//===-- ubsan_diag.cc -----------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Diagnostic reporting for the UBSan runtime. // //===----------------------------------------------------------------------===// #include "ubsan_diag.h" #include "ubsan_init.h" #include "ubsan_flags.h" #include "sanitizer_common/sanitizer_report_decorator.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include using namespace __ubsan; static void MaybePrintStackTrace(uptr pc, uptr bp) { // We assume that flags are already parsed: InitIfNecessary // will definitely be called when we print the first diagnostics message. if (!flags()->print_stacktrace) return; // We can only use slow unwind, as we don't have any information about stack // top/bottom. // FIXME: It's better to respect "fast_unwind_on_fatal" runtime flag and // fetch stack top/bottom information if we have it (e.g. if we're running // under ASan). if (StackTrace::WillUseFastUnwind(false)) return; StackTrace stack; stack.Unwind(kStackTraceMax, pc, bp, 0, 0, 0, false); stack.Print(); } static void MaybeReportErrorSummary(Location Loc) { if (!common_flags()->print_summary) return; // Don't try to unwind the stack trace in UBSan summaries: just use the // provided location. if (Loc.isSourceLocation()) { SourceLocation SLoc = Loc.getSourceLocation(); if (!SLoc.isInvalid()) { ReportErrorSummary("runtime-error", SLoc.getFilename(), SLoc.getLine(), ""); return; } } ReportErrorSummary("runtime-error"); } namespace { class Decorator : public SanitizerCommonDecorator { public: Decorator() : SanitizerCommonDecorator() {} const char *Highlight() const { return Green(); } const char *EndHighlight() const { return Default(); } const char *Note() const { return Black(); } const char *EndNote() const { return Default(); } }; } Location __ubsan::getCallerLocation(uptr CallerLoc) { if (!CallerLoc) return Location(); uptr Loc = StackTrace::GetPreviousInstructionPc(CallerLoc); return getFunctionLocation(Loc, 0); } Location __ubsan::getFunctionLocation(uptr Loc, const char **FName) { if (!Loc) return Location(); InitIfNecessary(); AddressInfo Info; if (!Symbolizer::GetOrInit()->SymbolizePC(Loc, &Info, 1) || !Info.module || !*Info.module) return Location(Loc); if (FName && Info.function) *FName = Info.function; if (!Info.file) return ModuleLocation(Info.module, Info.module_offset); return SourceLocation(Info.file, Info.line, Info.column); } Diag &Diag::operator<<(const TypeDescriptor &V) { return AddArg(V.getTypeName()); } Diag &Diag::operator<<(const Value &V) { if (V.getType().isSignedIntegerTy()) AddArg(V.getSIntValue()); else if (V.getType().isUnsignedIntegerTy()) AddArg(V.getUIntValue()); else if (V.getType().isFloatTy()) AddArg(V.getFloatValue()); else AddArg(""); return *this; } /// Hexadecimal printing for numbers too large for Printf to handle directly. static void PrintHex(UIntMax Val) { #if HAVE_INT128_T Printf("0x%08x%08x%08x%08x", (unsigned int)(Val >> 96), (unsigned int)(Val >> 64), (unsigned int)(Val >> 32), (unsigned int)(Val)); #else UNREACHABLE("long long smaller than 64 bits?"); #endif } static void renderLocation(Location Loc) { InternalScopedString LocBuffer(1024); switch (Loc.getKind()) { case Location::LK_Source: { SourceLocation SLoc = Loc.getSourceLocation(); if (SLoc.isInvalid()) LocBuffer.append(""); else PrintSourceLocation(&LocBuffer, SLoc.getFilename(), SLoc.getLine(), SLoc.getColumn()); break; } case Location::LK_Module: PrintModuleAndOffset(&LocBuffer, Loc.getModuleLocation().getModuleName(), Loc.getModuleLocation().getOffset()); break; case Location::LK_Memory: LocBuffer.append("%p", Loc.getMemoryLocation()); break; case Location::LK_Null: LocBuffer.append(""); break; } Printf("%s:", LocBuffer.data()); } static void renderText(const char *Message, const Diag::Arg *Args) { for (const char *Msg = Message; *Msg; ++Msg) { if (*Msg != '%') { char Buffer[64]; unsigned I; for (I = 0; Msg[I] && Msg[I] != '%' && I != 63; ++I) Buffer[I] = Msg[I]; Buffer[I] = '\0'; Printf(Buffer); Msg += I - 1; } else { const Diag::Arg &A = Args[*++Msg - '0']; switch (A.Kind) { case Diag::AK_String: Printf("%s", A.String); break; case Diag::AK_Mangled: { Printf("'%s'", Symbolizer::GetOrInit()->Demangle(A.String)); break; } case Diag::AK_SInt: // 'long long' is guaranteed to be at least 64 bits wide. if (A.SInt >= INT64_MIN && A.SInt <= INT64_MAX) Printf("%lld", (long long)A.SInt); else PrintHex(A.SInt); break; case Diag::AK_UInt: if (A.UInt <= UINT64_MAX) Printf("%llu", (unsigned long long)A.UInt); else PrintHex(A.UInt); break; case Diag::AK_Float: { // FIXME: Support floating-point formatting in sanitizer_common's // printf, and stop using snprintf here. char Buffer[32]; snprintf(Buffer, sizeof(Buffer), "%Lg", (long double)A.Float); Printf("%s", Buffer); break; } case Diag::AK_Pointer: Printf("%p", A.Pointer); break; } } } } /// Find the earliest-starting range in Ranges which ends after Loc. static Range *upperBound(MemoryLocation Loc, Range *Ranges, unsigned NumRanges) { Range *Best = 0; for (unsigned I = 0; I != NumRanges; ++I) if (Ranges[I].getEnd().getMemoryLocation() > Loc && (!Best || Best->getStart().getMemoryLocation() > Ranges[I].getStart().getMemoryLocation())) Best = &Ranges[I]; return Best; } static inline uptr subtractNoOverflow(uptr LHS, uptr RHS) { return (LHS < RHS) ? 0 : LHS - RHS; } static inline uptr addNoOverflow(uptr LHS, uptr RHS) { const uptr Limit = (uptr)-1; return (LHS > Limit - RHS) ? Limit : LHS + RHS; } /// Render a snippet of the address space near a location. static void renderMemorySnippet(const Decorator &Decor, MemoryLocation Loc, Range *Ranges, unsigned NumRanges, const Diag::Arg *Args) { // Show at least the 8 bytes surrounding Loc. const unsigned MinBytesNearLoc = 4; MemoryLocation Min = subtractNoOverflow(Loc, MinBytesNearLoc); MemoryLocation Max = addNoOverflow(Loc, MinBytesNearLoc); MemoryLocation OrigMin = Min; for (unsigned I = 0; I < NumRanges; ++I) { Min = __sanitizer::Min(Ranges[I].getStart().getMemoryLocation(), Min); Max = __sanitizer::Max(Ranges[I].getEnd().getMemoryLocation(), Max); } // If we have too many interesting bytes, prefer to show bytes after Loc. const unsigned BytesToShow = 32; if (Max - Min > BytesToShow) Min = __sanitizer::Min(Max - BytesToShow, OrigMin); Max = addNoOverflow(Min, BytesToShow); if (!IsAccessibleMemoryRange(Min, Max - Min)) { Printf("\n"); return; } // Emit data. for (uptr P = Min; P != Max; ++P) { unsigned char C = *reinterpret_cast(P); Printf("%s%02x", (P % 8 == 0) ? " " : " ", C); } Printf("\n"); // Emit highlights. Printf(Decor.Highlight()); Range *InRange = upperBound(Min, Ranges, NumRanges); for (uptr P = Min; P != Max; ++P) { char Pad = ' ', Byte = ' '; if (InRange && InRange->getEnd().getMemoryLocation() == P) InRange = upperBound(P, Ranges, NumRanges); if (!InRange && P > Loc) break; if (InRange && InRange->getStart().getMemoryLocation() < P) Pad = '~'; if (InRange && InRange->getStart().getMemoryLocation() <= P) Byte = '~'; char Buffer[] = { Pad, Pad, P == Loc ? '^' : Byte, Byte, 0 }; Printf((P % 8 == 0) ? Buffer : &Buffer[1]); } Printf("%s\n", Decor.EndHighlight()); // Go over the line again, and print names for the ranges. InRange = 0; unsigned Spaces = 0; for (uptr P = Min; P != Max; ++P) { if (!InRange || InRange->getEnd().getMemoryLocation() == P) InRange = upperBound(P, Ranges, NumRanges); if (!InRange) break; Spaces += (P % 8) == 0 ? 2 : 1; if (InRange && InRange->getStart().getMemoryLocation() == P) { while (Spaces--) Printf(" "); renderText(InRange->getText(), Args); Printf("\n"); // FIXME: We only support naming one range for now! break; } Spaces += 2; } // FIXME: Print names for anything we can identify within the line: // // * If we can identify the memory itself as belonging to a particular // global, stack variable, or dynamic allocation, then do so. // // * If we have a pointer-size, pointer-aligned range highlighted, // determine whether the value of that range is a pointer to an // entity which we can name, and if so, print that name. // // This needs an external symbolizer, or (preferably) ASan instrumentation. } Diag::~Diag() { // All diagnostics should be printed under report mutex. CommonSanitizerReportMutex.CheckLocked(); Decorator Decor; Printf(Decor.Bold()); renderLocation(Loc); switch (Level) { case DL_Error: Printf("%s runtime error: %s%s", Decor.Warning(), Decor.EndWarning(), Decor.Bold()); break; case DL_Note: Printf("%s note: %s", Decor.Note(), Decor.EndNote()); break; } renderText(Message, Args); Printf("%s\n", Decor.Default()); if (Loc.isMemoryLocation()) renderMemorySnippet(Decor, Loc.getMemoryLocation(), Ranges, NumRanges, Args); } ScopedReport::ScopedReport(ReportOptions Opts, Location SummaryLoc) : Opts(Opts), SummaryLoc(SummaryLoc) { InitIfNecessary(); CommonSanitizerReportMutex.Lock(); } ScopedReport::~ScopedReport() { MaybePrintStackTrace(Opts.pc, Opts.bp); MaybeReportErrorSummary(SummaryLoc); CommonSanitizerReportMutex.Unlock(); if (Opts.DieAfterReport || flags()->halt_on_error) Die(); } bool __ubsan::MatchSuppression(const char *Str, SuppressionType Type) { Suppression *s; // If .preinit_array is not used, it is possible that the UBSan runtime is not // initialized. if (!SANITIZER_CAN_USE_PREINIT_ARRAY) InitIfNecessary(); return SuppressionContext::Get()->Match(Str, Type, &s); }