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Finding the Code

This code is actively maintained on bitbuckéttps://bitbucket.org/jimplank/gf-complete . There are
previous versions on my UTK site as a technical report; h@wndhat it too hard to maintain, so the main version is
on bitbucket.

Two Related Papers

This software acccompanies a large paper that describss timplementation techniques in detail [PGM13a]. We
will refer to this as“The Paper” You do not have to read The Paper to use the software. Howiéyey want to
start exploring the various implementations, then The Pepehere you’'ll want to go to learn about the techniques
in detail.

This library implements the techniques described in theep&pcreaming Fast Galois Field Arithmetic Using Intel
SIMD Instructions,” [PGM13b]. The Paper describes all af¢b techniques as well.

If You Would Like Help With the Software

Please contact the first author of this manual.

Changes from Revision 1.01

The major change is that we are using autoconf to aid with dlatign, thus obviating the need for the dldg_tester
code. Additionally, we have added a quick timing tool, andhage modifiedyf_methodsso that it may be used to
run the timing tool and the unit tester.



CONTENTS 3

Contents
1 Introduction 5
2 Filesin the Library 6
2.1 Headerfilesinthe directoryritlude” . . . . . . . . . . .. .. 6
2.2 Sourcefilesinthestc’ directory . . . . . . . 7
2.3 Librarytoolsfiles inthetbols’ directory . . . . . . . . . . .. 7
2.4 Theunittesterinthaést' directory . . . . . . . . . 8
2.5 Example programs in theXampleSdirectory . . . . . . . . . . . . ... . 8
3 Compilation 8
4 Some Tools and Examples to Get You Started 8
4.1 Three Simple Command Line Tootgfmult, gf divandgfadd . . . . . .. ... ... ... .... 8
4.2 Quick Starting Example #1: Simple multiplicationandision . . . . . . . ... ... ... ... .. 9
4.3 Quick Starting Example #2: Multiplyingaregionbyacams . . . . . . ... ... ... ...... 10
4.4 Quick Starting Example #3: Using= 64 . . . . . . . . . e 11
4.5 Quick Starting Example #4: Using= 128 . . . . . . . . . . . . e 11
5 Important Information on Alignment when Multiplying Regi ons 12
6 The Defaults 13
6.1 Changingthe Defaults . . . . . . . . . . e e 14
6.1.1 Changing the Components of a Galois Field witate gf_from_argv() . ... ... .. .. 15
6.1.2 Changingthe Polynomial. . . . . . . . . . . . . . . e 16
6.1.3 Changing the Multiplication Technique . . . . . . . . . . ... . ... ... ... .... 17
6.1.4 Changing the Division Technique . . . . . . . . . . . .. . i 19
6.1.5 Changingthe Region Technique . . . . . . . . . . . . .. . aw o 19
6.2 Determining Supported Techniques wgthmethods . . . . . .. . ... ... ... ... ...... 20
6.3 Testing withgf_unit, gf_time, andtime_tool.sh . . . . . . . .. ... ... ... ... ........ 21
6.3.1 time_tool.sh . . . . . . . 22
6.3.2 Anexample off methodsandtime_tool.sh . . . . ... ... ... ... ... ....... 23
6.4 Callinggfinit_hard() . . . . . . . . . e 24
6.5 gfsize(). . . . . . 62
7 Further Information on Options and Algorithms 26
7.1 Inlining Single Multiplication and Division for Speed... . . . . . . . . .. .. ... ... ... .. 26
7.2 Using different techniques for single and region miittggion . . . . . . .. . ... .. ... .... 27
7.3 Generaly . . . .. 28
7.4 ArgumentstoSPLIT” . . . . . . . e e e 28
7.5 ArgumentstoGROUP” . . . . . . . . e 29
7.6 Considerations WithCOMPOSITE” . . . . . . . . . . e e e e e e 30
7.7 “CARRY _FREE" and the Primitive Polynomial . . . . . ... ... ... ... ... ... ... 31
7.8 Moreon Primitive Polynomials . . . . . . . . . . ... e 31
7.8.1 Primitive Polynomials that are not Primitive . . . . . . . ... ... ... ......... 31

7.8.2 Default Polynomials for Composite Fields . . . . . . . . ... .. .. ... .. ... ... 32



CONTENTS 4

7.8.3 The Progrargf_poly for Verifying Irreducibility of Polynomials . . . . . . ... ... ... 33

7.9 “ALTMAP " considerations andxtractword() . . . . . . . . . . . . .. 34

7.9.1 Alternate mappingswitltSPLIT” . . . . . . . . . . .. 34

7.9.2 Alternate mappings WitltCOMPOSITE” . . . . . . . . . ... .. 36

7.9.3 The mapping of CAUCHY " . . . . . . . . . 37
8 Thread Safety 37
9 Listing of Procedures 38
10 Troubleshooting 41
11 Timings 41
11.1 MURtiply() - . . o o e e e 42
11.2 DIivide() . . . . o e 42

11.3 Multiply_Region() . . . . . . . . e e e 43



1 INTRODUCTION 5

1 Introduction

Galois Field arithmetic forms the backbone of erasure-dagterage systems, most famously the Reed-Solomon
erasure code. A Galois Field is defined owebit words and is termed F'(2). As such, the elements of a Galois
Field are the integers 0, 1, ., 2% — 1. Galois Field arithmetic defines addition and multiplioatover these closed
sets of integers in such a way that they work as you would hioge would work. Specifically, every number has a
unigue multiplicative inverse. Moreover, there is a valiypjcally the value 2, which has the property that you can
enumerate all of the non-zero elements of the field by takiag\talue to successively higher powers.

Addition in a Galois Field is equal to the bitwise exclusimesperation. That's nice and convenient. Multiplication
is a little more complex, and there are many, many ways toeémpht it. The Paper describes them all, and the
following references provide more supporting materiahy89, GMS08, LHy08, LD00, LBOX12, Pla97]. The intent
of this library is to implemenall of the techniques. That way, their performance may be coedgpand their tradeoffs
may be analyzed.

When used for erasure codes, there are typically five impbojgerations:

1. Adding two numbers in GF'(2¥). That's bitwise exclusive-or.

2. Multiplying two numbersin GF(2"). Erasure codes are usually based on matricé&Hi2"), and construct-
ing these matrices requires both addition and multiplarati

3. Dividing two numbers in GF(2"). Sometimes you need to divide to construct matrices (fomgte, Cauchy
Reed-Solomon codes [BKKO5, Rab89]). More often, though, you use division to inveatrces for decoding.
Sometimes it is easier to find a number’s inverse than it isviolel. In that case, you can divide by multiplying
by an inverse.

4. Adding two regions of numbers inGF'(2%), which will be explained along with...

5. Mutiplying a region of numbers in GF(2") by a constant inGF(2"). Erasure coding typically boils down
to performing dot products i6'F'(2%). For example, you may define a coding disk using the equation:

co = do + 2d1 + 4ds + 8d3.

That looks like three multiplications and three additiormadver, the way that's implemented in a disk system
looks as in Figure 1. Large regions of disks are partitiomédli-bit words inGF(2%). In the example, let us
suppose thaty = 8, and therefore that words are bytes. Then the regions pittare 1 KB from each disk.
The bytes on diskD; are labeledl; o, d; 1, ..., d; 1023, @and the equation above is replicated 1024 times. For
0<j<1024:

Coyj = do_’j + 2d1_]j + 4d27j + 8d3_j.
While it's possible to implement each of these 1024 equatiodependently, using the single multiplication
and addition operations above, it is often much more efftdeaggregate. For example, most computer archi-
tectures support bitwise exclusive-or of 64 and 128 bit worthus, it makes much more sense to add regions
of numbers in 64 or 128 bit chunks rather than as wordS #(2"). Multiplying a region by a constant can
leverage similar optimizations.

GF-Complete supports multiplication and division of seghlues for all values ab) < 32, plusw = 64 andw =
128. It also supports adding two regions of memory (for any valiie, since addition equals XOR), and multiplying
a region by a constant i F'(24), GF(2%), GF(2'°), GF(2%2), GF(2%%) andGF(2'2®). These values are chosen
because words itr F'(2*) fit into machine words with these valueswof Other values ofv don’t lend themselves
to efficient multiplication of regions by constants (altigtusee thé CAUCHY” option in section 6.1.5 for a way to
multiply regions for other values af).
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sngm g

dpy dg dy ds, Coo = dyp+ 2d,y + 4d, 5 + 8d;,

dy, d, dy, ds, Coy =dy, + 2d,, +4d,, + 8d;,

dp, d, d,, ds, - Cop =y, + 2d,, + 4d,, + 8d;,

dp; d; dy; ds; Co3 =3+ 2d,; + 4d, 5 + 8d;;
do.1022| (11022 | Da1022 | 5,002 Co022 = Ao 1022 + 24, 1025 + 4 1025 + 851022
do.1023 | 11023 | Da1023) 30023 Co1023 = Ao 1023 + 24, 1025 + 4 1025 + 81023

Figure 1: An example of adding two regions of numbers, andtipiying a region of numbers by a constant
in GF(2*). In this examplew = 8, and each disk is holding a 1KB region. The same coding equat-
coj = do; + adij + a’ds; + a®ds ; is applied 1024 times. However, rather than executing thisation 1024
times, it is more efficient to implement this with three ragiconstant multiplications and three region-region addi-
tions.

2 Filesin the Library

This section provides an overview of the files that composeG8mplete. They are partitioned among multiple
directories.

2.1 Header files in the directory “include”

The following header files are part of GF-Complete.

e gf_complete.h This is the header file that applications should includedeffines thegf_t type, which holds
all of the data that you need to perform the various operatiniF'(2%). It also defines all of the arithmetic
operations. For an application to use this library, you sthincludegf_complete.hand then compile with the
library src/libgf_complete.la

e gf_method.h If you are wanting to modify the implementation techniqéresn the defaults, this file provides
a “helper” function so that you can do it from the Unix commadind.

e gf_general.h This file has helper routines for doing basic Galois Fielérations with any legal value af.
The problem is thaty < 32, w = 64 andw = 128 all have different data types, which is a pain. The proceslure
in this file try to alleviate that pain. They are usedgimult, gf_unit andgf_time. I'm guessing that most
applications won't use them, as most applicationswise 32.

e gf_rand.h: I've learned thasrand48() and its kin are not supported in all C installations. Therefshis file
defines some random number generators to help test the pregf&e random number generator is the “Mother
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of All” random number generator [Mar94] which we've selattgecause it has no patent issugg.unit and
gf_time use these random number generators.

e gf.int.h: This is an internal header file that the various source figes his isnotintended for applications to
include.

e configxx andstamp-hlare created by autoconf, and should be ignored by applitatio

2.2 Source files in the “src” directory

The following C files composgf_complete.g and they are in the direcosyc. You shouldn’t have to mess with these
files, but we include them in case you have to:

e gf.c: This implements all of the procedures in bgthcomplete.handgf_int.h.
e gf_w4.c Procedures specific to = 4.

e gf_w8.c Procedures specific to = 8.

e gf_wl6.c Procedures specific to = 16.

e gf_.w32.c Procedures specific to = 32.

e gf_w64.c Procedures specific to = 64.

e gf_w128.c Procedures specific to = 128.

e gf_wgen.c Procedures specific to other valuesiobetween 1 and 31.

e gf_general.c Procedures that let you manipulate general values, rigsaredf whetheww < 32, w = 64
orw = 128. (l.e. the procedures definedgfL.general.h.

e gf_method.c Procedures to help you switch between the various impléatien techniques. (I.e. the proce-
dures defined igf_method.h).

e gf_rand.c: The “Mother of all” random number generator. (l.e. the @aares defined igf_rand.h).

2.3 Library tools files in the “tools” directory

The following are tools to help you with Galois Field arithticeand with the library. They are explained in greater
detail elsewhere in this manual.

e gf-mult.c, gf_div.c andgf_add: Command line tools to do multiplication, division and &lsh by single num-
bers.

e gf_time.c: A program that times the procedures for given values @ihd implementation options.

e time_tool.sh: A shell script that helps perform rough timings of the vaganultiplication, division and region
operations in GF-Complete.

e gf_methods.c A program that enumerates most of the implementation naisteapported by GF-Complete.

e gf_poly.c: A program to identify irreducible polynomials in regularcacomposite Galois Fields.
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2.4 The unit tester in the “test” directory

The test directory contains the proragf_unit.c, which performs a battery of unit tests on GF-Complete. Téis
explained in more detail in section 6.3.

2.5 Example programs in the “examples” directory

There are seven example programs to help you understaralsdacets of GF-Complete. They are in the files
gf_examplex.cin theexamplesdirectory. They are explained in sections 4.2 through 8,section 7.9.

3 Compilation

From revision 1.02 forward, we are using autoconf. The olddftester” directory is now gone, as it is no longer in
use.
To compile and install, you should do the standard operatiloat you do with most open source Unix code:

UNIX> ./configure
UNIX> make
UNIX> sudo make install

If you perform theinstall, then the header, source, tool, and library files will be ndotgesystem locations. In
particular, you may then compile the library by linking witie flag-lgf_complete and you may use the tools from a
global executable directory (likeisr/local/bin).

If you don’t perform the install, then the header and tookfilgll be in their respective directories, and the library
will be in src/libgf_complete.la

If your system supports the various Intel SIMD instructiotie compiler will find them, and GF-Complete will
use them by default.

4 Some Tools and Examples to Get You Started
4.1 Three Simple Command Line Tools: gfmult, gf _div and gf_add

Before delving into the library, it may be helpful to expldBalois Field arithmetic with the command line tools:
gf_mult, gf_div andgf_add. These perform multiplication, division and addition orrakents inGF'(2*). If these are
not installed on your system, then you may find them inttizés directory. Their syntax is:

e gf_mult a b w - Multiplies « andb in GF(2%).
e gf.div a b w - Dividesa by bin GF(2").
e gf.adda bw - Addsa andb in GF(2%).

You may use any value ab from 1 to 32, plus 64 and 128. By default, the values are redganted in decimal;
however, if you append an 'h’ te, thena, b and the result will be printed in hexadecimal. kor= 128, the 'h’ is
mandatory, and all values will be printed in hexadecimal.
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Try them out on some examples like the ones below. You of ecdios’t need to know that, for examplex 4 = 7
in GF(2%); however, once you know that, you know trgat: 4 and% = 5. You should be able to verify thgf_add
statements below in your head. As for the otfemult’s, you can simply verify that division and multiplicatioronk
with each other as you hope they would.

UNIX> gf mult 5 4 4

7

UNIX> gf div 7 5 4

4

UNIX> gof div 7 4 4

5

UNIX> gf mult 8000 2 16h

100b

UNIX> gf _add fOfofofofofofof0 1313131313131313 64h

e3e3e3e3e3e3e3e3

UNIX> gf mult fOfofOfOfOfOfOf0 1313131313131313 64h

8da08da08da08da0

UNIX> gf div 8da08da08da08da0 1313131313131313 64h

fofofofofofofofo

UNIX> gf add fOfofofof0f0f0f01313131313131313 13131313 13131313f0fofofofofofof0 128h
e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3

UNIX> gf _mult fOfof0f0of0f0f0f01313131313131313 1313131 313131313f0f0fofofofofof0 128h
786278627862784982d782d782d7816e

UNIX> of div 786278627862784982d782d782d7816e fOfOfOf0 fOf0f0f01313131313131313 128h
1313131313131313f0f0f0f0fOfOfOf0

UNIX>

Don't bother trying to read the source code of these progranhsStart with some simpler examples like the ones
below.

4.2 Quick Starting Example #1: Simple multiplication and division

The source files for these examples are ingkamplesdirectory.

These two examples are intended for those who just want tdhesgbrary without getting too complex. The
first example iggf_example.1, and it takes one command line argumenb~which must be between 1 and 32. It
generates two random non-zero number&ifi(2*) and multiplies them. After doing that, it divides the protlhg
each number.

To perform multiplication and division i’ F'(2*), you must declare an instance of tjfet type, and then initialize
it for GF(2*) by callinggf_init _easy() This is done irgf_example.1.cwith the following lines:

gf_t df;

if (of_init_easy(&gf, w)) {
fprintf(stderr, "Couldn’t initialize GF structure.\n");
exit(0);

}
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Onceqf is initialized, you may use it for multiplication and divisi with the function pointermultiply.w32 and
divide.w32 These work for any element 6fF'(2%) so long asv < 32.

¢ = gf.multiply.w32(&gf, a, b);
printf("%u * %u = %u\n", a, b, c);

printf("%u / %u = %u\n", c, a, gf.divide.w32(&gf, c, a));
printf("%u / %u = %u\n", c, b, gf.divide.w32(&gf, c, b));
Go ahead and test this program out. You cangfsault andgf_div to verify the results:

UNIX> gf _example_1 4

12« 4 =5
5/12 = 4
5/ 4 =12

UNIX> gf mult 12 4 4
5

UNIX> gf example_1 16

14411 » 60911 = 44568
44568 |/ 14411 = 60911

44568 / 60911 = 14411

UNIX> gf mult 14411 60911 16
44568

UNIX>

gf_init _easy()(and latergf_init _hard()) do callmalloc() to implement internal structures. To release memory, call
gf_free(). Please see section 6.4 to see how togfalhit _hard() in such a way that it doesn’t cathalloc().

4.3 Quick Starting Example #2: Multiplying a region by a congant

The prograngf_example 2 expands orgf_example 1. If w is equal to 4, 8, 16 or 32, it performs a region multiply
operation. It allocates two sixteen byte regiorisandr2, and then multiplesl by a and puts the result ir2 using
themultiply _region.w32function pointer:

gf.multiply_region.w32(&gf, rl, r2, a, 16, 0);

That last argument specifies whether to simply place theymtadtor2 or to XOR it with the contents that are already
in r2. Zero means to place the product there. When we run it, itgthe results of thenultiply _region.w32in
hexadecimal. Again, you can verify it usigg mult:

UNIX> gf example_2 4

12 » 2 =11
11/ 12 = 2
11/ 2 = 12

multiply_region by Oxc (12)

R1 (the source): 02d9d638a
R2 (the product): 0 b 36 3 eal

D o

db35¢c188eb0615a2c4b3936
3d79fcaad4ddO0Oec91bf5d767e
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UNIX> gf example_2 16
49598 =+ 35999 = 19867
19867 / 49598 = 35999
19867 / 35999 = 49598

multiply_region by Oxclbe (49598)

R1 (the source): 8c9f b30e 5bf3 7cbb 16a9 105d 9368 4bbe
R2 (the product): 4d9b 992d 02f2 c95c 228e ec82 324e 35e4
UNIX> gf_mult clbe 8c9f 16h

4d9b

UNIX> gf mult clbe b30e 16h

992d

UNIX>

4.4 Quick Starting Example #3: Usingw = 64

11

The program ingf_example 3.cis identical to the previous program, except it u&s(254). Now a, b andc are
uint64_t's, and you have to use the function pointers that ha@d extensions so that the larger types may be em-

ployed.

UNIX> gf _example_3

a9af3adef0d23242 * 61fd8433b25fe7cd = bfS5acdde4c4leelc
bf5acdde4c4leeOc / a9af3adef0d23242 = 61fd8433b25fe7cd
bf5acdde4c4leeOc / 61fd8433b25fe7cd = a9afl3adef0d23242

multiply_region by a9af3adef0d23242

R1 (the source): 61fd8433b25fe7cd 272d5d4b19cad4b7 3870b
R2 (the product): bf5acdde4c4leeOc ad2d786c6e4d66b7 43a7
UNIX> gf mult a9af3adef0d23242 61fd8433b25fe7cd 64h
bf5acdde4c4leeOc

UNIX>

4.5 Quick Starting Example #4: Usingw = 128

f7e63c3451a 08992149b3e2f8b7
d857503fd261 d3d29c7be46blf7c

Finally, the program imgf_example4.cusesG'F'(2'28). Since there is not universal support font128.t, the library
represents 128-bit numbers as arrays of twa64_t's. The function pointers for multiplication, division amelgion

multiplication now accept the return values as arguments:
gf.multiply.w128(&gf, a, b, c);
Again, we can usgf_mult andgf_div to verify the results:

UNIX> gf _example_4

e252d9c145c0bf29b85b21alae2921fa * p23044e7f45daf4d70695fb7bf249432 =

7883669ef3001d7fabf83784d52eb414
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multiply_region by €252d9c145c0bf29b85b21alae2921fa

R1 (the source): f4f56f08fa92494c5faa57ddcd874149 b4c06 a6ladbbec2f4b0ffc68e43008ch
R2 (the product): b1e34d34b031660676965b868b892043 382f 12719ffe3978385f5d97540a13al
UNIX> gf_mult e252d9c145c0bf29b85b21alae2921fa f4f56f0 8fa92494c5faa57ddcd874149 128h
b1e34d34b031660676965b868b892043

UNIX> gf div 382f12719ffe3978385f5d97540al3al b4c06a61l adbbec2f4h0ffc68e43008ch 128h
€252d9c145c0bf29b85b21alae2921fa

UNIX>

5 Important Information on Alignment when Multiplying Regi ons

In order to make multiplication of regions fast, we often éoyB4 and 128 bit instructions. This has ramifications
for pointer alignment, because we want to avoid bus errob&cause on many machines, loading and manipulating
aligned quantities is much faster than unalinged quastitie

When you perfornmultiply _region.wxx(g f, source, dest, value, size, add), there are three requirements:

1. The pointersource anddest must be aligned fow-bit words. Forw = 4 andw = 8, there is no restriction;
however forw = 16, the pointers must be multiples of 2, for = 32, they must be multiples of 4, and for
w € {64,128}, they must be multiples of 8.

2. Thesize must be a multiple of ¥']. Withw = 4 andw = 8, [§] = 1 and there is no restriction. The other
sizes must be multiples ¢fg | because you have to be multiplying whole elementS'612").

3. Thesource anddest pointers must be aligned identically with respect to eatteiofor the implementation
chosen. This is subtle, and we explain it in detail in the fewxtparagraphs. However, if you'd rather not figure
it out, the following recommendation widllwayswork in GF-Complete:

If you want to be safe, make sure thatsource and dest are both multiples of 16. That is not a
strict requirement, but it will always work!

If you want to relax the above recommendation, please reieiu

When performingnmultiply _region.wxx(), the implementation is typically optimized for a region oftés whose
size must be a multiple of a variabde and which must be aligned to a multiple of another variablEor example,
when doingmultiply _region.w32()in GF(2'°) with SSE enabled, the implementation is optimized for regiof
32 bytes, which must be aligned on a 16-byte quantity. Thus,32 andt = 16. However, we don’t waninulti-
ply _region.w32()to be too restrictive, so instead of requirisgurce anddest to be aligned to 16-byte regions, we
require that §ource mod 16) equaldest mod 16). Or, in general, thatqurce modt) equal (lest modt).

Then,multiply _region.wxx() proceeds in three phases. In the first phasdtiply.w xx() is called on successive
words until source modt) equals zero. The second phase then performs the optimézgair multiplication on
chunks ofs bytes, until the remaining part of the region is less thdmytes. At that point, the third phase calls
multiply.w xx() on the last part of the region.

A detailed example helps to illustrate. Suppose we makedtf@fing call in G F(216) with SSE enabled:

multiply _region.w32(y f, 0x10006, 0x20006, 274, 0)



6 THE DEFAULTS 13

0x10006 0x10010 (which is aligned on ¢ = 16-bytes) 0x10100 0x10108

y

source

10 bytes multiplied 256 bytes multiplied in chunks > 8 bytes multiplied

with 5 calls to of s =32 bytes at a time. with 4 calls to
multiply.w32(). multiply.w32().
dest
0x20006 0x20010 (which is aligned on 16-bytes) 0x20100 0x20108

Figure 2: Example of multiplying a region of 274 bytes(it# (2'%) when (source mod 16) = lest mod 16) = 6. The
alignment parameters ase= 32 andt = 16. The multiplication is in three phases, which corresponthéoinitial
unaligned region (10 bytes), the aligned region-diyte chunks (256 bytes), and the final leftover region (&byt

First, note thatource anddest are aligned on two-byte quantities, which they must bé& ii(21¢). Second, note
thatsize is a multiple of[%} = 2. And last, note thatspurce mod 16) equalsdest mod 16). We illustrate the three
phases of region multiplication in Figure 2. Becausa:i(ce mod 16) = 6, there are 10 bytes of unaligned words that
are multiplied with five calls tanultiply.w32() in the first phase. The second phase multiplies 256 bytelst(efiginks
of s = 32 bytes) using the SSE instructions. That leaves 8 bytes rénggior the third phase.

When we describe the defaults and the various implementafitions, we specify andt as “alignment parame-
ters.”

One of the advanced region options is using an alternate imgppwords to memory (“ALTMAP”). These interact
in a more subtle manner with alignment. Please see Sectdior7details.

6 The Defaults

GF-Complete implements a wide variety of techniques fortiplidation, division and region multiplication. We have
set the defaults with three considerations in mind:

1. Speed: Obviously, we want the implementations to be fast. Therfae choose the fastest implementations
that don't violate the other considerations. The commlagnvironment is considered. For example, if SSE is
enabled, region multiplication it/ (2*) employs a single multiplication table. If SSE is not enablbén a
“double” table is employed that performs table lookup twodsyat a time.

2. Memory Consumption: We try to keep the memory footprint of GF-Complete low. Foample, the fastest
way to performmultiply.w32() in GF(232) is to employ 1.75 MB of multiplication tables (see Sectio# 7.
below). We do not include this as a default, however, becaesgant to keep the default memory consumption
of GF-Complete low.
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3. Compatibility with “standard” implementations: While there is nale factostandard of Galois Field arith-
metic, most libraries implement the same fields. For thaaoeawe have not selected composite fields, alternate
polynomials or memory layouts for the defaults, even thotingdse would be faster. Again, see section 7.7 for
more information.

Table 1 shows the default methods used for each power-ofwvtwd size, their alignment parameterandt, their
memory consumption and their rough performance. The pedaoce tests are on an Intel Core i7-3770 running at
3.40 GHz, and are included solely to give a flavor of perforoeaon a standard microprocessor. Some processors
will be faster with some techniques and others will be slowerwe only put numbers in so that you can ballpark it.
For other values ofv between 1 and 31, we use table lookup wher< 8, discrete logarithms whem < 16 and
“Bytwo,,” for w < 32.

With SSE
w Memory multiply() Performance || multiply _region() | s t | Performance
Usage || Implementation| (Mega Ops/s)| Implementation (MB/s)
4 < 1K Table 501 Table 16 | 16 11,659
8 136K Table 501 Split Table (8,4) | 16 | 16 11,824
16 896K Log 260 Split Table (16,4) | 32 | 16 7,749
32 < 1K Carry-Free 48 Split Table (32,4) | 64 | 16 5,011
64 2K Carry-Free 84 Split Table (64,4) | 128 | 16 2,402
128 64K Carry-Free 48 Split Table (128,8)] 16 | 16 833
Without SSE
w Memory multiply() Performance || multiply _region() | s | t | Performance
Usage || Implementation| (Mega Ops/s)| Implementation (MB/s)
4 4K Table 501 Double Table 1|1 1,982
8 128K Table 501 Table 1|1 1,397
16 896K Log 266 Split Table (16,8)| 2 | 2 2,135
32 4K Bytwo,, 19 Split Table (32,8) | 4 | 4 1,149
64 16K Bytwo,, 9 Split Table (64,8)| 8 | 8 987
128 64K Bytwo, 14 Split Table (128,8) 16 | 8 833

Table 1: The default implementations, memory consumpti@hraugh performance whenis a power of two. The
variabless andt are alignment variables described in Section 5.

A few comments on Table 1 are in order. First, with SSE, théoperance ofmultiply() is faster whenv = 64
than whenw = 32. That is because the primitive polynomial for= 32, that has historically been used in Galois
Field implementations, is sub-ideal for using carry-fregtiplication (PCLMUL). You can change this polynomial
(see section 7.7) so that the performance matehes64.

The region operations far = 4 andw = 8 without SSE have been selected to have a low memory footfiirare
are better options that consume more memory, or that onlit moeitarge memory regions (see section 6.1.5).

6.1 Changing the Defaults
There are times that you may want to stray from the defautisekample:

e You may want better performance.
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e You may want a lower memory footprint.
e You may want to use a different Galois Field or even a ring.
e You only care about multiplying a region by the value two.

Our command line tools allow you to deviate from the defawdtsd we have two C functions -gf_init _hard()
andcreate gf_from_argv() — that can be called from application code to override thaaefmethods. There are six
command-line tools that can be used to explore the many igebsimplemented in GF-Complete:

e gf_methodsis a tool that enumerates most of the possible command-iguaveents that can be sent to the other
tools.

e gf_mult andgf_div are explained above. You may change the multiplication andidn technique in these
tools if you desire.

e gf_unit performs unit tests on a set of techniques to verify coresgn
e gf_time measures the performance of a particular set of techniques.
e time_tool.shmakes some quick calls gff_time so that you may gauge rough performance..

e gf_poly tests the irreducibility of polynomials in a Galois Field.

To change the default behavior in application code, you rieechll gfinit _hard() rather thangf_init _easy()
Alternatively, you can usereategf_from _argv(), included fromgf_-method.h, which uses arargv-style array of
strings to specify the options that you want. The proceduigf imethod.cparses the array and makes the proper
gf_init _hard() procedure call. This is the technique used to parse the cowhiiree ingf_mult, gf_div, gf_unit et al.

6.1.1 Changing the Components of a Galois Field with creatgf_from _argv()
There are five main components to every Galois Field instance

w

Multiplication technique
Division technique
Region technique(s)
Polynomial

The proceduregf_init _hard() andcreate.gf_from _argv() allow you to specify these parameters when you create
your Galois Field instance. We focus first oreate gf_from _argv(), because that is how the tools allow you to specify
the components. The prototype@gate gf_from _argv() is as follows:

int create_gf from_argv(gf_t +gf, int w, int argc, char ** argv, int starting);

You pass it a pointer to gf_t, which it will initialize. You specify the word size with thgarametew, and then you
pass it arargc/argv pair as in any C or C++ program. You also specifstarting argument, which is where iargv
the specifications begin. If it successfully paraggc andargv, then it creates thgf_t usinggf_init _hard() (described
below in section 6.4). It returns one past the last indearg¥ that it considered when creating tggt. If it fails, then
it returns zero, and thgf_t is unmodified.

For examplegf_mult.c callscreate.gf_from _argv() by simply passin@rgc andargv from its main() declaration,
and settingstarting to 4.
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To choose defaultgrgv|[starting] should equal “-". Otherwise, you specify the component ffwat are chang-
ing with “-m” for multiplication technique, “-d” for divisbn technique, “-r” for region technique, and “-p” for the
polynomial. You may change multiple components. You end gpecification with a single dash. For example, the
following call multiplies 6 and 5 inG F'(2%) with polynomial 0x19 using the “SHIFT” technique for muliigation
(we'll explain these parameters later):

UNIX> /gf_ mult 6 5 4 -p O0x19 -m SHIFT -
7
UNIX>

If creategf_from _argv() fails, then you can call the proceduy&error() , which prints out the reason wtgre-
ate_gf_from _argv() failed.

6.1.2 Changing the Polynomial

Galois Fields are typically implemented by representinmbers as polynomials with binary coefficients, and then
using the properties of polynomials to define addition anttiplication. You do not need to understand any of that to
use this library. However, if you want to learn more aboutypoimial representations and how they construct fields,
please refer to The Paper.

Multiplication is based on a special polynomial that we wéfer to here as the “defining polynomial.” This
polynomial has binary coefficients and is of degueeYou may change the polynomial with “-p” and then a number
in hexadecimal (the leading “Ox” is optional). It is assuntieat thew-th bit of the polynomial is set — you may include
it or omit it. For example, if you wish to set the polynomiati6F(2'6) to 16 4 2° + 2% + 22 + 1, rather than its
default ofz'6 + 212 + 23 + 2 + 1, you may say “-p 0x1002d,” “-p 1002d,” “-p 0x2d” or “-p 2d.”

We discuss changing the polynomial for three reasons irr gingtions:

e Leveraging carry-free multiplication (section 7.7).
e Defining composite fields (section 7.6).
e Implementing rings (section 7.8.1).

Some words about nomenclature with respect to the polyromiaGalois Field requires the polynomial to be
irreducible. That means that it cannot be factored. For example, whetotsiicients are binary, the polynomial +
x*+2+1 may be factored ag* +1)(z+1). Therefore it is not irreducible and cannot be used to defl@alais Field.

It may, however, be used to define a ring. Please see sec8dnf@r a discussion of ring support in GF-Complete.

There is a subset of irreducible polynomials calfeinitive. These have an important property that one may enu-
merate all of the elements of the field by raising 2 to suceegsdsers. All of the default polynomials in GF-Complete
are primitive. However, so long as a polynomial is irredigilit defines a Galois Field. Please see section 7.7 for a
further discussion of the polynomial.

One thing that we want to stress here is that changing thenpotial changes the field, so fields with different
polynomials may not be used interchangeably. So long asalya@mial is irreducible, it generates a Galois Field that
is isomorphic to all other Galois Fields; however the mliltgtion and division of elements will differ. For example,
the polynomials 0x13 (the default) and 0x19GH(2*) are both irreducible, so both generate valid Galois Fields.
However, their multiplication differs:

UNIX> gf mult 8 2 4 -p 0x13 -
3
UNIX> gf mult 8 2 4 -p 0x19 -
9
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UNIX> g¢f_div 3 8 4 -p 0x13 -
2

UNIX> gf div 9 8 4 -p 0x19 -
2

UNIX>

6.1.3 Changing the Multiplication Technique

The following list describes the multiplication techingubat may be changed with “-m”. We keep the description
here brief. Please refer to The Paper for detailed desoniptf these techniques.

e “TABLE :” Multiplication and division are implemented with tableBhe tables consume quite a bit of memory
(2" x 2 x [§] bytes), so they are most useful wherns small. Please se&SE’” “LAZY ;" “ DOUBLE” and
“QUAD” under region techniques below for further modification§TABLE " to performmultiply _region().

e “LOG:” This employs discrete (or “Zeph”) logarithm tables to il@ment multiplication and division. The
memory usage is roughly (x 2% x [¢] bytes), so they are most useful whenis small, but they tolerate
largerw than “TABLE .” If the polynomial is not primitive (see section 6.1.2)ethyou cannot uselL'OG” as
an implementation. In that cagg, init _hard() or creategf_from _argv() will fail.

e “LOG _ZERO:" Discrete logarithm tables which include extra room for@entries. This more than doubles
the memory consumption to removeiéistatement (please see [GMS08] or The Paper for more dasaiiplt
doesn’t really make a huge deal of difference in performance

e “LOG_ZERO_EXT:” This expends even more memory to remove anoithstatement. Again, please see The
Paper for an explanation. As withOG _ZERO,” the performance difference is negligible.

e “SHIFT:” Implementation straight from the definition of Galois Eienultiplication, by shifting and XOR-ing,
then reducing the product using the polynomial. Thisli®ooooooowso we don’t recommend you use it.

e “CARRY _FREE:” Thisis identical to ‘SHIFT,” however it leverages the SSE instruction PCLMUL to perior
carry-free multiplications in single instructions. As But is the fastest way to perform multiplication for large
values ofw when that instruction is available. Its performance depandthe polynomial used. See The Paper
for details, and see section 7.7 below for the speedupsat@ivheny = 16 andw = 32 if you use a different
polynomial than the default one.

e “BYTWO _p:” This implements multiplication by successively multiplg the product by two and selectively
XOR-ing the multiplicand. See The Paper for more detailalt teverage Anvin's optimization that multiplies
64 and 128 bits of numbers ®F'(2*) by two with just a few instructions. The SSE version requB&&2.

e “BYTWO _b:" This implements multiplication by successively muliippig the multiplicand by two and selec-
tively XOR-ing it into the product. It can also leverage Amgi optimization, and it has the feature that when
you're multiplying a region by a very small constant (like R)can terminate the multiplication early. As such,
if you are multiplying regions of bytes by two (as in the LIinRAID-6 Reed-Solomon code [Anv09]), this is
the fastest of the techniques, regardless of the value dhe SSE version requires SSE2.

e “SPLIT:” Split multiplication tables (like the LR tables in [GMSD®r the SIMD tables forw > 8 in [LHy08,
Anv09, PGM13b]). This argument must be followed by two maiguanentsyw, andw,, which are the index
sizes of the sub-tables. This implementation reduces #ieecdithe table fromTABLE ,” but requires multiple
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table lookups. For example, the following multiplies 10@&@00 inG'F(28) using two 4K tables, as opposed
to one 64K table when you us@ABLE "

UNIX> ./gf_mult 100 200 8 -m SPLIT 8 4 -
79
UNIX>

See section 7.4 for additional information on the argumemtsSPLIT.” The SSE version typically requires
SSSE3.

e “GROUP:” This implements the “left-to-right comb” technique [LBQZ2]. I'm afraid we don't like that name,
so we call it 'GROUP,” because it performs table lookup on groups of bits fortsfgf(left) and reducing (right).
It takes two additional argumentsgs, which is the number of bits you use while shifting (left) agd which
is the number of bits you use while reducing (right). Inchregshese arguments can you higher computational
speed, but requires more memory. SSE version exists onlyfer 128 and it requires SSE4. For more
description on the argumengs andg,., see section 7.5. For a full description @ROUP” algorithm, please
see The Paper.

e “COMPOSITE:” This allows you to perform operations on a composite Gakeld,G F((2!)*) as described
in [GMS08], [LBOX12] and The Paper. The field sizeis equal tolk. It takes one argument, which is and
then a specification of the base field. Currently, the onlyealf % that is supported is two. However, that may
change in a future revision of the library.

In order to specify the base field, put appropriate flags aftecifyingk. The single dash ends the base field,
and after that, you may continue making specifications ferdbmposite field. This process can be contin-
ued for multiple layers of COMPOSITE.” As an example, the following multiplies 1000000 and 20000
in GF((216)2), where the base field usBY TWO _p for multiplication:

Jgf  _mult 1000000 2000000 32 -m COMPOSITE 2 -m BYTW® - -

In the above example, the red text applies to the base fiettthenblack text applies to the composite field.

Composite fields have two defining polynomials — one for thapasite field, and one for the base field. Thus, if
you want to change polynomials, you should change both. dhampmial for the composite field must be of the
formz?+sz+1, wheres is an element of/ F'(2%). To change it, you specify(in hexadecimal) with “-p.” In the
example below, we multiply 20000 and 3000Q#((2%)?), settings to three, and using® + 2* + 2% + 22 + 1

as the polynomial for the base field:

Jgf  _mult 20000 30000 16 -m COMPOSITE 2 -p O0x1ld - -p Ox3 -

If you use composite fields, you should consider usidggTMAP " as well. The reason is that the region
operations will go much faster. Please see section 7.6.

As with changing the polynomial, when you use a composité fiélF'((2!)*), you are using a different field
than the “standard” field fo& 7 (2'%). All Galois Fields are isomorphic to each other, so they allehthe
desired properties; however, the fields themselves chahga wou use composite fields.

With the exception of COMPOSITE” , only one multiplication technique can be provided for aegivGalois
Field instance. Composite fields may use composite fieldseashase fields, in which case the specification will be
recursive.
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6.1.4 Changing the Division Technique

There are two techniques for division that may be set with.“ddl “-d” is not specified, then appropriate defaults
are employed. For example, when the multiplication techaig “TABLE ,” a table is created for division as well as
multiplication. When tOG" is specified, the logarithm tables are used for divisionthCOMPOSITE,” a special
variant of Euclid’s algorithm is employed that performsigion using multiplication and division in the base field.
Otherwise, Euclid’s algorithm is used. Please see The Rapardescription of Euclid’s algorithm applied to Galois
Fields.

If you use “-d”, you must also specify the multiplication etque with “-m.”

To force Euclid’s algorithm instead of the defaults, you nspgcify it with “-d EUCLID.” If instead, you would
rather convert elements of a Galois Field to a binary matniat ind an element’s inverse by inverting the matrix,
then specify “-d MATRIX.” In all of our tests, MATRIX " is slower than EUCLID .” “ MATRIX " is also not defined
for w > 32.

6.1.5 Changing the Region Technique
The following are the region multiplication options (“-r”

e “SSE” Use SSE instructions. Initialization will fail if the itgictions aren’t supported. Table 2 details the
multiplication techniques which can leverage SSE insionstand which versions of SSE are required.

Multiplication || multiply() | multiply _region() SSE | Comments

Technique Version

“TABLE” - Yes SSSE3| Only for GF(2%).

“SPLIT” - Yes SSSE3| Only when the second argument equals|4.
“SPLIT” - Yes SSE4 | Whenw = 64 and not using ALTMAP .
“BYTWO _p” - Yes SSE2

“BYTWO _b” - Yes SSE2

Table 2: Multiplication techniques which can leverage S&ffructions when they are available.

e “NOSSE" Force non-SSE version.

e “DOUBLE:" Use a table that is indexed on two words rather than ones @pplies only tav = 4, where
the table is indexed on bytes rather than 4-bit quantitied,taw = 8, where the table is indexed on shorts
rather than bytes. In each case, the table lookup performsrtultiplications at a time, which makes region
multiplication faster. It doubles the size of the lookupléab

e “QUAD:" Use a table that is indexed on four words rather than twona. a'his only applies taw = 4, where
the table is indexed on shorts. The “Quad” table may be laziated or created ahead of time (the default). If
the latter, then it consume@$ x 2'6 x 2 = 2 MB of memory.

e “LAZY :” Typically it's clear whether tables are constructed uputialization or lazily when a region operation
is performed. There are two times where it is ambiguo@JAD” whenw = 4 and ‘DOUBLE” whenw = 8.
If you don’t specify anything, these tables are created upiialization, consuming a lot of memory. If you
specify “LAZY ,” then the necessary row of the table is created lazily whanoall“multiply _region().
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e “ALTMAP :” Use an alternate mapping, where words are split acro$srdift subregions of memory. There
are two places where this matters. The first is when implemgASPLIT w 4” using SSE whenv > 8. In
these cases, each byte of the word is stored in a differenbit2&ctor, which allows the implementation to
better leverage 16-byte table lookups. See section 7.4xEmmples, and The Paper or [PGM13b] for detailed
explanations.

The second place where it matters is when us@@MPOSITE .” In this case, it is advantageous to split each
memory region into two chunks, and to store half of each ward different chunk. This allows us to call
region_multiply() recursively on the base field, whichnsuchfaster than the alternative. See Section 7.6 for
examples, and The Paper for an explanation.

It is important to note that withALTMAP ,” the words are not “converted” from a standard mapping to an
alternate mapping and back again. They are assumed to alveaiysthe alternate mapping. This typically
doesn’t matter, so long as you always use the sakhd@MAP " calls. Please see section 7.9 for further details
on “ALTMAP " especially with respect to alignment.

e “CAUCHY :” Break memory intow subregions and perform only XOR’s as in Cauchy Reed-Solocooh
ing [BKK 795] (also described in The Paper). This works &ory value ofw < 32, even those that are not
powers of two. If SSE2 is available, then XOR’s work 128 bitedime. For CAUCHY ” to work correctly,
sizemust be a multiple ofv.

Itis possible to combine region multiplication options.igis fully supported as long ag_methodshas the combi-
nation listed. If multiple region options are required ytisbould be specified independently (as flaggfanit _hard()
and independent options for command-line tools améte gf_from_argv()).

6.2 Determining Supported Techniques with gfimethods
The prograngf_methodsprints a list of supported methods on standard output. klied as follows:
Jgf _methods w -BADC -LUMDRB
The first argument i, which may be any legal value af. The second argument has the following flags:

e “B:" This only prints out “basic” methods that are useful foe thiven value ofv. It omits “SHIFT” and other
methods that are never really going to be useful.

e “A:"In constrast, this specifies to print “all” methods.
e “D:" Thisincludes the EUCLID ” and “MATRIX " methods for division. By default, they are not included.
e “C:" Thisincludes the CAUCHY " methods for region multiplication. By default, it is notdluded.

You may specify multiple of these as the second argumentoufigiclude both B” and “A,” then it uses the last
one specified.

The last argument determines the output formagfofmethods If it is “L,” then it simply lists methods. If it
is “U,” then the output containgf_unit commands for each of the methods. For the others, the ougmiios
of_time_tool.sh commands foM ultiplication, Division, Region multiplications with multiple buffer sizes, and the
Best region multiplication.

gf_methods enumerates combinations of flags, and catisate gf_from _argv() to see if the combinations are
supported. Although it enumerates a large number of contibimg it doesn’'t enumerate all possible parameters for
“SPLIT,” “GROUP” or “COMPOSITE "

Some examples of callingf_methodsare shown below in section 6.3.2.
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6.3 Testing with gfunit, gf _time, and time_tool.sh

gf_unit andgf_time may be used to verify that a combination of arguments worksectly and efficiently on your
platform. If you plan to stray from the defaults, it is probabest to run both tools to ensure there are no issues with
your environmentgf_unit will run a set of unit tests based on the arguments provideédedool, andyf_time will
time Galois Field methods based on the provided arguments.

The usage off_unit is:

of_unit w tests seed method
The usage off_time is:
of time w tests seed buffer-size iterations method

Theseedis an integer — negative one uses the current time. The testpacified by a listing of characters. The
following tests are supported (All are supportedgbytime. Only ’, ‘S’ and ‘R’ are supported bgf_unit):

‘M’ : Single multiplications.

‘D’ : Single divisions.

‘I' : Single inverses.

‘G’ : Region multiplication of a buffer by a random constant.

‘0’ : Region multiplication of a buffer by zero (does nothing dzero()).

‘1’: Region multiplication of a buffer by one (doegeemcpy() and XOR).

‘2": Region multiplication of a buffer by two — sometimes thigaster than general multiplication.
‘S’ All three single tests.

‘R’: All four region tests.

‘A’ All seven tests.

Here are some examples of calligfiunit and gf_time to verify that “m SPLIT 32 4 -r ALTMAP - " works
in GF(23?), and to get a feel for its performance. First, we go totéstdirectory and calgf_unit:

UNIX> cd test

UNIX> ./gf_unit 32 A -1 -m SPLIT 32 4 -r ALTMAP -

Args: 32 A -1 -m SPLIT 32 4 -r ALTMAP - / size (bytes): 684
UNIX>

of_unit reports on the arguments and how may byteggtheconsumes. If it discovers any problems or inconsis-
tencies with multiplication, division or region multiphtion, it will report them. Here, there are no problems.
Next, we move to théoolsdirectory and run performance tests on a 10K buffer, witldQ0 jterations of each test:

UNIX> cd ../tools
UNIX> ./gf_time 32 A -1 10240 10000 -m SPLIT 32 4 -r ALTMAP -
Seed: 1388435794

Multiply: 4.090548 s Mops: 24.414 5.968 Mega-ops/s
Divide: 37.794962 s Mops: 24.414 0.646 Mega-ops/s
Inverse: 33.709875 s Mops: 24.414 0.724 Mega-ops/s
Region-Random: XOR: 0 0.035210 s MB: 97.656 2773.527 MB/s
Region-Random: XOR: 1 0.036081 s MB: 97.656 2706.578 MB/s
Region-By-Zero: XOR: 0 0.003199 s MB: 97.656 30523.884 MB/s

Region-By-Zero: XOR: 1 0.000626 s MB: 97.656 156038.095 MB/ S
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Region-By-One: XOR: 0 0.003810 s MB: 97.656 25628.832 MB/s
Region-By-One: XOR: 1 0.008363 s MB: 97.656 11677.500 MB/s
Region-By-Two: XOR: 0 0.032942 s MB: 97.656 2964.486 MB/s
Region-By-Two: XOR: 1 0.033488 s MB: 97.656 2916.153 MB/s

UNIX>

The first column of output displays the name of the test peréat. Region tests will test with and without the XOR
flag being set (see Section 4.3 for an example). The secondchoadlisplays the total time the test took to complete
measured in seconds (s). The third column displays the $itbhedest measured in millions of operations (Mops) for
single tests and in Megabytes (MB) for the region tests. T iolumn displays the speed of the tests calculated
from the second and third columns, and is where you shouldtimget an idea of a method’s performance.

If the output ofgf_unit andgf_time are to your satisfaction, you can incorporate the methadapplication code
usingcreate gf_from _argv() or gf_init _hard().

The performance of “Region-By-Zero” and “Region-By-Onallwot change from test to test, as all methods make
the same calls for these. “Region-By-Zero” with “XOR: 1” dosothing except set up the tests. Therefore, you may
use it as a control.

6.3.1 timetool.sh

Finally, the shell scriptime_tool.sh makes a bunch of calls @f_time to give a rough estimate of performance. It is
called as follows:
usage sh time_tool.sh M|D|R|B w method

The values for the first argument a#DRB, for M ultiplication, Division, Region multiplications with multiple
buffer sizes, and thBest region multiplication. For the example above, let'd tinle_tool.shto get a rough idea of
performance:

UNIX> sh time_tool.sh M 32 -m SPLIT 32 4 -r ALTMAP -

M speed (MB/s): 6.03  W-Method: 32 -m SPLIT 32 4 -r ALTMAP -

UNIX> sh time_tool.sh D 32 -m SPLIT 32 4 -r ALTMAP -

D speed (MB/s): 0.65 W-Method: 32 -m SPLIT 32 4 -r ALTMAP -

UNIX> sh time_tool.sh R 32 -m SPLIT 32 4 -r ALTMAP -

Region Buffer-Size: 16K (MB/s): 3082.91  W-Method: 32 -m SPL IT 32 4 -r ALTMAP -
Region Buffer-Size: 32K (MB/s): 3529.07 W-Method: 32 -m SPL IT 32 4 -r ALTMAP -
Region Buffer-Size: 64K (MB/s): 3749.94  W-Method: 32 -m SPL IT 32 4 -r ALTMAP -
Region Buffer-Size: 128K (MB/s): 3861.27  W-Method: 32 -m SP LIT 32 4 -r ALTMAP -
Region Buffer-Size: 256K (MB/s): 3754.97  W-Method: 32 -m SP LIT 32 4 -r ALTMAP -
Region Buffer-Size: 512K (MB/s): 3820.82  W-Method: 32 -m SP LIT 32 4 -r ALTMAP -
Region Buffer-Size: 1M (MB/s): 3737.41  W-Method: 32 -m SPLI T 32 4 -r ALTMAP -
Region Buffer-Size: 2M (MB/s): 3002.90 W-Method: 32 -m SPLI T 32 4 -r ALTMAP -
Region Buffer-Size:  4M (MB/s): 2760.77  W-Method: 32 -m SPLI T 32 4 -r ALTMAP -
Region Best (MB/s): 3861.27 W-Method: 32 -m SPLIT 32 4 -r ALTM AP -

UNIX> sh time_tool.sh B 32 -m SPLIT 32 4 -r ALTMAP -

Region Best (MB/s): 3929.09  W-Method: 32 -m SPLIT 32 4 -r ALTM AP -

UNIX>

We say thatime_tool.shis “rough” because it tries to limit each test to 5 ms or lesbug, the time granularity
is fine, which means that the numbers may not be as preciseysdhld be were the time granularity to be course.
When in doubt, you should make your own callgfatime with a lot of iterations, so that startup costs and roundoff
error may be minimized.
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6.3.2 An example of gfmethods and timetool.sh

Let’s give an example of how some of these components fit hegeBuppose we want to explore the basic techniques
in GF(232%). First, let's take a look at whajf methodssuggests as “basic” methods:

UNIX> gf methods 32 -B -L

w=32:
w=32:
w=32:
w=32:
w=32:
w=32:
w=32:
w=32:

UNIX>

-m

GROUP 4 8 -
SPLIT 32 4 -
SPLIT 32 4 -r ALTMAP -
SPLIT 32 8 -
SPLIT 8 8 -
COMPOSITE 2 - -

COMPOSITE 2 - -r ALTMAP -

You'll note, this is on my old Macbook Pro, which doesn’t sopp(PCLMUL), so ‘CARRY _FREE” is not in-
cluded as an option. Now, let’s run the unit tester on theseake sure they work, and to see their memory consump-

tion:

UNIX> gf _methods
.Jtest/gf_unit 32
.Jtest/gf_unit 32
.Jtest/gf_unit 32
.Jtest/gf_unit 32
.Jtest/gf_unit 32
.Jtest/gf_unit 32
.Jtest/gf_unit 32
.Jtest/gf_unit 32
UNIX> gf_methods 32 -B -U | sh

size (bytes): 684

GROUP 4 8 - / size (bytes): 1296

SPLIT 32 4 - |/ size (bytes): 684

SPLIT 32 4 -r ALTMAP - / size (bytes): 684

SPLIT 32 8 - / size (bytes): 4268

SPLIT 8 8 - / size (bytes): 1839276

COMPOSITE 2 - - / size (bytes): 524648
COMPOSITE 2 - -r ALTMAP - / size (bytes): 524648

Args:
Args:
Args:
Args:
Args:
Args:
Args:
Args:

32
32
32
32
32
32
32
32

UNIX>

A -1
-1
-1
-1
-1
-1
-1
-1

>>>>>>>

>>>2>>>>>

-/
-m
-m
-m
-m
-m
-m
-m

32 -B -U

-1
-1
-1
-1
-1
-1
-1
-1

-m

GROUP 4 8 -

SPLIT 32 4 -

SPLIT 32 4 -r ALTMAP -
SPLIT 32 8 -

SPLIT 8 8 -

COMPOSITE 2 - -
COMPOSITE 2 - -r ALTMAP -

As anticipated, SPLIT 8 8" consumes quite a bit of memory! Now, let’'s see how well theyfprm with both
single multiplications and region multiplications:

UNIX> gf methods 32 -B -M
sh time_tool.sh
sh time_tool.sh
sh time_tool.sh
sh time_tool.sh
sh time_tool.sh
sh time_tool.sh

=L L

32
32
32
32
32
32

-m
-m
-m
-m
-m

GROUP 4 8 -

SPLIT 32 4 -

SPLIT 32 4 -r ALTMAP -
SPLIT 32 8 -

SPLIT 8 8 -
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sh time_tool.sh M 32 -m COMPOSITE 2 - -
sh time_tool.sh M 32 -m COMPOSITE 2 - -r ALTMAP -
UNIX> gf methods 32 -B -M | sh

M speed (MB/s): 590 W-Method: 32 -

M speed (MB/s): 14.09  W-Method: 32 -m GROUP 4 8 -

M speed (MB/s): 560 W-Method: 32 -m SPLIT 32 4 -

M speed (MB/s): 5.19 W-Method: 32 -m SPLIT 32 4 -r ALTMAP -

M speed (MB/s): 598 W-Method: 32 -m SPLIT 32 8 -

M speed (MB/s): 22.10 W-Method: 32 -m SPLIT 8 8 -

M speed (MB/s): 34.98 W-Method: 32 -m COMPOSITE 2 - -

M speed (MB/s): 34.16  W-Method: 32 -m COMPOSITE 2 - -r ALTMAP -

UNIX> gf methods 32 -B -B | sh

Region Best (MB/s): 2746.76  W-Method: 32 -

Region Best (MB/s): 177.06  W-Method: 32 -m GROUP 4 8 -

Region Best (MB/s): 2818.75  W-Method: 32 -m SPLIT 32 4 -

Region Best (MB/s): 3818.21  W-Method: 32 -m SPLIT 32 4 -r ALTM AP -
Region Best (MB/s): 728.68  W-Method: 32 -m SPLIT 32 8 -

Region Best (MB/s): 730.97  W-Method: 32 -m SPLIT 8 8 -

Region Best (MB/s): 190.20 W-Method: 32 -m COMPOSITE 2 - -

Region Best (MB/s): 1837.99  W-Method: 32 -m COMPOSITE 2 - r A LTMAP -
UNIX>

The default is quite a bit slower than the best performinghmes$ for both single and region multiplication. So
why are the defaults the way that they are? As detailed atefyahing of this chapter, we strive for lower memory
consumption, so we don'tus&PLIT 8 8,” which consumes 1.75 MB. We don’timplement alternate 8ddgl default,
which is why we don’'t useCOMPOSITE " Finally, we don’timplement alternate mappings of membyydefault,
which is why we don’t use-m SPLIT 32 4 -r ALTMAP - "

Of course, you may change these defaults if you please.

Test question: Given the numbers above, it would appear th@OMPOSITE” yields the fastest performance of
single multiplication, while SPLIT 32 4" yields the fastest performance of region multiplicatidshould | use two
gf_t's in my application — one for single multiplication that s$SECOMPOSITE,” and one for region multiplication
that uses SPLIT 32 4?”

The answer to this is “no.” Why? Because composite fields iiereint from the “standard” fields, and if you mix
these twogf_t's, then you are using different fields for single multiptioa and region multiplication. Please read
section 7.2 for a little more information on this.

6.4 Calling gf.init _hard()

We recommend that you useeate gf_from _argv() instead ofgf_init _hard(). However, there are extra things that
you can do withgf_init _hard(). Here’s the prototype:

int gf_init_hard(gf_t * gf,
int w,
int mult_type,
int region_type,
int divide_type,
uinté4_t prim_poly,
int argl,
int arg2,
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GFP base_df,
void *scratch_memory);

The argumentsnult_type, region_type anddivide_type allow for the same specifications as above, except the
types are integer constants definedjircomplete.h

typedef enum {GF_MULT_DEFAULT,
GF_MULT_SHIFT,
GF_MULT_CARRY_FREE,
GF_MULT_GROUP,
GF_MULT_BYTWO_p,
GF_MULT_BYTWO b,
GF_MULT_TABLE,
GF_MULT_LOG_TABLE,
GF_MULT_LOG_ZERO,
GF_MULT_LOG_ZERO_EXT,
GF_MULT_SPLIT TABLE,
GF_MULT_COMPOSITE } gf _mult_type_t;

#define GF_REGION_DEFAULT (0x0)
#define GF_REGION_DOUBLE_TABLE (0x1)
#define GF_REGION_QUAD_TABLE  (0x2)

#define GF_REGION_LAZY (0x4)
#define GF_REGION_SSE (0x8)
#define GF_REGION_NOSSE (0x10)
#define GF_REGION_ALTMAP (0x20)
#define GF_REGION_CAUCHY (0x40)

typedef enum { GF_DIVIDE_DEFAULT,
GF_DIVIDE_MATRIX,
GF_DIVIDE_EUCLID } ¢f division_type_t;

You can mix the region types with bitwise or. The argumenGEaMULT _GROUP, GF_MULT _SPLIT _-TABLE
andGF_MULT _COMPOSITE are specified irargl andarg2. GF_-MULT _COMPOSITE also takes a base field
in basegf. The base field is itself gf_t, which should have been created previously vatbate gf_from _argv(),
gf_init _easy()or gf_init_hard(). Note that thishasegf has its ownbasegf member and can be a composite field
itself.

You can specify an alternate polynomialgrim _poly. Forw < 32, the leftmost one (the one in bit positiar) is
optional. If you omit it, it will be added for you. Far = 64, there’s no room for that one, so you have to leave it off.
Forw = 128, your polynomial can only use the bottom-most 64 bits. Ruataly, the standard polynomial only uses
those bits. If you sgbrim _poly to zero, the library selects the “standard” polynomial.

Finally, scratch.memoryis there in case you don’t wagt_init _hard() to callmalloc(). You may callgf_scratch_size()
to find out how much extra memory each technique uses, angthiemay pass it a pointer for it to usesoratch-memory.
If you setscratchmemoryto NULL , then the extra memory is allocated for you witlalloc(). If you usegf_init _easy()
or create gf_from _argv(), or you usef_init _hard() and sescratch.memoryto NULL , then you should cadif_free()
to free memory. If you usgf_init _hard() and use your owscratch.memory you can still callgf_free(), and it will
not do anything.

Both gf_init _hard() andgf_scratch_size()return zero if the arguments don’t specify a vaiidt. When that hap-
pens, you can catif_error() to print why the call failed.
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We'll give you one example of callingf_init _hard(). Suppose you want to makegd.init _hard() call to be
equivalent to “-m SPLIT 16 4 -r SSE -r ALTMAP -" and you want tthoggate the scratch space yourself. Then you'd
do the following:

gf_t df;
void *scratch;
int size;

size = ¢f scratch_size(16, GF_MULT_SPLIT_TABLE,
GF_REGION_SSE | GF_REGION_ALTMAP,
GF_DIVIDE_DEFAULT,
16, 4);
if (size == 0) { gof_error(); exit(1); } / * |t failed. That shouldn’t happen */
scratch = (void +) malloc(size);
if (scratch == NULL) { perror("malloc"); exit(1); }
if (Igf_init_hard(&gf, 16, GF_MULT_SPLIT_TABLE,
GF_REGION_SSE | GF_REGION_ALTMAP,
GF_DIVIDE_DEFAULT,
0, 16, 4, NULL, scratch)) {
gf_error();
exit(1);
}

6.5 gfsize()

You can callgf_size(gft *gf) to learn the memory consumption of tgét. It returns all memory consumed by the
of_t, including thegf_t itself, any scratch memory required by thet, and the memory consumed by the sub-field
if the field is “COMPOSITE.” If you provided your own memory tgf_init _hard(), it does not report the size of
this memory, but what the size should be, as determineagf Isgratch_size() gf_unit() prints out the return value of
gf_size()on the given field.

7 Further Information on Options and Algorithms

7.1 Inlining Single Multiplication and Division for Speed

Obviously, procedure calls are more expensive than simgleuctions, and the mechanics of multiplication A*
BLE” and “LOG” are pretty simple. For that reason, we support inlining“®ABLE " whenw = 4 andw = 8, and
for “LOG” whenw = 16. We elaborate below.

Whenw = 4, you may inline multiplication and division as follows. Tfalowing procedures return pointers to
the multiplication and division tables respectively:

uint8_t  »gf_w4_get_mult_table(gf t * gf);
uint8_t  =gf_w4_get_div_table(gf_t * gf);

The macraGF_W4_INLINE _MULTDIV (table, a, b) then multiplies or dividegs by b using the givertable. This
of course only works if the multiplication technique iIBABLE ,” which is the default forw = 4. If the multiplication
technique is notTABLE ,” thengf_w4_get.mult _table() will return NULL .
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Whenw = 8, the proceduregf_w8_get. mult_ _table() andgf_w8_get div_table(), and the macro
GF_WB8_INLINE _MULTDIV (table, a, b) work identically to thew = 4 case.

Whenw = 16, the following procedures return pointers to the logarithbie, and the two inverse logarithm tables
respectively:

uintl6_t  +gf wl6_get log_table(gf_t * gf);
uintl6_t  »gf wl6_get _mult_alog_table(gf _t * gf);
uintl6_t  »gf wl6_get div_alog_table(gf t * gf);

The first inverse logarithm table works for multiplicatiaand the second works for division. They actually point
to the same table, but to different places in the table. Yoy than use the macr@F_W16_INLINE _MULT (log,
alog, a, b) to multiply ¢ andb, and the macr@sF_W16_INLINE _DIV (log, alog, a, b) to divide a andb. Make
sure you use thelog table returned bygf_wl16_getmult_alog-table() for multiplication and the one returned by
of w16 getdiv_alog table() for division. Here are some timings:

UNIX> ¢f time 4 M 0 10240 10240 -

Seed: 0
Multiply: 0.228860 s Mops: 100.000 436.949 Mega-ops/s
UNIX> g¢f inline_time 4 0 10240 10240
Seed: 0
Inline mult: 0.096859 s Mops: 100.000 1032.424 Mega-ops/s
UNIX> ¢f time 8 M 0 10240 10240 -
Seed: 0
Multiply: 0.228931 s Mops: 100.000 436.812 Mega-ops/s
UNIX> g¢f inline_time 8 0 10240 10240
Seed: 0
Inline mult: 0.114300 s Mops: 100.000 874.889 Mega-ops/s
UNIX> ¢f time 16 M 0 10240 10240 -
Seed: 0
Multiply: 0.193626 s Mops: 50.000 258.229 Mega-ops/s
UNIX> df inline_time 16 0 10240 10240
Seed: 0
Inline mult: 0.310229 s Mops: 100.000 322.342 Mega-ops/s
UNIX>

7.2 Using different techniques for single and region multification

You may want to “mix and match” the techniques. For examplppsse you'd like to use “-m SPLIT 8 8” for
multiply() in GF(23?), because it's fast, and you don’t mind consuming all of tipatce for tables. However, for
multiply _region(), you'd like to use “-m SPLIT 32 4 -r ALTMAP,” because that'setliastest way to implement
multiply _region(). Unfortunately, There is no way to creatgfat that does this combination. In this case, you should
simply create twa@f_t's, and use one fomultiply() and the other fomultiply _region(). All of the implementations
may be used interchangably with the following exceptions:

e “COMPOSITE” implements a different Galois Field.

¢ If you change a field’s polynomial, then the resulting Gakiesld will be different.
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e If you are using ALTMAP ” to multiply regions, then the contents of the resultingioeg of memory will
depend on the multiplication technique, the size of theargind its alignment. Please see section 7.9 for a
detailed explanation of this.

e If you are using CAUCHY ” to multiply regions, then like ALTMAP ,” the contents of the result regions of
memory the multiplication technique and the size of theaegkou don’t have to worry about alignment.

7.3 Generalw

The library supports Galois Field arithmetic wigh< w < 32. Values ofw which are not whole number powers of
2 are handled by the functions gi_wgen.c. For these values af, the available multiplication types arSHIFT "
“BYTWO _p,” “BYTWO _b,” “GROUP,” “TABLE ” and “LOG.” “LOG" is only valid for w < 28 and “TABLE”

is only valid forw < 15. The defaults for these values afare “TABLE " for w < 8, “LOG” for w < 16, and
“BYTWO _p” for w < 32.

7.4 Arguments to “SPLIT”
The “SPLIT” technique is based on the distributive property of muitigiion and addition:

ax(b+c)=(axb)+ (axc).

This property allows us to, for example, split an eight bitrdvimto two four-bit components and calculate the product
by performing two table lookups in 16-element tables on edt¢he compoents, and adding the result. There is much
more information on SPLIT” in The Paper. Here we describe the version®PLIT” implemented in GF-Complete.
“SPLIT” takes two arguments, which are the number of bits in eachpoorent ofa, which we callw,, and the
number of bits in each componentigfwhich we callw,. If the two differ, it does not matter which is bigger — the
library recognizes this and performs the correctimplemtgo. The legal values af, andw, fall into five categories:

1. w, is equal tow andwy is equal to four. In this caseé,is broken up intoy} four-bit words which are used
in 16-element lookup tables. The tables are created on di&manultiply _region() and the SSSE3 instruc-
tion mm_shuffle_epi8() is leveraged to perform 16 lookups in parallel. Thus, thesevary fast implementa-
tions. Whenw > 16, you should combine this withALTMAP ” to get the best performance (see The Paper
or [PGM13b] for explanation). If you do this please see secil.9 for information aboutALTMAP " and
alignment.

If you don’t use ‘ALTMAP ,” the implementations fow € {16, 32,64} convert the standard representation into
“ALTMAP " perform the multiplication with ALTMAP " and then convert back to the standard representation.
The performance difference usingL.TMAP ” can be significant:

of time 16 G 0 1048576 100 -m SPLIT 16 4 - Speed = 8,389 MB/s
of time 16 G 0 1048576 100 -m SPLIT 16 4 -r ALTMAP - Speed = 9,212 MBJ/3
of time 32 G 0 1048576 100 -m SPLIT 32 4 - Speed = 5,304 MB/s
of time 32 G 0 1048576 100 -m SPLIT 32 4 -r ALTMAP - Speed = 7,146 MBJ/3
of time 64 G 0 1048576 100 -m SPLIT 64 4 - Speed = 2,595 MBY/s
of time 64 G 0 1048576 100 -m SPLIT 64 4 -r ALTMAP - Speed = 3,436 MBJ/3
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2. w, is equal taw andwy is equal to eight. Now, is broken into bytes, each of these is used in its own 256-@i¢m
lookup table. This is typically the best way to perfommaultiply _region() without SSE.

Because this is a region optimization, when you specifyeghgsions, you get a defauthultiply() — see
Table 1 for a listing of the defaults. See section 7.2 for gisimifferentmultiply() than the defaults.

3. w, is equal tow andwy, is equal to 16. This is only valid fap = 32 andw = 64. Now, b is broken into shorts,
each of these is used in its own 64K-element lookup tables iBhiypically slower than whew;, equals 8, and
requires more amortization (larger buffer sizes) to bectiffe.

4. w, andwy are both equal to eight. Now bothandb are broken into bytes, and the products of the various bytes
are looked up in multipl@56 x 256 tables. InGF(219), there are three of these tables.(it’(232), there are
seven, and i F(2%4) there are fifteen. Thus, this implementation can be a spagethawever, forw = 32,
this is the fastest way to performultiply() on some machines.

When this option is employednultiply _region() is implemented in an identical fashion to when = w
andwy, = 8.

5. w, = 32 andw, = 2. (w = 32 only). | was playing with a different way to usem_shuffle_epi8(). It works,
but it's slower than whem; = 4.

7.5 Arguments to “GROUP”

The “GROUP" multiplication option takes two argumentg, andg,.. Itimplements multiplication in the same manner
as “SHIFT,” except it uses a table of siz¢ to performg, shifts at a time, and a table of si2é- to performg,.
reductions at at time. The progragh.methods only prints the options 4 4 and 4 8 as arguments fBROUP.”
However, other values gf; andg, are legal and sometimes desirable:

e Forw < 32 andw = 64, any values ofj; andg, may be used, so long as they are less than or equabtod so
long as the tables fit into memory. There are four exceptiotisis, listed below.

Forw = 4, “GROUP” is not supported.
e Forw = 8, “GROUP” is not supported.

Forw = 16, “GROUP" is only supported fog, = g, = 4.

Forw = 128 “GROUP” only supportsys = 4 andg, € {4, 8, 16}.

The way thaty, andg, impact performance is as follows. Th8HMIFT” implementation works by performing a
carry-free multiplication inv steps, and then performing reductionirsteps. In GROUP,” the carry-free multipli-
cation is reduced tcﬁ “] steps, and the reduction is reducedgé] Both require tables. The table for the carry-free
multiplication must be created at the beginning of eachtiply() or multiply _region(), while the table for reduction
is created when thgf_t is initialized. For that reason, it makes sensegoto be bigger thamg,.

To give a flavor for the impact of these arguments, Figure 3vshthe performance of varying, and g, for
single multiplication and region multiplication respeety, in GF(232) and G F(2%4). As the graphs demonstrate,
multiply() performs better with smaller values @f, while multiply _region() amortizes the creation of the shifting
table, and can tolerate larger valuesgof Wheng, equalsg,., there are some optimizations that we hand-encode.
These can be seen clearly in timeiltiply _region() graphs.
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Figure 3: The performance ehultiply() and multiply _region() using “GROUP,” and varying the argumentg
andg,. All graphs are heat maps with black equaling zero. The regime is 100KB.

7.6 Considerations with “COMPOSITE”

As mentioned above, usindA\t TMAP ” with “* COMPOSITE" allows multiply _region() to recursively calimulti-
ply_region(), rather than simply callingnultiply() on every word in the region. The difference can be pronounced

gf time 32 G 0 10240 10240 -m COMPOSITE 2 - -
Speed = 322 MB/s
of time 32 G 0 10240 10240 -m COMPOSITE 2 - -r ALTMAP -
Speed = 3,368 MB/s
gf time 32 G 0 10240 10240 -m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAP - -r ALTMAP -
Speed = 3,925 MB/s

There is support for performinguultiply() inline for the “TABLE ” implementations forv € {4, 8} and for the
“LOG” implementation forw = 16 (see section 7.1). These are leveragedriytiply() in “COMPOSITE,” and
by multiply _region() if you are not using ALTMAP .” To demonstrate this, in the table below, you can see that th
performance ofnultiply() with “SPLIT 8 4” is 88 percent as fast than the defaultin= 8 (which is “TABLE ).
When you use each as a base field ©®OMPOSITE” with w = 16, the one with SPLIT 8 4” is now just 37 percent
as fast. The difference is the inlining of multiplicationthre base field whenTABLE ” is employed:

gf .time 8 M 0 1048576 100 - Speed =501 Mega-ops/s
gf time 8 M 0 1048576 100 -m SPLIT 8 4 - Speed = 439 Mega-ops/s
gf .time 8 M 0 1048576 100 -m COMPOSITE 2 - - Speed = 207 Mega-ops/s
gf time 8 M 0 1048576 100 -m COMPOSITE 2 -m SPLIT 8 4 - - | Speed =77 Mega-ops/$s

You can keep making recursive definitions of composites figldu want. For example, this one’s not too slow for
region operations (641 MB/s):
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of time 128 G 0 1048576 100 -m COMPOSITE 2 -m COMPOSITE 2-m COMPOSITE 2
-m SPLIT 16 4 -r ALTMAP - -r ALTMAP - -r ALTMAP - -r ALTMAP -

Please see section 7.8.1 for a discussion of polynomialsrposite fields.

7.7 “CARRY _FREE” and the Primitive Polynomial

If your machine supports the PCLMUL instruction, then weelage that in CARRY _FREE.” This implementation
first performs a carry free multiplication of twa-bit numbers, which yields &w-bit number. It does this with
one PCLMUL instruction. To reduce tiao-bit number back to a-bit number requires some manipulation of the
polynomial. As it turns out, if the polynomial has a lot of ¢igjuous zeroes following its leftmost one, the number of
reduction steps may be minimized. For example, with- 32, we employ the polynomial 0x100400007, because that
is what other libraries employ. This only has 9 contiguouszdollowing the one, which means that the reduction
takes four steps. If we instead use 0x1000000c5, which ha®2dguous zeros, the reduction takes just two steps.
You can see the difference in performance:

gf _time 32 M 0 1048576 100 -m CARRY _FREE - Speed = 48 Mega-ops
gf time 32 M 0 1048576 100 -m CARRY _FREE -p 0xc5 - | Speed =81 Mega-ops

n

%)

This is relevant foro = 16 andw = 32, where the “standard” polynomials are sub-optimal withpees to
“CARRY _FREE.” For w = 16, the polynomial 0x1002d has the desired property. It's legsortant, of course,
with w = 16, becauselLlOG" is so much faster thanCARRY _FREE.”

7.8 More on Primitive Polynomials
7.8.1 Primitive Polynomials that are not Primitive

The library is willing to work with most polynomials, eventtiey are not primitive or irreducible. For example, the
polynomialz* + 2 4+ 2% + = + 1 is irreducible, and therefore generates a valid GaloiglF@l G F'(2*). However, it

is not primitive, becausg® = 1. For that reason, if you use this polynomial, you cannot hseltOG” method. The
other methods will work fine:

UNIX> gf mult 2 2 4 -p Oxf -

4
UNIX> gf mult 4 2 4 -p Oxf -

8

UNIX> gf mult 8 2 4 -p Oxf -

15

UNIX> gf mult 15 2 4 -p Oxf -

1

UNIX> gf div 1 15 4 -p Oxf -

2

UNIX> gf div 1 15 4 -p Oxf -m LOG -

usage: gf div a b w [method] - does division of a and b in GF(2'w )

Bad Method Specification: Cannot use Log tables because the polynomial is not primitive.
UNIX>

If a polynomial is reducible, then it does not define a Gala@d; but instead a ring. GF-Complete attempts to
work here where it can; however certain parts of the libraityrvat work:
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1.

3.
4.

Division is a best effort service. The problemis thatofieotients are not unique.dfvide() returns a non-zero
number, then that number will be a valid quotient, but it mayobe of many. If the multiplication technique is
“TABLE " then if a quotient exists, one is returned. OtherwisepZgreturned. Here are some examples — the
polynomialz* + 1 is reducible, and therefore produces a ring. Below, we saentih this polynomal, 1*6 = 6
and 14*6 = 6. Therefor% has two valid quotients: 1 and 14. GF-Complete returns 1Aaguotient:

UNIX> gf mult 1 6 4 -p Ox1 -
6

UNIX> gf mult 14 6 4 -p Ox1 -
6

UNIX> g¢f_div 6 6 4 -p Ox1 -
14

UNIX>

When ‘EUCLID " is employed for division, it uses the extended Euclidegiogthm for GCD to find a number’s
inverse, and then it multiplies by the inverse. The problsiihat not all numbers in a ring have inverses. For
example, in the above ring, there is no numbsuch thata = 1. Thus, 6 has no inverse. This means that even
thoughg has quotients in this ring EUCLID " will fail on it because it is unable to find the inverse of 6wlil
return O:

UNIX> gf div 6 6 4 -p Ox1 -m TABLE -d EUCLID -
0
UNIX>

Inverses only work if a number has an inverse. Inversesmoaige unique.

“LOG” will not work. In cases where the default would beOG,” “ SHIFT” is used instead.

Due to problems with divisiongf_unit may fail on a reducible polynomial. If you are determined $& such a
polynomial, don't let this error discourage you.

7.8.2 Default Polynomials for Composite Fields

GF-Complete will successfully select a default polynoririghe following composite fields:

w = 8 and the default polynomial (0x13) is employed @F(2*).

w = 16 and the default polynomial (0x11d) is employed oF (28).

w = 32 and the default polynomial (0x1100b) is employedai(216).

w = 32 and 0x1002d is employed f&¥F'(21°).

w = 32 and the base field fa& F'(w'°) is a composite field that uses a default polynomial.
w = 64 and the default polynomial (0x100400007) is employeddat(232).

w = 64 and 0x1000000c5 is employed f6iF'(232).

w = 64 and the base field fa& F'(w?>?) is a composite field that uses a default polynomial.
w = 128 and the default polynomial (Ox1b) is employed @F (2%4).

w = 128 and the base field fa& F'(w’*) is a composite field that uses a default polynomial.
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7.8.3 The Program gfpoly for Verifying Irreducibility of Polynomials

The prograngf_poly uses the Ben-Or algorithm [GP97] to determine whether amotyial with coefficients iz F'(2*)
is reducible. Its syntax is:

gf_poly w method power:coef power:coef ...

You can use it to test for irreducible polynomials with bipapefficients by specifying: = 1. For example, from
the discussion above, we know thdt+ z + 1 andx?* + 2 + 2% + = + 1 are both irreducible, but* + 1 is reducible.
gf_poly confirms:

UNIX> gf poly 1 - 4:1 1:1 0:1

Poly: x4 + x + 1

Irreducible.

UNIX> of poly 1 - 4:1 3:1 2:1 1:1 0:1
Poly: X4 + X3 + X2 + x + 1
Irreducible.

UNIX> gf poly 1 - 4:1 0:1

Poly: x4 + 1

Reducible.

UNIX>

For composite field&' F'((2")?), we are looking for a value such thatz? + sz + 1 is irreducible. That value
depends on the base field. For example, for the default igiq23?), a value ofs = 2 makes the polynomial
irreducible. However, if the polynomial Oxc5 is used (sattR@LMUL is fast — see section 7.7), then= 2 yields a
reducible polynomial, but = 3 yields an irreducible one. You can ugkpoly to help verify these things, and to help
defines if you need to stray from the defaults:

UNIX> gf poly 32 - 2:1 1:2 0:1

Poly: x'2 + (0x2)x + 1

Irreducible.

UNIX> gf poly 32 -p Oxc5 - 2:1 1:2 0:1
Poly: X2 + (0x2)x + 1

Reducible.

UNIX> gf poly 32 -p Oxc5 - 2:1 1:3 0:1
Poly: x'2 + (0x3)x + 1

Irreducible.

UNIX>

of_unit does random sampling to test for problems. In particul@hd@oses a randomand a randonm, multiplies
them, and then tests the result by dividing it dyndb. Whenw is large, this sampling does not come close to
providing complete coverage to check for problems. In paldir, if the polynomial is reducible, there is a good
chance thagf_unit won't discover any problems. For example, the followgfgunit call does not flag any problems,
even though the polynomial is reducible.

UNIX> gf unit 64 A 0 -m COMPOSITE 2 -p Oxc5 - -p 2 -
UNIX>

How can we demonstrate that this particular field has a prnoblé/ell, when the polynomial is 0xc5, we can factor
2? + 2z + 1 as(z + 0x7f6f95f9) (z + 0x7f6f95fb). Thus, in the composite field, when we multiply 0x17f6f95§9 b
0x17f6f95fb, we get zero. That's the problem:
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UNIX> gf mult 7f6f95f9 7f6f95fb 32h -p Oxc5 -

1

UNIX> gof mult 17f6f95f9 17f6f95fb 64h -m COMPOSITE 2 -p 0xc5 -p 2 -
0

UNIX>

7.9 “ALTMAP” considerations and extract _word()
There are two times when you may employ alternate memory mgep
1. When using SPLIT” andw;, = 4.

2. When using COMPOSITE "

Additionally, by default, the CAUCHY ” region option also employs an alternate memory mapping.

When you use alternate memory mappings, the exact mappingmfs in GF(2*) to memory depends on the
situation, the size of the region, and the alignment of thiatpos. To help you figure things out, we have included the
proceduregxtract_word.wxx() as part of theyf_t struct. This procedure takes four parameters:

e A pointer to thegf_t.
e The beginning of the memory region.
e The number of bytes in the memory region.

e The desired word numbet:.

It then returns thenw-th word in memory. When the standard mapping is employad, dimply returns the:-
th contiguous word in memory. With alternate mappings, esctd may be split over several memory regions, so
extract.word() grabs the relevant parts of each memory region to extracwtrd. Below, we go over each of the
above situations in detail. Please refer to Figure 2 in 8ad&ifor reference.

7.9.1 Alternate mappings with “SPLIT”

The alternate mapping wittSPLIT” is employed so that we can best leveraga_shuffle_epi8(). Please read [PGM13b]
for details as to why. Consider an example wher= 16. In the main region of memory (the middle region in Fig-
ure 2), multiplication proceeds in units of 32 bytes, whick @ach broken into two 16-byte regions. The first region
holds the high bytes of each word @ (219), and the second region holds the low bytes.

Let's look at a very detailed example, fragfi.example5.c. This program makes the following call, whegehas
been initialized forv = 16, using ‘SPLIT” and “ALTMAP :”

gf.multiply_region.w32(&gf, a, b, 0x1234, 30 *2, 0);

In other words, it is multiplying a regiom of 60 bytes (30 words) by the constant 0x1234iR'(21¢), and placing
the result intoh. The pointers: andb have been set up so that they are not multiples of 16. Theifiesoff output
printsa andb:

a: 0x10010008c b: 0x10010015c

As described in Section 5, the regions of memory are splittimtee parts:
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1. 4 bytes starting at 0x1001008¢ / 0x10010015c.
2. 32 bytes starting at 0x10010090/ 0x100100160.
3. 24 bytes starting at 0x100100b0 / 0x100100180.

In the first and third parts, the bytes are laid out accordintpé standard mapping. However, the second part is
split into two 16-byte regions — one that holds the high byiesach word and one that holds the low bytes. To help
illustrate, the remainder of the output prints the 30 words andb as they appear in memory, and then the 30 return
values ofextract_word.w32():

0 1 2 3 4 5 6 7 8 9

a: 640b 07e5 2fba ce5d f1f9 3ab8 c518 1d97 45a7 0160
b: 1ba3 644e 84f8 be3c 4318 4905 b2fb 46eb ef01 a503
10 11 12 13 14 15 16 17 18 19
a: 3759 b107 9660 3fde b3ea 8ab53 75ff 46dc c504 72c2
b: da27 el66 a0d2 b3a2 1699 3a3e 47fb 39af 1314 8e76
20 21 22 23 24 25 26 27 28 29

a: b469 1b97 e91d 1dbc 131e 47e0 clla 7f07 76e0 fe86

b: 937c abdb 01b7 7f5f 8974 05el cff3 a09c de3c 4acO

Word 0: 0x640b * 0x1234 = 0xl1ba3 Word 15: 0x4575 * 0x1234 = Oxef47
Word 1: Ox07e5 * 0x1234 = 0x644e Word 16: 0x60dc * 0x1234 = 0xO03af
Word 2: Oxbab59 * 0x1234 = 0xf827 Word 17: 0x0146 * 0x1234 = 0xa539
Word 3: 0x2f37 * 0x1234 = 0x84da Word 18: 0xc504 * 0x1234 = 0x1314
Word 4: 0x5d07 * 0x1234 = 0x3c66 Word 19: 0x72c2 * 0x1234 = 0x8e76
Word 5: Oxcebl * 0x1234 = Oxbeel Word 20: 0xb469 * 0x1234 = 0x937c
Word 6: 0xf960 * 0x1234 = 0x18d2 Word 21: 0x1b97 * 0x1234 = 0Oxabdb
Word 7: 0xf196 * 0x1234 = 0x43a0 Word 22: 0xe91d * 0x1234 = 0x01b7
Word 8: Oxb8de * 0x1234 = 0x05a2 Word 23: 0x1dbc * 0x1234 = Ox7f5f
Word 9: 0x3a3f * 0x1234 = 0x49b3 Word 24: 0x131e * 0x1234 = 0x8974
Word 10: 0x18ea * 0x1234 = 0xfb99 Word 25: 0x47e0 * 0x1234 = 0x05el
Word 11: 0xcbb3 * 0x1234 = 0xb216 Word 26: Oxclla * 0x1234 = 0xcff3
Word 12: 0x9753 * 0x1234 = Oxeb3e Word 27: 0x7f07 * 0x1234 = 0xa09c
Word 13: 0x1d8a * 0x1234 = 0x463a Word 28: 0x76e0 * 0x1234 = Oxde3c
Word 14: Oxa7ff * 0x1234 = 0x01fb Word 29: 0xfe86 * 0x1234 = 0Ox4acO

In the first region are words 0 and 1, which are identical to ttogy appear in memory: 0x640b and 0x07e5. In
the second region are words 2 through 17. These words ateasming the two sixteen-byte regions. For example,
word 2, whichextract word() reports is 0xba59, is constructed from the low byte in wor@bé) and the low byte
in word 10 (0x59). Since 0xba59 * 0x1234 = 0xf827, we see thaldw byte in word 2 ob is 0xf8, and the low byte
in word 10 is 0x27.

When we reach word 22, we are in the third region of memory,aoitls are once again identical to how they
appear in memory.

While this is confusing, we stress that that so long as yolunaaltiply _region() with pointers of the same align-
ment and regions of the same size, your results WitiMAP  will be consistent. If you call it with pointers of
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different alignments, or with different region sizes, ttilba results will not be consistent. To reiterate, if you daise
ALTMAP , you don't have to worry about any of this — words will alwaysslaid out contiguously in memory.
Whenw = 32, the middle region is a multiple of 64, and each word in thedtg@degion is broken into bytes, each
of which is in a different 16-byte region. When = 64, the middle region is a multiple of 128, and each word is
stored in eight 16-byte regions. And finally, when= 128, the middle region is a multiple of 128, and each word is
stored in 16 16-byte regions.

7.9.2 Alternate mappings with “COMPOSITE”

With “COMPOSITE,” the alternate mapping divides the middle region in halieTower half of each word is stored
in the first half of the middle region, and the higher half isretl in the second half. To illustratgf_example.6
performs the same examplegfsexample5, except it is usingCOMPOSITE” in GF((26)?), and it is multiplying
aregion of 120 bytes rather than 60. As before, the pointeraat aligned on 16-bit quantities, so the region is broken
into three regions of 4 bytes, 96 bytes, and 20 bytes. In thedird third region, each consecutive four byte word is a
word in GF(23%). For example, word 0 is 0x562¢c640b, and word 25 is Ox46bc4efie middle region, the low two
bytes of each word come from the first half, and the high twe&ygobme from the second half. For example, word 1
as reported bgxtract word() is composed of the lower two bytes of word 1 of memory (Ox07abdyl the lower two
bytes of word 13 (0x3fde). The product of 0x3fde07e5 and 345578 is 0x211c¢880d, which is stored in the lower
two bytes of words 1 and 13 of

a: 0x100

10011c

0

1

b: 0x1001001ec

2

3

4

a: 562c640b 959407e5 56592fba chbadce5d 1di1cflf9 35d73ab8 6
b: f589f36c f146880d 74f7b349 7ea7c5c6 34827cla 93cc3746 b

10

11

12

13

14

15

a: 965b3759 cb3ebl07 1b129660 95a33fde 95a7b3ea d16c8a53 1
b: fd70f125 3274fa8f d9dd34ee c0la2llc d4402403 8b55c08b d

20

21

22

23

24

25

a: 5509b469 7f8alb97 3472e91d 9ee7ldbc dedell3le 46bc47e0 5

o

Word
Word
Word
Word
Word
Word
Word
Word
Word
Word

Word 10:

Word 11

Word 12:

NN EREO

0x562c640b
0x3fde07e5
0x95a39594
Oxb3ea2fba
0x95a75659
0x8a53cebd
Oxd16ccbad
0x75fff1f9

0x15331di1c
0x46dc3ah8
0xf74635d7
. 0xc504c518
0x35aa6493

*

*
*
*
*
*
*
*
*
*
*
*
*

0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678

0xf589f36¢
0x211c880d
0xc0laf146
0x2403b349
0xd44074f7
0xc08bc5c6
0x8b557ea7
Oxf0ad7cla
0xda453482
0x2e183746
0x909993cc
0x0902288b
0Oxb65ebfd9

: fc92b8f5 edd59668 b4bc0d90 a679edce 1a98f7d0 6038765f b

5 6

7

8

9

493¢518 b37c1d97 8e4545a7 c0d80160
fd9288b 763941d1 bcd33a5d da695e64

16

17

18

19

53375ff f74646dc 35aac504 98f972c2
a45f0ad 90992e18 b65e0902 d91069b5

26

27

28

29

bc9clla 931d7f07 d40676e0 c85cfe86
2ff333f e7937e49 fa5a5867 79c00ea2

Word 15: 0xb46945a7

Word 16:
Word 17:
Word 18:
Word 19:
Word 20:
Word 21:
Word 22:
Word 23:
Word 24:
Word 25:
Word 26:
Word 27:

0x55098e45
0x1b970160
0x7f8ac0d8
0xe91d3759
0x3472965b
0x1dbcb107
0x9ee7ch3e
0x131e9660
Oxdedelbl2
0x46bc47e0
0x5bc9clla
0x931d7f07

E I T I I S I . . N S

0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678
0x12345678

0xb8f53a5d
0xfc92bcd3
0x96685e64
Oxedd5da69
0x0d90f125
Oxb4bcfd70
Oxe4dcefa8f
0xa6793274
0xf7d034ee
0x1a98d9dd
0x6038765f
0xb2ff333f
0xe7937e49
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Oxfa5a5867
0x79c00ea2

Word 13: 0x72c21d97 * 0x12345678
Word 14: 0x98f9b37c  * 0x12345678

0x69b541d1 Word 28: 0xd40676e0 * 0x12345678
0xd9107639 Word 29: 0xc85cfe86 * 0x12345678

As with “SPLIT,” using multiply _region() with “COMPOSITE” and “ALTMAP ” will be consistent only if the
alignment of pointers and region sizes are identical.

7.9.3 The mapping of “CAUCHY”

With “CAUCHY ,” the region is partitioned inta subregions, and each word in the region is broken intbits,
each of which is stored in a different subregion. To illusrgf_example.7 multiplies a region of three bytes by 5
in GF(22) using ‘CAUCHY "

UNIX> gf _example_7
a: 0x100100190 b: 0x1001001a0

a: OxOb 0xe5 Oxba
b: Oxee Oxba O0x0b

a bits: 00001011 11100101 10111010
b bits: 11101110 10111010 00001011

Word
Word
Word
Word
Word
Word
Word
Word
UNIX>

NoOOARONEO
ONOO AN O W
L T A T
oo
W
WkRE WN NP~

The program prints the three bytesofindb in hexadecimal and in binary. To see how words are broken up,
consider word 0, which is the lowest bit of each of the three&pfa (andb). These are the bits 1, 1 and Odpand
0, 0, and 1 irb. Accordingly, the word is 3 i, and 3*5 = 4 inb. Similarly, word 7 is the high bit in each byte: 0, 1, 1
(6)ina,and 1, 1, 0 (3) irb.

With “CAUCHY ,” multiply _region() may be implemented exclusively with XOR operations. PlsaggdBKK"95]
for more information on the motivation behin@AUCHY .

8 Thread Safety

Once you initialize af_t, you may use it wontonly in multiple threads for all operasaxcept for the ones below.
With the implementations listed below, the scratch spadbémf_t is used for temporary tables, and therefore you
cannot callregion_multiply , and in some caseasultiply from multiple threads because they will overwrite each
others’ tables. In these cases, if you want to call the praaesdfrom multiple threads, you should allocate a separate
gf_t for each thread:

e All “GROUP” implementations are not thread safe for eithegion_multiply() or multiply() . Other than
“GROUP,” multiply() is always thread-safe.
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Forw = 4, region_multiply.w32() is unsafe in in “-m TABLE -r QUAD -r LAZY.”
Forw = 8, region_multiply.w32() is unsafe in in “-m TABLE -r DOUBLE -r LAZY."
Forw = 16, region_multiply.w32() is unsafe in in “-m TABLE."

Forw € {32,64,128}, all “SPLIT” implementations are unsafe fezgion_multiply() . This means that if the
default usesSPLIT” (see Table 1 for when that occurs), thegion_multiply() is not thread safe.

The “COMPOSITE" operations are only safe if the implementations of the ulyitgy fields are safe.

9 Listing of Procedures

The following is an alphabetical listing of the procedurdata types and global variables for users to employ in

GF-complete.

GF_W16_INLINE _DIV() in gf_complete.h This is a macro for inline division whem = 16. See section 7.1.

GF_W16_INLINE _MULT() in gf_.complete.h This is a macro for inline multiplication whem = 16. See
section 7.1.

GF_WA4_INLINE _MULTDIV() in gf_.complete.h This is a macro for inline multiplication/division when =
4. See section 7.1.

GF_WB8_INLINE _MULTDIV() in gf_.complete.h This is a macro for inline multiplication/division when =
8. See section 7.1.

MOA _Fill _Random Region()in gf_rand.h: Fills a region with random numbers.

MOA _Random_128()in gf_rand.h: Creates a random 128-bit number.

MOA _Random_32() in gf_rand.h: Creates a random 32-bit number.

MOA _Random 64() in gf_rand.h: Creates a random 64-bit number.

MOA _Random.W() in gf_rand.h: Creates a random-bit number, wherev < 32.

MOA _Seed()in gf_rand.h: Sets the seed for the random number generator.

_gf_errno in gf_complete.h This is to help figure out why an initialization call faileS8ee section 6.1.
of_create gf_from _argv() in gf_method.h: Creates &f_t using C style argc/argv. See section 6.1.1.

of_division_type_t in gf_complete.h the different ways to specify division when usigg init_hard(). See
section 6.4.

gf_error() in gf_complete.h This prints out why an initialization call failed. See dent6.1.

of_extract in gf_complete.h This is the data type aéxtract word() in agf_t. See section 7.9 for an example
of how to useextract word().
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e gf_free() in gf_complete.h If gf.init _easy() gf.init _hard() or create.gf_from_argv() allocated memory, this
frees it. See section 6.4.

e gf_func_a_b in gf_complete.h This is the data type ahultiply() anddivide() in agf_t. See section 4.2 for
examples of how to usaultiply() anddivide().

e gf func_a_b in gf_complete.h This is the data type ahultiply() anddivide() in agft. See section 4.2 for
examples of how to usaultiply() anddivide().

e gf func_ain gf_complete.h This is the data type afiverse()in agf_t.

e gf_generaladd() in gf_general.h This adds twayf_generalt’s.

e gf_generaldivide() in gf_general.ht This divides twogf_generalt’s.

e gf_generaldo_region_check()in gf_general.ht This checks a region multiply aff_generalt’s.
e gf_generaldo_region_multiply() in gf_general.it This does a region multiply aff_generalt’s.
e gf_generaldo_single timing _test()in gf_general.it Used ingf_time.c.

e gf_generalinverse()in gf_general.ht This takes the inverse ofgf_generalt.

e gf_generalis_one()in gf_general.ht This tests whether gf_generalt is one.

e gf_generalis_two() in gf_general.h This tests whether gf_generalt is two.

e gf_generalis_zero()in gf_general.h This tests whether gf_generalt is zero.

e gf_generalmultiply() in gf_general.h This multiplies twogf_generalt’s. See the implementation gf_mult.c
for an example.

e gf_ generalsto_val() in gf_general.ht This converts a string to gf_generalt. See the implementation of
gf_mult.c for an example.

e gf_ generalsetone()in gf_general.t This sets agf_generalt to one.

e gf_generalsetrandom() in gf_general.h This sets ayf_generalt to a random number.
e gf_generalsettwo() in gf_general.h This sets ayf_generalt to two.

e gf_generalsetup_single timing _test()in gf_general.it Used ingf_time.c.

e gf_generalsetzero()in gf_general.h This sets ajf_generalt to zero.

e gf_generalt in gf_general.h Thisis a general data type for all valuesafSee the implementation gf_mult.c
for examples of using these.

e gf_generalval_to_s() in gf_general.it This converts ayf_generalt to a string. See the implementation of
gf_mult.c for an example.

e gf_init _easy()in gf_complete.h This is how you initialize a defaulif_t. See 4.2 through 4.5 for examples of
calling gf_init _easy()
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e gfinit _hard() in gf_complete.h This allows you to initialize af_t without using the defaults. See 6.4. We
recommend callingreate.gf_from _argv() when you can, instead gf_init _hard().

e gf_mult_type_t in gf_.complete.h the different ways to specify multiplication when usigfjinit _hard(). See
section 6.4.

e gf_region_type_t in gf_complete.h the different ways to specify region multiplication whesinggf_init _hard().
See section 6.4.

e gf_regionin gf_complete.h This is the data type afultiply _region() in agf_t. See section 4.3 for an example
of how to usemultiply _region().

e gf_scratch.size()in gf_complete.h This is how you calculate how much memorgfat needs. See section 6.4.
e gf_size()in (gf_.complete.h Returns the memory consumption ofiat. See section 6.5.

e gf_val 128t in gf_.complete.h This is how you store a value whete < 128. It is a pointer to two 64-bit
unsigned integers. See section 4.4.

e gfval_32.t in gf_complete.h This is how you store a value whetie< 32. It is equivalent to a 32-bit unsigned
integer. See section 4.2.

e gfval_64.t in gf_complete.h This is how you store a value whetie< 64. It is equivalent to a 64-bit unsigned
integer. See section 4.5.

e gf_wl6_getdiv_alogtable() in gf_.complete.h This returns a pointer to an inverse logarithm table thatla
used for inlining division whem = 16. See section 7.1.

e gf w16 getlog table()in gf_complete.h This returns a pointer to a logarithm table that can be useidfining
whenw = 16. See section 7.1.

e gf w16 get mult_alog table() in gf_complete.h This returns a pointer to an inverse logarithm table thattma
used for inlining multiplication whem = 16. See section 7.1.

e gf w4 _getdiv_table() in gf_complete.h This returns a pointer to a division table that can be useéhfming
whenw = 4. See section 7.1.

e gf_w4_getmult_table() in gf_complete.h This returns a pointer to a multiplication table that carubed for
inlining whenw = 4. See section 7.1.

e gf_w8_getdiv_table() in gf_complete.h This returns a pointer to a division table that can be useéhfming
whenw = 8. See section 7.1.

e gf_w8_getmult_table() in gf_.complete.h This returns a pointer to a multiplication table that caruked for
inlining whenw = 8. See section 7.1.
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10

11

Troubleshooting

SSE support. Leveraging SSE instructions requires processor suppavetiss compiler support. For exam-
ple, the Mac OS 10.8.4 (and possibly earlier versions) detampile environment fails to properly compile
PCLMUL instructions. This issue can be fixed by installingadtiernative compiler; see Section 3 for details.

Initialization segfaults. You have to already have allocated yagfrt before you pass a pointer to it in
gf_init _easy() create_gf_from _argv(), or gf_init _hard().

GF-Complete is slower than it should be Perhaps your machine has SSE, but you haven't specified the SS
compilation flags. See section 3 for how to compile using ttoper flags.

Bad alignment. If you get alignment errors, see Section 5.

Mutually exclusive region types. Some combinations of region types are invalid. All valid amglemented
combinations are printed lgf_methods.c

Incompatible division types. Some choices of multiplication type constrain choice ofidbvtype. For ex-
ample, ‘COMPOSITE” methods only allow the default division type, which divilby finding inversesi .,

neither ‘EUCLID " nor “MATRIX ” are allowed). For each multiplication method printeddfymethods.¢ the
corresponding valid division types are also printed.

Arbitrary “GROUP” arguments. The legal arguments taGROUP” are specified in section 7.5.
Arbitrary “SPLIT” arguments. The legal arguments t&SPLIT” are specified in section 7.4.
Threading problems. For threading questions, see Section 8.

No default polynomial. If you change the polynomial in a base field usit@IMPOSITE,” then unless it is
a special case for which GF-Complete finds a default polyagmou’ll need to specify the polynomial of the
composite field too. See 7.8.2 for the fields where GF-Coraplit support default polynomials.

Encoding/decoding with different fields. Certain fields are not compatible. Please see section 7.2rfor
explanation.

“ALTMAP” is confusing. We agree. Please see section 7.9 for more explanation.

| used “ALTMAP” and it doesn’t appear to be functioning corre ctly. With 7.9, the size of the region and
its alignment both matter in terms of hoETMAP " performsmultiply _region(). Please see section 7.9 for
detailed explanation.

Where are the erasure codes?This library only implements Galois Field arithmetic, whiis an underlying
component for erasure coding. Jerasure will eventuallydsted to this library, so that you can have fast erasure
coding.

Timings

We don’t want to get too detailed with timing, because it iggmachine specific. However, here are the timings on
an Intel Core i7-3770 CPU running at 3.40 GHz, witlkx£256 KB L2 caches and an 8MB L3 cache. All timings are
obtained withgf_time or gf_inline_time, in user mode with the machine dedicated solely to runniegehobs.
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Figure 4: Speed of doing single multiplications forc {4, 8, 16}.

11.1 Multiply()

The performance ofmultiply() is displayed in Figures 4 fow € {4,8,16} and 5 forw € {32,64,128}. These
numbers were obtained by calligd time with the size and iterations both set to 10240. We plot thedjp@ mega-
ops per second.

As would be anticipated, the inlined operations (see sectid) outperform the others. Additionally, in all
cases with the exception af = 32, the defaults are the fastest performing implementationsth w = 32,
“CARRY _FREE" is the fastest with an alternate polynomial (see sectiat). 7Because we require the defaults to
use a “standard” polynomial, we cannot use this implemantas the default.

11.2 Divide()

For the “TABLE " and “LOG” implementations, the performance of division is the sasmaltiplication. This means
that forw € {4, 8,16}, it is very fast indeed. For the other implementations,gion is implemented with Euclid’s
method, and is several factors slower than multiplication.

In Figure 6, we plot the speed of a few implementations of &ngdr word sizes. Compared to thEABLE " and
“LOG” implemenations for the smaller word sizes, where the speed in the hundreds of mega-ops per second,
these are very slow. Of note is thEOMPOSITE " implementation forw = 32, which is much faster than the others
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Figure 5: Speed of doing single multiplications fore {32, 64, 128}.

because it uses a special application of Euclid’s methodtwitelies on division inG F'(21°), which is very fast.

11.3 Multiply _Region()

Tables 3 through 8 show the performance of the various regpmrations. It should be noted that 617" (216)
throughG F(2128), the default isiotthe fastest implementation ofultiply _region(). The reasons for this are outlined
in section 6.

For these tables, we performed 1GB worthailtiply _region() calls for all regions of size’ bytes for10 < i <

30. In the table, we plot the fastest speed obtained.
We note that the performance dCAUCHY ” can be improved with techniques from [LSXP13] and [PSR12].
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Figure 6: Speed of doing single divisions fore {32, 64, 128}.

Method Speed (MB/s)
-m TABLE (Default) - 11879.909
-m TABLE -r CAUCHY - 9079.712
-m BYTWO_b - 5242.400
-m BYTWO_p - 4078.431
-m BYTWO_b -r NOSSE - 3799.699
-m TABLE -r QUAD - 3014.315
-m TABLE -r DOUBLE - 2253.627
-m BYTWO_p -r NOSSE - 2021.237
-m TABLE -r NOSSE - 1061.497
-m LOG - 503.310
-m SHIFT - 157.749
-m CARRY_FREE - 86.202

Table 3: Speed of various calls taultiply _region() for w = 4.
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Method Speed (MB/s)
-m SPLIT 16 4 -r ALTMAP - 10460.834
-m SPLIT 16 4 -r SSE (Default) - 8473.793
-m COMPOSITE 2 - -r ALTMAP - 5215.073
-m LOG -r CAUCHY - 2428.824
-m TABLE - 2319.129
-m SPLIT 16 8 - 2164.111
-m SPLIT88 - 2163.993
-m SPLIT 16 4 -r NOSSE - 1148.810
-m LOG - 1019.896
-m LOG_ZERO - 1016.814
-m BYTWOL_b - 738.879
-m COMPOSITE 2 - - 596.819
-m BYTWO_p - 560.972
-m GROUP 4 4 - 450.815
-m BYTWO_b -r NOSSE - 332.967
-m BYTWO_p -r NOSSE - 249.849
-m CARRY_FREE - 111.582
-m SHIFT - 95.813

Table 5: Speed of various callstaultiply _region() for w = 16.
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Method

Speed (MB/s)

-m SPLIT 32 4 -r SSE -r ALTMAP -
-m SPLIT 32 4 (Default)

-m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAP - -r ALTMAP -
-m COMPOSITE 2 - -r ALTMAP -
-m SPLIT 8 8 -

-m SPLIT 32 8 -

-m SPLIT 32 16 -

-m SPLIT 8 8 -r CAUCHY -

-m SPLIT 32 4 -r NOSSE -

-m CARRY_FREE -p 0xc5 -

-m COMPOSITE 2 - -

-m BYTWO_b -

-m BYTWO_p -

-m GROUP 4 8 -

-m GROUP 4 4 -

-m CARRY_FREE -

-m BYTWO_b -r NOSSE -

-m BYTWO_p -r NOSSE -

-m SHIFT -

7185.440
5063.966
4176.440
3360.860
1345.678
1340.656
1262.676
1143.263
480.859
393.185
332.964
309.971
258.623
242.076
227.399
226.785
143.403
111.956
52.295

Table 6: Speed of various callstaultiply _region() for w = 32.

Method

Speed (MB/s)

-m SPLIT 64 4 -r ALTMAP -

-m SPLIT 64 4 -r SSE (Default) -
-m COMPOSITE 2 -m SPLIT 32 4 -r ALTMAP - -r ALTMAP -
-m COMPOSITE 2 - -r ALTMAP -
-m SPLIT 64 16 -

-m SPLIT 64 8 -

-m CARRY_FREE -

-m SPLIT 64 4 -r NOSSE -

-m GROUP 4 4 -

-m GROUP 4 8 -

-m BYTWO_b -

-mBYTWO_p -

-m SPLIT 88 -

-m BYTWO_p -r NOSSE -

-m COMPOSITE 2 - -

-m BYTWO_b -r NOSSE -

-m SHIFT -

3522.798
2647.862
2461.572
1860.921
1066.490
998.461
975.290
545.479
230.137
153.947
144.052
124.538
98.892
77.912
77.522
36.391
25.282

Table 7: Speed of various callsaultiply _region() for w = 64.
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Method Speed (MB/s)
-m SPLIT 128 4 -r ALTMAP - 1727.683
-m COMPOSITE 2 -m SPLIT 64 4 -r ALTMAP - -r ALTMAP - 1385.693
-m COMPOSITE 2 - -r ALTMAP - 1041.456
-m SPLIT 128 8 (Default) 872.619
-m CARRY_FREE - 814.030
-m SPLIT 128 4 - 500.133
-m COMPOSITE 2 - - 289.207
-m GROUP 4 8 - 133.583
-m GROUP 4 4 - 116.187
-m BYTWO_p - 25.162
-m BYTWOL_b - 25.157
-m SHIFT - 14.183

Table 8: Speed of various calls aultiply _region() for w = 128.
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