/* go-ffi.c -- convert Go type description to libffi. Copyright 2009 The Go Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include #include #include #include "runtime.h" #include "go-alloc.h" #include "go-assert.h" #include "go-type.h" #ifdef USE_LIBFFI #include "ffi.h" /* The functions in this file are only called from reflect_call and reflect.ffi. As these functions call libffi functions, which will be compiled without -fsplit-stack, they will always run with a large stack. */ static ffi_type *go_array_to_ffi (const struct __go_array_type *) __attribute__ ((no_split_stack)); static ffi_type *go_slice_to_ffi (const struct __go_slice_type *) __attribute__ ((no_split_stack)); static ffi_type *go_struct_to_ffi (const struct __go_struct_type *) __attribute__ ((no_split_stack)); static ffi_type *go_string_to_ffi (void) __attribute__ ((no_split_stack)); static ffi_type *go_interface_to_ffi (void) __attribute__ ((no_split_stack)); static ffi_type *go_complex_to_ffi (ffi_type *) __attribute__ ((no_split_stack, unused)); static ffi_type *go_type_to_ffi (const struct __go_type_descriptor *) __attribute__ ((no_split_stack)); static ffi_type *go_func_return_ffi (const struct __go_func_type *) __attribute__ ((no_split_stack)); /* Return an ffi_type for a Go array type. The libffi library does not have any builtin support for passing arrays as values. We work around this by pretending that the array is a struct. */ static ffi_type * go_array_to_ffi (const struct __go_array_type *descriptor) { ffi_type *ret; uintptr_t len; ffi_type *element; uintptr_t i; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; len = descriptor->__len; if (len == 0) { /* The libffi library won't accept an empty struct. */ ret->elements = (ffi_type **) __go_alloc (2 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_void; ret->elements[1] = NULL; return ret; } ret->elements = (ffi_type **) __go_alloc ((len + 1) * sizeof (ffi_type *)); element = go_type_to_ffi (descriptor->__element_type); for (i = 0; i < len; ++i) ret->elements[i] = element; ret->elements[len] = NULL; return ret; } /* Return an ffi_type for a Go slice type. This describes the __go_open_array type defines in array.h. */ static ffi_type * go_slice_to_ffi ( const struct __go_slice_type *descriptor __attribute__ ((unused))) { ffi_type *ret; ffi_type *ffi_intgo; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (4 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_pointer; ffi_intgo = sizeof (intgo) == 4 ? &ffi_type_sint32 : &ffi_type_sint64; ret->elements[1] = ffi_intgo; ret->elements[2] = ffi_intgo; ret->elements[3] = NULL; return ret; } /* Return an ffi_type for a Go struct type. */ static ffi_type * go_struct_to_ffi (const struct __go_struct_type *descriptor) { ffi_type *ret; int field_count; const struct __go_struct_field *fields; int i; field_count = descriptor->__fields.__count; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; if (field_count == 0) { /* The libffi library won't accept an empty struct. */ ret->elements = (ffi_type **) __go_alloc (2 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_void; ret->elements[1] = NULL; return ret; } fields = (const struct __go_struct_field *) descriptor->__fields.__values; ret->elements = (ffi_type **) __go_alloc ((field_count + 1) * sizeof (ffi_type *)); for (i = 0; i < field_count; ++i) ret->elements[i] = go_type_to_ffi (fields[i].__type); ret->elements[field_count] = NULL; return ret; } /* Return an ffi_type for a Go string type. This describes the String struct. */ static ffi_type * go_string_to_ffi (void) { ffi_type *ret; ffi_type *ffi_intgo; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_pointer; ffi_intgo = sizeof (intgo) == 4 ? &ffi_type_sint32 : &ffi_type_sint64; ret->elements[1] = ffi_intgo; ret->elements[2] = NULL; return ret; } /* Return an ffi_type for a Go interface type. This describes the __go_interface and __go_empty_interface structs. */ static ffi_type * go_interface_to_ffi (void) { ffi_type *ret; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *)); ret->elements[0] = &ffi_type_pointer; ret->elements[1] = &ffi_type_pointer; ret->elements[2] = NULL; return ret; } /* Return an ffi_type for a Go complex type. */ static ffi_type * go_complex_to_ffi (ffi_type *float_type) { ffi_type *ret; ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *)); ret->elements[0] = float_type; ret->elements[1] = float_type; ret->elements[2] = NULL; return ret; } /* Return an ffi_type for a type described by a __go_type_descriptor. */ static ffi_type * go_type_to_ffi (const struct __go_type_descriptor *descriptor) { switch (descriptor->__code & GO_CODE_MASK) { case GO_BOOL: if (sizeof (_Bool) == 1) return &ffi_type_uint8; else if (sizeof (_Bool) == sizeof (int)) return &ffi_type_uint; abort (); case GO_FLOAT32: if (sizeof (float) == 4) return &ffi_type_float; abort (); case GO_FLOAT64: if (sizeof (double) == 8) return &ffi_type_double; abort (); case GO_COMPLEX64: #ifdef __alpha__ runtime_throw("the libffi library does not support Complex64 type with " "reflect.Call or runtime.SetFinalizer"); #else if (sizeof (float) == 4) return go_complex_to_ffi (&ffi_type_float); abort (); #endif case GO_COMPLEX128: #ifdef __alpha__ runtime_throw("the libffi library does not support Complex128 type with " "reflect.Call or runtime.SetFinalizer"); #else if (sizeof (double) == 8) return go_complex_to_ffi (&ffi_type_double); abort (); #endif case GO_INT16: return &ffi_type_sint16; case GO_INT32: return &ffi_type_sint32; case GO_INT64: return &ffi_type_sint64; case GO_INT8: return &ffi_type_sint8; case GO_INT: return sizeof (intgo) == 4 ? &ffi_type_sint32 : &ffi_type_sint64; case GO_UINT16: return &ffi_type_uint16; case GO_UINT32: return &ffi_type_uint32; case GO_UINT64: return &ffi_type_uint64; case GO_UINT8: return &ffi_type_uint8; case GO_UINT: return sizeof (uintgo) == 4 ? &ffi_type_uint32 : &ffi_type_uint64; case GO_UINTPTR: if (sizeof (void *) == 2) return &ffi_type_uint16; else if (sizeof (void *) == 4) return &ffi_type_uint32; else if (sizeof (void *) == 8) return &ffi_type_uint64; abort (); case GO_ARRAY: return go_array_to_ffi ((const struct __go_array_type *) descriptor); case GO_SLICE: return go_slice_to_ffi ((const struct __go_slice_type *) descriptor); case GO_STRUCT: return go_struct_to_ffi ((const struct __go_struct_type *) descriptor); case GO_STRING: return go_string_to_ffi (); case GO_INTERFACE: return go_interface_to_ffi (); case GO_CHAN: case GO_FUNC: case GO_MAP: case GO_PTR: case GO_UNSAFE_POINTER: /* These types are always pointers, and for FFI purposes nothing else matters. */ return &ffi_type_pointer; default: abort (); } } /* Return the return type for a function, given the number of out parameters and their types. */ static ffi_type * go_func_return_ffi (const struct __go_func_type *func) { int count; const struct __go_type_descriptor **types; ffi_type *ret; int i; count = func->__out.__count; if (count == 0) return &ffi_type_void; types = (const struct __go_type_descriptor **) func->__out.__values; if (count == 1) { #if defined (__i386__) && !defined (__x86_64__) /* FFI does not support complex types. On 32-bit x86, a complex64 will be returned in %eax/%edx. We normally tell FFI that a complex64 is a struct of two floats. On 32-bit x86 a struct of two floats is returned via a hidden first pointer parameter. Fortunately we can make everything work by pretending that complex64 is int64. */ if ((types[0]->__code & GO_CODE_MASK) == GO_COMPLEX64) return &ffi_type_sint64; #endif return go_type_to_ffi (types[0]); } ret = (ffi_type *) __go_alloc (sizeof (ffi_type)); ret->type = FFI_TYPE_STRUCT; ret->elements = (ffi_type **) __go_alloc ((count + 1) * sizeof (ffi_type *)); for (i = 0; i < count; ++i) ret->elements[i] = go_type_to_ffi (types[i]); ret->elements[count] = NULL; return ret; } /* Build an ffi_cif structure for a function described by a __go_func_type structure. */ void __go_func_to_cif (const struct __go_func_type *func, _Bool is_interface, _Bool is_method, ffi_cif *cif) { int num_params; const struct __go_type_descriptor **in_types; size_t num_args; ffi_type **args; int off; int i; ffi_type *rettype; ffi_status status; num_params = func->__in.__count; in_types = ((const struct __go_type_descriptor **) func->__in.__values); num_args = num_params + (is_interface ? 1 : 0); args = (ffi_type **) __go_alloc (num_args * sizeof (ffi_type *)); i = 0; off = 0; if (is_interface) { args[0] = &ffi_type_pointer; off = 1; } else if (is_method) { args[0] = &ffi_type_pointer; i = 1; } for (; i < num_params; ++i) args[i + off] = go_type_to_ffi (in_types[i]); rettype = go_func_return_ffi (func); status = ffi_prep_cif (cif, FFI_DEFAULT_ABI, num_args, rettype, args); __go_assert (status == FFI_OK); } #endif /* defined(USE_LIBFFI) */