//===-- asan_report.cc ----------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // This file contains error reporting code. //===----------------------------------------------------------------------===// #include "asan_flags.h" #include "asan_internal.h" #include "asan_mapping.h" #include "asan_report.h" #include "asan_stack.h" #include "asan_thread.h" #include "asan_thread_registry.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_report_decorator.h" #include "sanitizer_common/sanitizer_symbolizer.h" namespace __asan { // -------------------- User-specified callbacks ----------------- {{{1 static void (*error_report_callback)(const char*); static char *error_message_buffer = 0; static uptr error_message_buffer_pos = 0; static uptr error_message_buffer_size = 0; void AppendToErrorMessageBuffer(const char *buffer) { if (error_message_buffer) { uptr length = internal_strlen(buffer); CHECK_GE(error_message_buffer_size, error_message_buffer_pos); uptr remaining = error_message_buffer_size - error_message_buffer_pos; internal_strncpy(error_message_buffer + error_message_buffer_pos, buffer, remaining); error_message_buffer[error_message_buffer_size - 1] = '\0'; // FIXME: reallocate the buffer instead of truncating the message. error_message_buffer_pos += remaining > length ? length : remaining; } } // ---------------------- Decorator ------------------------------ {{{1 bool PrintsToTtyCached() { static int cached = 0; static bool prints_to_tty; if (!cached) { // Ok wrt threads since we are printing only from one thread. prints_to_tty = PrintsToTty(); cached = 1; } return prints_to_tty; } class Decorator: private __sanitizer::AnsiColorDecorator { public: Decorator() : __sanitizer::AnsiColorDecorator(PrintsToTtyCached()) { } const char *Warning() { return Red(); } const char *EndWarning() { return Default(); } const char *Access() { return Blue(); } const char *EndAccess() { return Default(); } const char *Location() { return Green(); } const char *EndLocation() { return Default(); } const char *Allocation() { return Magenta(); } const char *EndAllocation() { return Default(); } const char *ShadowByte(u8 byte) { switch (byte) { case kAsanHeapLeftRedzoneMagic: case kAsanHeapRightRedzoneMagic: return Red(); case kAsanHeapFreeMagic: return Magenta(); case kAsanStackLeftRedzoneMagic: case kAsanStackMidRedzoneMagic: case kAsanStackRightRedzoneMagic: case kAsanStackPartialRedzoneMagic: return Red(); case kAsanStackAfterReturnMagic: return Magenta(); case kAsanInitializationOrderMagic: return Cyan(); case kAsanUserPoisonedMemoryMagic: return Blue(); case kAsanStackUseAfterScopeMagic: return Magenta(); case kAsanGlobalRedzoneMagic: return Red(); case kAsanInternalHeapMagic: return Yellow(); default: return Default(); } } const char *EndShadowByte() { return Default(); } }; // ---------------------- Helper functions ----------------------- {{{1 static void PrintShadowByte(const char *before, u8 byte, const char *after = "\n") { Decorator d; Printf("%s%s%x%x%s%s", before, d.ShadowByte(byte), byte >> 4, byte & 15, d.EndShadowByte(), after); } static void PrintShadowBytes(const char *before, u8 *bytes, u8 *guilty, uptr n) { Decorator d; if (before) Printf("%s%p:", before, bytes); for (uptr i = 0; i < n; i++) { u8 *p = bytes + i; const char *before = p == guilty ? "[" : p - 1 == guilty ? "" : " "; const char *after = p == guilty ? "]" : ""; PrintShadowByte(before, *p, after); } Printf("\n"); } static void PrintLegend() { Printf("Shadow byte legend (one shadow byte represents %d " "application bytes):\n", (int)SHADOW_GRANULARITY); PrintShadowByte(" Addressable: ", 0); Printf(" Partially addressable: "); for (uptr i = 1; i < SHADOW_GRANULARITY; i++) PrintShadowByte("", i, " "); Printf("\n"); PrintShadowByte(" Heap left redzone: ", kAsanHeapLeftRedzoneMagic); PrintShadowByte(" Heap righ redzone: ", kAsanHeapRightRedzoneMagic); PrintShadowByte(" Freed Heap region: ", kAsanHeapFreeMagic); PrintShadowByte(" Stack left redzone: ", kAsanStackLeftRedzoneMagic); PrintShadowByte(" Stack mid redzone: ", kAsanStackMidRedzoneMagic); PrintShadowByte(" Stack right redzone: ", kAsanStackRightRedzoneMagic); PrintShadowByte(" Stack partial redzone: ", kAsanStackPartialRedzoneMagic); PrintShadowByte(" Stack after return: ", kAsanStackAfterReturnMagic); PrintShadowByte(" Stack use after scope: ", kAsanStackUseAfterScopeMagic); PrintShadowByte(" Global redzone: ", kAsanGlobalRedzoneMagic); PrintShadowByte(" Global init order: ", kAsanInitializationOrderMagic); PrintShadowByte(" Poisoned by user: ", kAsanUserPoisonedMemoryMagic); PrintShadowByte(" ASan internal: ", kAsanInternalHeapMagic); } static void PrintShadowMemoryForAddress(uptr addr) { if (!AddrIsInMem(addr)) return; uptr shadow_addr = MemToShadow(addr); const uptr n_bytes_per_row = 16; uptr aligned_shadow = shadow_addr & ~(n_bytes_per_row - 1); Printf("Shadow bytes around the buggy address:\n"); for (int i = -5; i <= 5; i++) { const char *prefix = (i == 0) ? "=>" : " "; PrintShadowBytes(prefix, (u8*)(aligned_shadow + i * n_bytes_per_row), (u8*)shadow_addr, n_bytes_per_row); } if (flags()->print_legend) PrintLegend(); } static void PrintZoneForPointer(uptr ptr, uptr zone_ptr, const char *zone_name) { if (zone_ptr) { if (zone_name) { Printf("malloc_zone_from_ptr(%p) = %p, which is %s\n", ptr, zone_ptr, zone_name); } else { Printf("malloc_zone_from_ptr(%p) = %p, which doesn't have a name\n", ptr, zone_ptr); } } else { Printf("malloc_zone_from_ptr(%p) = 0\n", ptr); } } // ---------------------- Address Descriptions ------------------- {{{1 static bool IsASCII(unsigned char c) { return /*0x00 <= c &&*/ c <= 0x7F; } // Check if the global is a zero-terminated ASCII string. If so, print it. static void PrintGlobalNameIfASCII(const __asan_global &g) { for (uptr p = g.beg; p < g.beg + g.size - 1; p++) { if (!IsASCII(*(unsigned char*)p)) return; } if (*(char*)(g.beg + g.size - 1) != 0) return; Printf(" '%s' is ascii string '%s'\n", g.name, (char*)g.beg); } bool DescribeAddressRelativeToGlobal(uptr addr, uptr size, const __asan_global &g) { static const uptr kMinimalDistanceFromAnotherGlobal = 64; if (addr <= g.beg - kMinimalDistanceFromAnotherGlobal) return false; if (addr >= g.beg + g.size_with_redzone) return false; Decorator d; Printf("%s", d.Location()); if (addr < g.beg) { Printf("%p is located %zd bytes to the left", (void*)addr, g.beg - addr); } else if (addr + size > g.beg + g.size) { if (addr < g.beg + g.size) addr = g.beg + g.size; Printf("%p is located %zd bytes to the right", (void*)addr, addr - (g.beg + g.size)); } else { // Can it happen? Printf("%p is located %zd bytes inside", (void*)addr, addr - g.beg); } Printf(" of global variable '%s' (0x%zx) of size %zu\n", g.name, g.beg, g.size); Printf("%s", d.EndLocation()); PrintGlobalNameIfASCII(g); return true; } bool DescribeAddressIfShadow(uptr addr) { if (AddrIsInMem(addr)) return false; static const char kAddrInShadowReport[] = "Address %p is located in the %s.\n"; if (AddrIsInShadowGap(addr)) { Printf(kAddrInShadowReport, addr, "shadow gap area"); return true; } if (AddrIsInHighShadow(addr)) { Printf(kAddrInShadowReport, addr, "high shadow area"); return true; } if (AddrIsInLowShadow(addr)) { Printf(kAddrInShadowReport, addr, "low shadow area"); return true; } CHECK(0 && "Address is not in memory and not in shadow?"); return false; } bool DescribeAddressIfStack(uptr addr, uptr access_size) { AsanThread *t = asanThreadRegistry().FindThreadByStackAddress(addr); if (!t) return false; const sptr kBufSize = 4095; char buf[kBufSize]; uptr offset = 0; const char *frame_descr = t->GetFrameNameByAddr(addr, &offset); // This string is created by the compiler and has the following form: // "FunctioName n alloc_1 alloc_2 ... alloc_n" // where alloc_i looks like "offset size len ObjectName ". CHECK(frame_descr); // Report the function name and the offset. const char *name_end = internal_strchr(frame_descr, ' '); CHECK(name_end); buf[0] = 0; internal_strncat(buf, frame_descr, Min(kBufSize, static_cast(name_end - frame_descr))); Decorator d; Printf("%s", d.Location()); Printf("Address %p is located at offset %zu " "in frame <%s> of T%d's stack:\n", (void*)addr, offset, Demangle(buf), t->tid()); Printf("%s", d.EndLocation()); // Report the number of stack objects. char *p; uptr n_objects = internal_simple_strtoll(name_end, &p, 10); CHECK(n_objects > 0); Printf(" This frame has %zu object(s):\n", n_objects); // Report all objects in this frame. for (uptr i = 0; i < n_objects; i++) { uptr beg, size; sptr len; beg = internal_simple_strtoll(p, &p, 10); size = internal_simple_strtoll(p, &p, 10); len = internal_simple_strtoll(p, &p, 10); if (beg <= 0 || size <= 0 || len < 0 || *p != ' ') { Printf("AddressSanitizer can't parse the stack frame " "descriptor: |%s|\n", frame_descr); break; } p++; buf[0] = 0; internal_strncat(buf, p, Min(kBufSize, len)); p += len; Printf(" [%zu, %zu) '%s'\n", beg, beg + size, buf); } Printf("HINT: this may be a false positive if your program uses " "some custom stack unwind mechanism or swapcontext\n" " (longjmp and C++ exceptions *are* supported)\n"); DescribeThread(t->summary()); return true; } static void DescribeAccessToHeapChunk(AsanChunkView chunk, uptr addr, uptr access_size) { sptr offset; Decorator d; Printf("%s", d.Location()); if (chunk.AddrIsAtLeft(addr, access_size, &offset)) { Printf("%p is located %zd bytes to the left of", (void*)addr, offset); } else if (chunk.AddrIsAtRight(addr, access_size, &offset)) { if (offset < 0) { addr -= offset; offset = 0; } Printf("%p is located %zd bytes to the right of", (void*)addr, offset); } else if (chunk.AddrIsInside(addr, access_size, &offset)) { Printf("%p is located %zd bytes inside of", (void*)addr, offset); } else { Printf("%p is located somewhere around (this is AddressSanitizer bug!)", (void*)addr); } Printf(" %zu-byte region [%p,%p)\n", chunk.UsedSize(), (void*)(chunk.Beg()), (void*)(chunk.End())); Printf("%s", d.EndLocation()); } // Return " (thread_name) " or an empty string if the name is empty. const char *ThreadNameWithParenthesis(AsanThreadSummary *t, char buff[], uptr buff_len) { const char *name = t->name(); if (*name == 0) return ""; buff[0] = 0; internal_strncat(buff, " (", 3); internal_strncat(buff, name, buff_len - 4); internal_strncat(buff, ")", 2); return buff; } const char *ThreadNameWithParenthesis(u32 tid, char buff[], uptr buff_len) { if (tid == kInvalidTid) return ""; AsanThreadSummary *t = asanThreadRegistry().FindByTid(tid); return ThreadNameWithParenthesis(t, buff, buff_len); } void DescribeHeapAddress(uptr addr, uptr access_size) { AsanChunkView chunk = FindHeapChunkByAddress(addr); if (!chunk.IsValid()) return; DescribeAccessToHeapChunk(chunk, addr, access_size); CHECK(chunk.AllocTid() != kInvalidTid); AsanThreadSummary *alloc_thread = asanThreadRegistry().FindByTid(chunk.AllocTid()); StackTrace alloc_stack; chunk.GetAllocStack(&alloc_stack); AsanThread *t = asanThreadRegistry().GetCurrent(); CHECK(t); char tname[128]; Decorator d; if (chunk.FreeTid() != kInvalidTid) { AsanThreadSummary *free_thread = asanThreadRegistry().FindByTid(chunk.FreeTid()); Printf("%sfreed by thread T%d%s here:%s\n", d.Allocation(), free_thread->tid(), ThreadNameWithParenthesis(free_thread, tname, sizeof(tname)), d.EndAllocation()); StackTrace free_stack; chunk.GetFreeStack(&free_stack); PrintStack(&free_stack); Printf("%spreviously allocated by thread T%d%s here:%s\n", d.Allocation(), alloc_thread->tid(), ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)), d.EndAllocation()); PrintStack(&alloc_stack); DescribeThread(t->summary()); DescribeThread(free_thread); DescribeThread(alloc_thread); } else { Printf("%sallocated by thread T%d%s here:%s\n", d.Allocation(), alloc_thread->tid(), ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)), d.EndAllocation()); PrintStack(&alloc_stack); DescribeThread(t->summary()); DescribeThread(alloc_thread); } } void DescribeAddress(uptr addr, uptr access_size) { // Check if this is shadow or shadow gap. if (DescribeAddressIfShadow(addr)) return; CHECK(AddrIsInMem(addr)); if (DescribeAddressIfGlobal(addr, access_size)) return; if (DescribeAddressIfStack(addr, access_size)) return; // Assume it is a heap address. DescribeHeapAddress(addr, access_size); } // ------------------- Thread description -------------------- {{{1 void DescribeThread(AsanThreadSummary *summary) { CHECK(summary); // No need to announce the main thread. if (summary->tid() == 0 || summary->announced()) { return; } summary->set_announced(true); char tname[128]; Printf("Thread T%d%s", summary->tid(), ThreadNameWithParenthesis(summary->tid(), tname, sizeof(tname))); Printf(" created by T%d%s here:\n", summary->parent_tid(), ThreadNameWithParenthesis(summary->parent_tid(), tname, sizeof(tname))); PrintStack(summary->stack()); // Recursively described parent thread if needed. if (flags()->print_full_thread_history) { AsanThreadSummary *parent_summary = asanThreadRegistry().FindByTid(summary->parent_tid()); DescribeThread(parent_summary); } } // -------------------- Different kinds of reports ----------------- {{{1 // Use ScopedInErrorReport to run common actions just before and // immediately after printing error report. class ScopedInErrorReport { public: ScopedInErrorReport() { static atomic_uint32_t num_calls; static u32 reporting_thread_tid; if (atomic_fetch_add(&num_calls, 1, memory_order_relaxed) != 0) { // Do not print more than one report, otherwise they will mix up. // Error reporting functions shouldn't return at this situation, as // they are defined as no-return. Report("AddressSanitizer: while reporting a bug found another one." "Ignoring.\n"); u32 current_tid = asanThreadRegistry().GetCurrentTidOrInvalid(); if (current_tid != reporting_thread_tid) { // ASan found two bugs in different threads simultaneously. Sleep // long enough to make sure that the thread which started to print // an error report will finish doing it. SleepForSeconds(Max(100, flags()->sleep_before_dying + 1)); } // If we're still not dead for some reason, use raw _exit() instead of // Die() to bypass any additional checks. internal__exit(flags()->exitcode); } ASAN_ON_ERROR(); reporting_thread_tid = asanThreadRegistry().GetCurrentTidOrInvalid(); Printf("====================================================" "=============\n"); if (reporting_thread_tid != kInvalidTid) { // We started reporting an error message. Stop using the fake stack // in case we call an instrumented function from a symbolizer. AsanThread *curr_thread = asanThreadRegistry().GetCurrent(); CHECK(curr_thread); curr_thread->fake_stack().StopUsingFakeStack(); } } // Destructor is NORETURN, as functions that report errors are. NORETURN ~ScopedInErrorReport() { // Make sure the current thread is announced. AsanThread *curr_thread = asanThreadRegistry().GetCurrent(); if (curr_thread) { DescribeThread(curr_thread->summary()); } // Print memory stats. if (flags()->print_stats) __asan_print_accumulated_stats(); if (error_report_callback) { error_report_callback(error_message_buffer); } Report("ABORTING\n"); Die(); } }; static void ReportSummary(const char *error_type, StackTrace *stack) { if (!stack->size) return; if (IsSymbolizerAvailable()) { AddressInfo ai; // Currently, we include the first stack frame into the report summary. // Maybe sometimes we need to choose another frame (e.g. skip memcpy/etc). SymbolizeCode(stack->trace[0], &ai, 1); ReportErrorSummary(error_type, StripPathPrefix(ai.file, flags()->strip_path_prefix), ai.line, ai.function); } // FIXME: do we need to print anything at all if there is no symbolizer? } void ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: SEGV on unknown address %p" " (pc %p sp %p bp %p T%d)\n", (void*)addr, (void*)pc, (void*)sp, (void*)bp, asanThreadRegistry().GetCurrentTidOrInvalid()); Printf("%s", d.EndWarning()); Printf("AddressSanitizer can not provide additional info.\n"); GET_STACK_TRACE_FATAL(pc, bp); PrintStack(&stack); ReportSummary("SEGV", &stack); } void ReportDoubleFree(uptr addr, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: attempting double-free on %p:\n", addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportSummary("double-free", stack); } void ReportFreeNotMalloced(uptr addr, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: attempting free on address " "which was not malloc()-ed: %p\n", addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportSummary("bad-free", stack); } void ReportAllocTypeMismatch(uptr addr, StackTrace *stack, AllocType alloc_type, AllocType dealloc_type) { static const char *alloc_names[] = {"INVALID", "malloc", "operator new", "operator new []"}; static const char *dealloc_names[] = {"INVALID", "free", "operator delete", "operator delete []"}; CHECK_NE(alloc_type, dealloc_type); ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: alloc-dealloc-mismatch (%s vs %s) on %p\n", alloc_names[alloc_type], dealloc_names[dealloc_type], addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportSummary("alloc-dealloc-mismatch", stack); Report("HINT: if you don't care about these warnings you may set " "ASAN_OPTIONS=alloc_dealloc_mismatch=0\n"); } void ReportMallocUsableSizeNotOwned(uptr addr, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: attempting to call " "malloc_usable_size() for pointer which is " "not owned: %p\n", addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportSummary("bad-malloc_usable_size", stack); } void ReportAsanGetAllocatedSizeNotOwned(uptr addr, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: attempting to call " "__asan_get_allocated_size() for pointer which is " "not owned: %p\n", addr); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeHeapAddress(addr, 1); ReportSummary("bad-__asan_get_allocated_size", stack); } void ReportStringFunctionMemoryRangesOverlap( const char *function, const char *offset1, uptr length1, const char *offset2, uptr length2, StackTrace *stack) { ScopedInErrorReport in_report; Decorator d; char bug_type[100]; internal_snprintf(bug_type, sizeof(bug_type), "%s-param-overlap", function); Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: %s: " "memory ranges [%p,%p) and [%p, %p) overlap\n", \ bug_type, offset1, offset1 + length1, offset2, offset2 + length2); Printf("%s", d.EndWarning()); PrintStack(stack); DescribeAddress((uptr)offset1, length1); DescribeAddress((uptr)offset2, length2); ReportSummary(bug_type, stack); } // ----------------------- Mac-specific reports ----------------- {{{1 void WarnMacFreeUnallocated( uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) { // Just print a warning here. Printf("free_common(%p) -- attempting to free unallocated memory.\n" "AddressSanitizer is ignoring this error on Mac OS now.\n", addr); PrintZoneForPointer(addr, zone_ptr, zone_name); PrintStack(stack); DescribeHeapAddress(addr, 1); } void ReportMacMzReallocUnknown( uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) { ScopedInErrorReport in_report; Printf("mz_realloc(%p) -- attempting to realloc unallocated memory.\n" "This is an unrecoverable problem, exiting now.\n", addr); PrintZoneForPointer(addr, zone_ptr, zone_name); PrintStack(stack); DescribeHeapAddress(addr, 1); } void ReportMacCfReallocUnknown( uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) { ScopedInErrorReport in_report; Printf("cf_realloc(%p) -- attempting to realloc unallocated memory.\n" "This is an unrecoverable problem, exiting now.\n", addr); PrintZoneForPointer(addr, zone_ptr, zone_name); PrintStack(stack); DescribeHeapAddress(addr, 1); } } // namespace __asan // --------------------------- Interface --------------------- {{{1 using namespace __asan; // NOLINT void __asan_report_error(uptr pc, uptr bp, uptr sp, uptr addr, bool is_write, uptr access_size) { ScopedInErrorReport in_report; // Determine the error type. const char *bug_descr = "unknown-crash"; if (AddrIsInMem(addr)) { u8 *shadow_addr = (u8*)MemToShadow(addr); // If we are accessing 16 bytes, look at the second shadow byte. if (*shadow_addr == 0 && access_size > SHADOW_GRANULARITY) shadow_addr++; // If we are in the partial right redzone, look at the next shadow byte. if (*shadow_addr > 0 && *shadow_addr < 128) shadow_addr++; switch (*shadow_addr) { case kAsanHeapLeftRedzoneMagic: case kAsanHeapRightRedzoneMagic: bug_descr = "heap-buffer-overflow"; break; case kAsanHeapFreeMagic: bug_descr = "heap-use-after-free"; break; case kAsanStackLeftRedzoneMagic: bug_descr = "stack-buffer-underflow"; break; case kAsanInitializationOrderMagic: bug_descr = "initialization-order-fiasco"; break; case kAsanStackMidRedzoneMagic: case kAsanStackRightRedzoneMagic: case kAsanStackPartialRedzoneMagic: bug_descr = "stack-buffer-overflow"; break; case kAsanStackAfterReturnMagic: bug_descr = "stack-use-after-return"; break; case kAsanUserPoisonedMemoryMagic: bug_descr = "use-after-poison"; break; case kAsanStackUseAfterScopeMagic: bug_descr = "stack-use-after-scope"; break; case kAsanGlobalRedzoneMagic: bug_descr = "global-buffer-overflow"; break; } } Decorator d; Printf("%s", d.Warning()); Report("ERROR: AddressSanitizer: %s on address " "%p at pc 0x%zx bp 0x%zx sp 0x%zx\n", bug_descr, (void*)addr, pc, bp, sp); Printf("%s", d.EndWarning()); u32 curr_tid = asanThreadRegistry().GetCurrentTidOrInvalid(); char tname[128]; Printf("%s%s of size %zu at %p thread T%d%s%s\n", d.Access(), access_size ? (is_write ? "WRITE" : "READ") : "ACCESS", access_size, (void*)addr, curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)), d.EndAccess()); GET_STACK_TRACE_FATAL(pc, bp); PrintStack(&stack); DescribeAddress(addr, access_size); ReportSummary(bug_descr, &stack); PrintShadowMemoryForAddress(addr); } void NOINLINE __asan_set_error_report_callback(void (*callback)(const char*)) { error_report_callback = callback; if (callback) { error_message_buffer_size = 1 << 16; error_message_buffer = (char*)MmapOrDie(error_message_buffer_size, __FUNCTION__); error_message_buffer_pos = 0; } } void __asan_describe_address(uptr addr) { DescribeAddress(addr, 1); } #if !SANITIZER_SUPPORTS_WEAK_HOOKS // Provide default implementation of __asan_on_error that does nothing // and may be overriden by user. SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE NOINLINE void __asan_on_error() {} #endif