1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* From e_hypotl.c -- long double version of e_hypot.c.
* Conversion to long double by Jakub Jelinek, jakub@redhat.com.
* Conversion to __float128 by FX Coudert, fxcoudert@gcc.gnu.org.
*/
/* hypotq(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrtl(2)/2 ulp, than
* sqrtl(z) has error less than 1 ulp (exercise).
*
* So, compute sqrtl(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 64 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1,
* y1= y with lower 64 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypotq(x,y) is INF if x or y is +INF or -INF; else
* hypotq(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypotq(x,y) returns sqrtl(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include "quadmath-imp.h"
__float128
hypotq (__float128 x, __float128 y)
{
__float128 a, b, t1, t2, y1, y2, w;
int64_t j, k, ha, hb;
GET_FLT128_MSW64(ha,x);
ha &= 0x7fffffffffffffffLL;
GET_FLT128_MSW64(hb,y);
hb &= 0x7fffffffffffffffLL;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_FLT128_MSW64(a,ha); /* a <- |a| */
SET_FLT128_MSW64(b,hb); /* b <- |b| */
if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */
k=0;
if(ha > 0x5f3f000000000000LL) { /* a>2**8000 */
if(ha >= 0x7fff000000000000LL) { /* Inf or NaN */
uint64_t low;
w = a+b; /* for sNaN */
GET_FLT128_LSW64(low,a);
if(((ha&0xffffffffffffLL)|low)==0) w = a;
GET_FLT128_LSW64(low,b);
if(((hb^0x7fff000000000000LL)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-9600 */
ha -= 0x2580000000000000LL;
hb -= 0x2580000000000000LL; k += 9600;
SET_FLT128_MSW64(a,ha);
SET_FLT128_MSW64(b,hb);
}
if(hb < 0x20bf000000000000LL) { /* b < 2**-8000 */
if(hb <= 0x0000ffffffffffffLL) { /* subnormal b or 0 */
uint64_t low;
GET_FLT128_LSW64(low,b);
if((hb|low)==0) return a;
t1=0;
SET_FLT128_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */
b *= t1;
a *= t1;
k -= 16382;
} else { /* scale a and b by 2^9600 */
ha += 0x2580000000000000LL; /* a *= 2^9600 */
hb += 0x2580000000000000LL; /* b *= 2^9600 */
k -= 9600;
SET_FLT128_MSW64(a,ha);
SET_FLT128_MSW64(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
t1 = 0;
SET_FLT128_MSW64(t1,ha);
t2 = a-t1;
w = sqrtq(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
y1 = 0;
SET_FLT128_MSW64(y1,hb);
y2 = b - y1;
t1 = 0;
SET_FLT128_MSW64(t1,ha+0x0001000000000000LL);
t2 = a - t1;
w = sqrtq(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
uint64_t high;
t1 = 1.0L;
GET_FLT128_MSW64(high,t1);
SET_FLT128_MSW64(t1,high+(k<<48));
return t1*w;
} else return w;
}
|