// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package os import ( "runtime" "syscall" ) // Process stores the information about a process created by StartProcess. type Process struct { Pid int handle int } func newProcess(pid, handle int) *Process { p := &Process{pid, handle} runtime.SetFinalizer(p, (*Process).Release) return p } // StartProcess starts a new process with the program, arguments, // and environment specified by name, argv, and envv. The fd array specifies the // file descriptors to be set up in the new process: fd[0] will be Unix file // descriptor 0 (standard input), fd[1] descriptor 1, and so on. A nil entry // will cause the child to have no open file descriptor with that index. // If dir is not empty, the child chdirs into the directory before execing the program. func StartProcess(name string, argv []string, envv []string, dir string, fd []*File) (p *Process, err Error) { if envv == nil { envv = Environ() } // Create array of integer (system) fds. intfd := make([]int, len(fd)) for i, f := range fd { if f == nil { intfd[i] = -1 } else { intfd[i] = f.Fd() } } pid, h, e := syscall.StartProcess(name, argv, envv, dir, intfd) if e != 0 { return nil, &PathError{"fork/exec", name, Errno(e)} } return newProcess(pid, h), nil } // Exec replaces the current process with an execution of the // named binary, with arguments argv and environment envv. // If successful, Exec never returns. If it fails, it returns an Error. // StartProcess is almost always a better way to execute a program. func Exec(name string, argv []string, envv []string) Error { if envv == nil { envv = Environ() } e := syscall.Exec(name, argv, envv) if e != 0 { return &PathError{"exec", name, Errno(e)} } return nil } // TODO(rsc): Should os implement its own syscall.WaitStatus // wrapper with the methods, or is exposing the underlying one enough? // // TODO(rsc): Certainly need to have Rusage struct, // since syscall one might have different field types across // different OS. // Waitmsg stores the information about an exited process as reported by Wait. type Waitmsg struct { Pid int // The process's id. syscall.WaitStatus // System-dependent status info. Rusage *syscall.Rusage // System-dependent resource usage info. } // Wait waits for process pid to exit or stop, and then returns a // Waitmsg describing its status and an Error, if any. The options // (WNOHANG etc.) affect the behavior of the Wait call. // Wait is equivalent to calling FindProcess and then Wait // and Release on the result. func Wait(pid int, options int) (w *Waitmsg, err Error) { p, e := FindProcess(pid) if e != nil { return nil, e } defer p.Release() return p.Wait(options) } // Convert i to decimal string. func itod(i int) string { if i == 0 { return "0" } u := uint64(i) if i < 0 { u = -u } // Assemble decimal in reverse order. var b [32]byte bp := len(b) for ; u > 0; u /= 10 { bp-- b[bp] = byte(u%10) + '0' } if i < 0 { bp-- b[bp] = '-' } return string(b[bp:]) } func (w Waitmsg) String() string { // TODO(austin) Use signal names when possible? res := "" switch { case w.Exited(): res = "exit status " + itod(w.ExitStatus()) case w.Signaled(): res = "signal " + itod(w.Signal()) case w.Stopped(): res = "stop signal " + itod(w.StopSignal()) if w.StopSignal() == syscall.SIGTRAP && w.TrapCause() != 0 { res += " (trap " + itod(w.TrapCause()) + ")" } case w.Continued(): res = "continued" } if w.CoreDump() { res += " (core dumped)" } return res } // Getpid returns the process id of the caller. func Getpid() int { return syscall.Getpid() } // Getppid returns the process id of the caller's parent. func Getppid() int { return syscall.Getppid() }