/* This code uses nvptx inline assembly guarded with acc_on_device, which is not optimized away at -O0, and then confuses the target assembler. { dg-skip-if "" { *-*-* } { "-O0" } { "" } } */ #include #include int check (const int *ary, int size, int gp, int wp, int vp) { int exit = 0; int ix; int gangs[32], workers[32], vectors[32]; for (ix = 0; ix < 32; ix++) gangs[ix] = workers[ix] = vectors[ix] = 0; for (ix = 0; ix < size; ix++) { vectors[ary[ix] & 0xff]++; workers[(ary[ix] >> 8) & 0xff]++; gangs[(ary[ix] >> 16) & 0xff]++; } for (ix = 0; ix < 32; ix++) { if (gp) { int expect = gangs[0]; if (gangs[ix] != expect) { exit = 1; printf ("gang %d not used %d times\n", ix, expect); } } else if (ix && gangs[ix]) { exit = 1; printf ("gang %d unexpectedly used\n", ix); } if (wp) { int expect = workers[0]; if (workers[ix] != expect) { exit = 1; printf ("worker %d not used %d times\n", ix, expect); } } else if (ix && workers[ix]) { exit = 1; printf ("worker %d unexpectedly used\n", ix); } if (vp) { int expect = vectors[0]; if (vectors[ix] != expect) { exit = 1; printf ("vector %d not used %d times\n", ix, expect); } } else if (ix && vectors[ix]) { exit = 1; printf ("vector %d unexpectedly used\n", ix); } } return exit; } #pragma acc routine seq static int __attribute__((noinline)) place () { int r = 0; if (acc_on_device (acc_device_nvidia)) { int g = 0, w = 0, v = 0; __asm__ volatile ("mov.u32 %0,%%ctaid.x;" : "=r" (g)); __asm__ volatile ("mov.u32 %0,%%tid.y;" : "=r" (w)); __asm__ volatile ("mov.u32 %0,%%tid.x;" : "=r" (v)); r = (g << 16) | (w << 8) | v; } return r; } static void clear (int *ary, int size) { int ix; for (ix = 0; ix < size; ix++) ary[ix] = -1; } int vector_1 (int *ary, int size) { clear (ary, size); #pragma acc parallel num_workers (32) vector_length(32) copy(ary[0:size]) firstprivate (size) { #pragma acc loop gang for (int jx = 0; jx < 1; jx++) #pragma acc loop auto for (int ix = 0; ix < size; ix++) ary[ix] = place (); } return check (ary, size, 0, 0, 1); } int vector_2 (int *ary, int size) { clear (ary, size); #pragma acc parallel num_workers (32) vector_length(32) copy(ary[0:size]) firstprivate (size) { #pragma acc loop worker for (int jx = 0; jx < size / 64; jx++) #pragma acc loop auto for (int ix = 0; ix < 64; ix++) ary[ix + jx * 64] = place (); } return check (ary, size, 0, 1, 1); } int worker_1 (int *ary, int size) { clear (ary, size); #pragma acc parallel num_workers (32) vector_length(32) copy(ary[0:size]) firstprivate (size) { #pragma acc loop gang for (int kx = 0; kx < 1; kx++) #pragma acc loop auto for (int jx = 0; jx < size / 64; jx++) #pragma acc loop vector for (int ix = 0; ix < 64; ix++) ary[ix + jx * 64] = place (); } return check (ary, size, 0, 1, 1); } int gang_1 (int *ary, int size) { clear (ary, size); #pragma acc parallel num_gangs (32) num_workers (32) vector_length(32) copy(ary[0:size]) firstprivate (size) { #pragma acc loop auto for (int jx = 0; jx < size / 64; jx++) #pragma acc loop worker for (int ix = 0; ix < 64; ix++) ary[ix + jx * 64] = place (); } return check (ary, size, 1, 1, 0); } int gang_2 (int *ary, int size) { clear (ary, size); #pragma acc parallel num_gangs (32) num_workers (32) vector_length(32) copy(ary[0:size]) firstprivate (size) { #pragma acc loop auto for (int kx = 0; kx < size / (32 * 32); kx++) #pragma acc loop auto for (int jx = 0; jx < 32; jx++) #pragma acc loop auto for (int ix = 0; ix < 32; ix++) ary[ix + jx * 32 + kx * 32 * 32] = place (); } return check (ary, size, 1, 1, 1); } int gang_3 (int *ary, int size) { clear (ary, size); #pragma acc parallel num_workers (32) vector_length(32) copy(ary[0:size]) firstprivate (size) { #pragma acc loop auto for (int jx = 0; jx < size / 64; jx++) #pragma acc loop auto for (int ix = 0; ix < 64; ix++) ary[ix + jx * 64] = place (); } return check (ary, size, 1, 0, 1); } #define N (32*32*32) int main () { int ondev = 0; #pragma acc parallel copy(ondev) { ondev = acc_on_device (acc_device_not_host); } if (!ondev) return 0; int ary[N]; if (vector_1 (ary, N)) return 1; if (vector_2 (ary, N)) return 1; if (worker_1 (ary, N)) return 1; if (gang_1 (ary, N)) return 1; if (gang_2 (ary, N)) return 1; if (gang_3 (ary, N)) return 1; return 0; }