundary)
{

	int ret = 0;

	struct commit_list *cleaner = NULL;
	struct commit_list *pending = NULL;

	*boundary = NULL;

	struct fraction injected;

	init_fraction(&injected);

	for (; list; list = list->next) {

		struct commit *item = list->item;

		if (item->object.util || (item->object.flags & UNINTERESTING)) {
			die("%s:%d:%s: logic error: this should not have happened - commit %s\n",
			    __FILE__, __LINE__, __FUNCTION__, sha1_to_hex(item->object.sha1));
		}

		new_mass_counter(list->item, get_one());
		add(&injected, &injected, get_one());

		commit_list_insert(list->item, &cleaner);
		commit_list_insert(list->item, &pending);
	}

	while (!*boundary && pending && !ret) {

		struct commit *latest = pop_commit(&pending);

		struct mass_counter *latest_node = (struct mass_counter *) latest->object.util;

		if ((ret = parse_commit(latest)))
			continue;

		add(&latest_node->seen, &latest_node->seen, &latest_node->pending);

		int num_parents = count_parents(latest);

		if (num_parents) {

			struct fraction distribution;
			struct commit_list *parents;

			divide(init_fraction(&distribution), &latest_node->pending, num_parents);

			for (parents = latest->parents; parents; parents = parents->next) {

				struct commit *parent = parents->item;
				struct mass_counter *parent_node = (struct mass_counter *) parent->object.util;

				if (!parent_node) {

					parent_node = new_mass_counter(parent, &distribution);

					insert_by_date(&pending, parent);
					commit_list_insert(parent, &cleaner);

				} else {

					if (!compare(&parent_node->pending, get_zero())) {
						insert_by_date(&pending, parent);
					}
					add(&parent_node->pending, &parent_node->pending, &distribution);

				}
			}

			clear_fraction(&distribution);

		}

		if (!compare(&latest_node->seen, &injected)) {
			*boundary = latest;
		}

		copy(&latest_node->pending, get_zero());

	}

	while (cleaner) {

		struct commit *next = pop_commit(&cleaner);
		free_mass_counter((struct mass_counter *) next->object.util);
		next->object.util = NULL;

	}

	if (pending)
		free_commit_list(pending);

	clear_fraction(&injected);

	return ret;

}


//
// Finds the base of an minimal, non-linear epoch, headed at head, by
// applying the find_base_for_list to a list consisting of the parents
//
static int find_base(struct commit *head, struct commit **boundary)
{
	int ret = 0;
	struct commit_list *pending = NULL;
	struct commit_list *next;

	commit_list_insert(head, &pending);
	for (next = head->parents; next; next = next->next) {
		commit_list_insert(next->item, &pending);
	}
	ret = find_base_for_list(pending, boundary);
	free_commit_list(pending);

	return ret;
}

//
// This procedure traverses to the boundary of the first epoch in the epoch
// sequence of the epoch headed at head_of_epoch. This is either the end of
// the maximal linear epoch or the base of a minimal non-linear epoch.
//
// The queue of pending nodes is sorted in reverse date order and each node
// is currently in the queue at most once.
//
static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary)
{
	int ret;
	struct commit *item = head_of_epoch;

	ret = parse_commit(item);
	if (ret)
		return ret;

	if (HAS_EXACTLY_ONE_PARENT(item)) {

		// we are at the start of a maximimal linear epoch .. traverse to the end

		// traverse to the end of a maximal linear epoch
		while (HAS_EXACTLY_ONE_PARENT(item) && !ret) {
			item = item->parents->item;
			ret = parse_commit(item);
		}
		*boundary = item;

	} else {

		// otherwise, we are at the start of a minimal, non-linear
		// epoch - find the common base of all parents.

		ret = find_base(item, boundary);

	}

	return ret;
}

//
// Returns non-zero if parent is known to be a parent of child.
//
static int is_parent_of(struct commit *parent, struct commit *child)
{
	struct commit_list *parents;
	for (parents = child->parents; parents; parents = parents->next) {
		if (!memcmp(parent->object.sha1, parents->item->object.sha1, sizeof(parents->item->object.sha1)))
			return 1;
	}
	return 0;
}

//
// Pushes an item onto the merge order stack. If the top of the stack is
// marked as being a possible "break", we check to see whether it actually
// is a break.
//
static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item)
{
	struct commit_list *top = *stack;
	if (top && (top->item->object.flags & DISCONTINUITY)) {
		if (is_parent_of(top->item, item)) {
			top->item->object.flags &= ~DISCONTINUITY;
		}
	}
	commit_list_insert(item, stack);
}

//
// Marks all interesting, visited commits reachable from this commit
// as uninteresting. We stop recursing when we reach the epoch boundary,
// an unvisited node or a node that has already been marking uninteresting.
// This doesn't actually mark all ancestors between the start node and the
// epoch boundary uninteresting, but does ensure that they will 
// eventually be marked uninteresting when the main sort_first_epoch 
// traversal eventually reaches them. 
//
static void mark_ancestors_uninteresting(struct commit *commit)
{
	unsigned int flags = commit->object.flags;
	int visited = flags & VISITED;
	int boundary = flags & BOUNDARY;
	int uninteresting = flags & UNINTERESTING;

	if (uninteresting || boundary || !visited) {
		commit->object.flags |= UNINTERESTING;
		return;

		// we only need to recurse if
		//      we are not on the boundary, and,
		//      we have not already been marked uninteresting, and,
		//      we have already been visited.

		//
		// the main sort_first_epoch traverse will 
		// mark unreachable all uninteresting, unvisited parents 
		// as they are visited so there is no need to duplicate
		// that traversal here.
		//
		// similarly, if we are already marked uninteresting
		// then either all ancestors have already been marked
		// uninteresting or will be once the sort_first_epoch
		// traverse reaches them.
		//
	}

	struct commit_list *next;

	for (next = commit->parents; next; next = next->next)
		mark_ancestors_uninteresting(next->item);
}

//
// Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
// into merge order.
//
static void sort_first_epoch(struct commit *head, struct commit_list **stack)
{
	struct commit_list *parents;
	struct commit_list *reversed_parents = NULL;

	head->object.flags |= VISITED;

	//
	// parse_commit builds the parent list in reverse order with respect to the order of
	// the git-commit-tree arguments.
	//
	// so we need to reverse this list to output the oldest (or most "local") commits last.
	//

	for (parents = head->parents; parents; parents = parents->next)
		commit_list_insert(parents->item, &reversed_parents);

	//
	// todo: by sorting the parents in a different order, we can alter the 
	// merge order to show contemporaneous changes in parallel branches
	// occurring after "local" changes. This is useful for a developer
	// when a developer wants to see all changes that were incorporated
	// into the same merge as her own changes occur after her own
	// changes.
	//

	while (reversed_parents) {

		struct commit *parent = pop_commit(&reversed_parents);

		if (head->object.flags & UNINTERESTING) {
			// propagates the uninteresting bit to
			// all parents. if we have already visited
			// this parent, then the uninteresting bit
			// will be propagated to each reachable 
			// commit that is still not marked uninteresting
			// and won't otherwise be reached.
			mark_ancestors_uninteresting(parent);
		}

		if (!(parent->object.flags & VISITED)) {
			if (parent->object.flags & BOUNDARY) {

				if (*stack) {
					die("something else is on the stack - %s\n", sha1_to_hex((*stack)->item->object.sha1));
				}

				push_onto_merge_order_stack(stack, parent);
				parent->object.flags |= VISITED;

			} else {

				sort_first_epoch(parent, stack);

				if (reversed_parents) {
					//
					// this indicates a possible discontinuity
					// it may not be be actual discontinuity if
					// the head of parent N happens to be the tail
					// of parent N+1
					//
					// the next push onto the stack will resolve the 
					// question
					//
					(*stack)->item->object.flags |= DISCONTINUITY;
				}
			}
		}
	}

	push_onto_merge_order_stack(stack, head);
}

//
// Emit the contents of the stack. 
//
// The stack is freed and replaced by NULL.
//
// Sets the return value to STOP if no further output should be generated.
//
static int emit_stack(struct commit_list **stack, emitter_func emitter)
{
	unsigned int seen = 0;
	int action = CONTINUE;

	while (*stack && (action != STOP)) {

		struct commit *next = pop_commit(stack);

		seen |= next->object.flags;

		if (*stack) {
			action = (*emitter) (next);
		}
	}

	if (*stack) {
		free_commit_list(*stack);
		*stack = NULL;
	}

	return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE;
}

//
// Sorts an arbitrary epoch into merge order by sorting each epoch
// of its epoch sequence into order.
//
// Note: this algorithm currently leaves traces of its execution in the
// object flags of nodes it discovers. This should probably be fixed.
//
static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter)
{
	struct commit *next = head_of_epoch;
	int ret = 0;
	int action = CONTINUE;

	ret = parse_commit(head_of_epoch);

	while (next && next->parents && !ret && (action != STOP)) {

		struct commit *base = NULL;

		if ((ret = find_next_epoch_boundary(next, &base)))
			return ret;

		next->object.flags |= BOUNDARY;
		if (base) {
			base->object.flags |= BOUNDARY;
		}

		if (HAS_EXACTLY_ONE_PARENT(next)) {

			while (HAS_EXACTLY_ONE_PARENT(next)
			       && (action != STOP)
			       && !ret) {

				if (next->object.flags & UNINTERESTING) {
					action = STOP;
				} else {
					action = (*emitter) (next);
				}

				if (action != STOP) {
					next = next->parents->item;
					ret = parse_commit(next);
				}
			}

		} else {

			struct commit_list *stack = NULL;
			sort_first_epoch(next, &stack);
			action = emit_stack(&stack, emitter);
			next = base;

		}

	}

	if (next && (action != STOP) && !ret) {
		(*emitter) (next);
	}

	return ret;
}

//
// Sorts the nodes reachable from a starting list in merge order, we 
// first find the base for the starting list and then sort all nodes in this 
// subgraph using the sort_first_epoch algorithm. Once we have reached the base
// we can continue sorting using sort_in_merge_order.
//
int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter)
{
	struct commit_list *stack = NULL;
	struct commit *base;

	int ret = 0;
	int action = CONTINUE;

	struct commit_list *reversed = NULL;

	for (; list; list = list->next) {

		struct commit *next = list->item;

		if (!(next->object.flags & UNINTERESTING)) {
			if (next->object.flags & DUPCHECK) {
				fprintf(stderr, "%s: duplicate commit %s ignored\n", __FUNCTION__, sha1_to_hex(next->object.sha1));
			} else {
				next->object.flags |= DUPCHECK;
				commit_list_insert(list->item, &reversed);
			}
		}
	}

	if (!reversed->next) {

		// if there is only one element in the list, we can sort it using 
		// sort_in_merge_order.

		base = reversed->item;

	} else {

		// otherwise, we search for the base of the list

		if ((ret = find_base_for_list(reversed, &base)))
			return ret;

		if (base) {
			base->object.flags |= BOUNDARY;
		}

		while (reversed) {
			sort_first_epoch(pop_commit(&reversed), &stack);
			if (reversed) {
				//
				// if we have more commits to push, then the
				// first push for the next parent may (or may not)
				// represent a discontinuity with respect to the
				// parent currently on the top of the stack.
				//
				// mark it for checking here, and check it
				// with the next push...see sort_first_epoch for
				// more details.
				//
				stack->item->object.flags |= DISCONTINUITY;
			}
		}

		action = emit_stack(&stack, emitter);
	}

	if (base && (action != STOP)) {
		ret = sort_in_merge_order(base, emitter);
	}

	return ret;
}