// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package image implements a basic 2-D image library. // // See "The Go image package" for an introduction to this package: // http://blog.golang.org/2011/09/go-image-package.html package image // Config holds an image's color model and dimensions. type Config struct { ColorModel ColorModel Width, Height int } // Image is a finite rectangular grid of Colors drawn from a ColorModel. type Image interface { // ColorModel returns the Image's ColorModel. ColorModel() ColorModel // Bounds returns the domain for which At can return non-zero color. // The bounds do not necessarily contain the point (0, 0). Bounds() Rectangle // At returns the color of the pixel at (x, y). // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. At(x, y int) Color } // RGBA is an in-memory image of RGBAColor values. type RGBA struct { // Pix holds the image's pixels, in R, G, B, A order. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel } func (p *RGBA) Bounds() Rectangle { return p.Rect } func (p *RGBA) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return RGBAColor{} } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 return RGBAColor{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]} } func (p *RGBA) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 c1 := toRGBAColor(c).(RGBAColor) p.Pix[i+0] = c1.R p.Pix[i+1] = c1.G p.Pix[i+2] = c1.B p.Pix[i+3] = c1.A } func (p *RGBA) SetRGBA(x, y int, c RGBAColor) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 p.Pix[i+0] = c.R p.Pix[i+1] = c.G p.Pix[i+2] = c.B p.Pix[i+3] = c.A } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *RGBA) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &RGBA{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*4 return &RGBA{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *RGBA) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 3, p.Rect.Dx()*4 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 4 { if p.Pix[i] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewRGBA returns a new RGBA with the given width and height. func NewRGBA(w, h int) *RGBA { buf := make([]uint8, 4*w*h) return &RGBA{buf, 4 * w, Rectangle{ZP, Point{w, h}}} } // RGBA64 is an in-memory image of RGBA64Color values. type RGBA64 struct { // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel } func (p *RGBA64) Bounds() Rectangle { return p.Rect } func (p *RGBA64) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return RGBA64Color{} } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 return RGBA64Color{ uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]), uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]), uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]), uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]), } } func (p *RGBA64) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 c1 := toRGBA64Color(c).(RGBA64Color) p.Pix[i+0] = uint8(c1.R >> 8) p.Pix[i+1] = uint8(c1.R) p.Pix[i+2] = uint8(c1.G >> 8) p.Pix[i+3] = uint8(c1.G) p.Pix[i+4] = uint8(c1.B >> 8) p.Pix[i+5] = uint8(c1.B) p.Pix[i+6] = uint8(c1.A >> 8) p.Pix[i+7] = uint8(c1.A) } func (p *RGBA64) SetRGBA64(x, y int, c RGBA64Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 p.Pix[i+0] = uint8(c.R >> 8) p.Pix[i+1] = uint8(c.R) p.Pix[i+2] = uint8(c.G >> 8) p.Pix[i+3] = uint8(c.G) p.Pix[i+4] = uint8(c.B >> 8) p.Pix[i+5] = uint8(c.B) p.Pix[i+6] = uint8(c.A >> 8) p.Pix[i+7] = uint8(c.A) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *RGBA64) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &RGBA64{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*8 return &RGBA64{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *RGBA64) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 6, p.Rect.Dx()*8 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 8 { if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewRGBA64 returns a new RGBA64 with the given width and height. func NewRGBA64(w, h int) *RGBA64 { pix := make([]uint8, 8*w*h) return &RGBA64{pix, 8 * w, Rectangle{ZP, Point{w, h}}} } // NRGBA is an in-memory image of NRGBAColor values. type NRGBA struct { // Pix holds the image's pixels, in R, G, B, A order. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel } func (p *NRGBA) Bounds() Rectangle { return p.Rect } func (p *NRGBA) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return NRGBAColor{} } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 return NRGBAColor{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]} } func (p *NRGBA) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 c1 := toNRGBAColor(c).(NRGBAColor) p.Pix[i+0] = c1.R p.Pix[i+1] = c1.G p.Pix[i+2] = c1.B p.Pix[i+3] = c1.A } func (p *NRGBA) SetNRGBA(x, y int, c NRGBAColor) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 p.Pix[i+0] = c.R p.Pix[i+1] = c.G p.Pix[i+2] = c.B p.Pix[i+3] = c.A } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *NRGBA) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &NRGBA{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*4 return &NRGBA{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *NRGBA) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 3, p.Rect.Dx()*4 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 4 { if p.Pix[i] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewNRGBA returns a new NRGBA with the given width and height. func NewNRGBA(w, h int) *NRGBA { pix := make([]uint8, 4*w*h) return &NRGBA{pix, 4 * w, Rectangle{ZP, Point{w, h}}} } // NRGBA64 is an in-memory image of NRGBA64Color values. type NRGBA64 struct { // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel } func (p *NRGBA64) Bounds() Rectangle { return p.Rect } func (p *NRGBA64) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return NRGBA64Color{} } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 return NRGBA64Color{ uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]), uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]), uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]), uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]), } } func (p *NRGBA64) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 c1 := toNRGBA64Color(c).(NRGBA64Color) p.Pix[i+0] = uint8(c1.R >> 8) p.Pix[i+1] = uint8(c1.R) p.Pix[i+2] = uint8(c1.G >> 8) p.Pix[i+3] = uint8(c1.G) p.Pix[i+4] = uint8(c1.B >> 8) p.Pix[i+5] = uint8(c1.B) p.Pix[i+6] = uint8(c1.A >> 8) p.Pix[i+7] = uint8(c1.A) } func (p *NRGBA64) SetNRGBA64(x, y int, c NRGBA64Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 p.Pix[i+0] = uint8(c.R >> 8) p.Pix[i+1] = uint8(c.R) p.Pix[i+2] = uint8(c.G >> 8) p.Pix[i+3] = uint8(c.G) p.Pix[i+4] = uint8(c.B >> 8) p.Pix[i+5] = uint8(c.B) p.Pix[i+6] = uint8(c.A >> 8) p.Pix[i+7] = uint8(c.A) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *NRGBA64) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &NRGBA64{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*8 return &NRGBA64{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *NRGBA64) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 6, p.Rect.Dx()*8 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 8 { if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewNRGBA64 returns a new NRGBA64 with the given width and height. func NewNRGBA64(w, h int) *NRGBA64 { pix := make([]uint8, 8*w*h) return &NRGBA64{pix, 8 * w, Rectangle{ZP, Point{w, h}}} } // Alpha is an in-memory image of AlphaColor values. type Alpha struct { // Pix holds the image's pixels, as alpha values. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Alpha) ColorModel() ColorModel { return AlphaColorModel } func (p *Alpha) Bounds() Rectangle { return p.Rect } func (p *Alpha) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return AlphaColor{} } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) return AlphaColor{p.Pix[i]} } func (p *Alpha) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) p.Pix[i] = toAlphaColor(c).(AlphaColor).A } func (p *Alpha) SetAlpha(x, y int, c AlphaColor) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) p.Pix[i] = c.A } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Alpha) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Alpha{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*1 return &Alpha{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Alpha) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 0, p.Rect.Dx() for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i++ { if p.Pix[i] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewAlpha returns a new Alpha with the given width and height. func NewAlpha(w, h int) *Alpha { pix := make([]uint8, 1*w*h) return &Alpha{pix, 1 * w, Rectangle{ZP, Point{w, h}}} } // Alpha16 is an in-memory image of Alpha16Color values. type Alpha16 struct { // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Alpha16) ColorModel() ColorModel { return Alpha16ColorModel } func (p *Alpha16) Bounds() Rectangle { return p.Rect } func (p *Alpha16) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return Alpha16Color{} } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 return Alpha16Color{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} } func (p *Alpha16) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 c1 := toAlpha16Color(c).(Alpha16Color) p.Pix[i+0] = uint8(c1.A >> 8) p.Pix[i+1] = uint8(c1.A) } func (p *Alpha16) SetAlpha16(x, y int, c Alpha16Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 p.Pix[i+0] = uint8(c.A >> 8) p.Pix[i+1] = uint8(c.A) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Alpha16) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Alpha16{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*2 return &Alpha16{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Alpha16) Opaque() bool { if p.Rect.Empty() { return true } i0, i1 := 0, p.Rect.Dx()*2 for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for i := i0; i < i1; i += 2 { if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewAlpha16 returns a new Alpha16 with the given width and height. func NewAlpha16(w, h int) *Alpha16 { pix := make([]uint8, 2*w*h) return &Alpha16{pix, 2 * w, Rectangle{ZP, Point{w, h}}} } // Gray is an in-memory image of GrayColor values. type Gray struct { // Pix holds the image's pixels, as gray values. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Gray) ColorModel() ColorModel { return GrayColorModel } func (p *Gray) Bounds() Rectangle { return p.Rect } func (p *Gray) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return GrayColor{} } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) return GrayColor{p.Pix[i]} } func (p *Gray) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) p.Pix[i] = toGrayColor(c).(GrayColor).Y } func (p *Gray) SetGray(x, y int, c GrayColor) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) p.Pix[i] = c.Y } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Gray) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Gray{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*1 return &Gray{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Gray) Opaque() bool { return true } // NewGray returns a new Gray with the given width and height. func NewGray(w, h int) *Gray { pix := make([]uint8, 1*w*h) return &Gray{pix, 1 * w, Rectangle{ZP, Point{w, h}}} } // Gray16 is an in-memory image of Gray16Color values. type Gray16 struct { // Pix holds the image's pixels, as gray values in big-endian format. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Gray16) ColorModel() ColorModel { return Gray16ColorModel } func (p *Gray16) Bounds() Rectangle { return p.Rect } func (p *Gray16) At(x, y int) Color { if !(Point{x, y}.In(p.Rect)) { return Gray16Color{} } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 return Gray16Color{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} } func (p *Gray16) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 c1 := toGray16Color(c).(Gray16Color) p.Pix[i+0] = uint8(c1.Y >> 8) p.Pix[i+1] = uint8(c1.Y) } func (p *Gray16) SetGray16(x, y int, c Gray16Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 p.Pix[i+0] = uint8(c.Y >> 8) p.Pix[i+1] = uint8(c.Y) } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Gray16) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Gray16{} } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*2 return &Gray16{ Pix: p.Pix[i:], Stride: p.Stride, Rect: r, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Gray16) Opaque() bool { return true } // NewGray16 returns a new Gray16 with the given width and height. func NewGray16(w, h int) *Gray16 { pix := make([]uint8, 2*w*h) return &Gray16{pix, 2 * w, Rectangle{ZP, Point{w, h}}} } // A PalettedColorModel represents a fixed palette of at most 256 colors. type PalettedColorModel []Color func diff(a, b uint32) uint32 { if a > b { return a - b } return b - a } // Convert returns the palette color closest to c in Euclidean R,G,B space. func (p PalettedColorModel) Convert(c Color) Color { if len(p) == 0 { return nil } return p[p.Index(c)] } // Index returns the index of the palette color closest to c in Euclidean // R,G,B space. func (p PalettedColorModel) Index(c Color) int { cr, cg, cb, _ := c.RGBA() // Shift by 1 bit to avoid potential uint32 overflow in sum-squared-difference. cr >>= 1 cg >>= 1 cb >>= 1 ret, bestSSD := 0, uint32(1<<32-1) for i, v := range p { vr, vg, vb, _ := v.RGBA() vr >>= 1 vg >>= 1 vb >>= 1 dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb) ssd := (dr * dr) + (dg * dg) + (db * db) if ssd < bestSSD { ret, bestSSD = i, ssd } } return ret } // Paletted is an in-memory image of uint8 indices into a given palette. type Paletted struct { // Pix holds the image's pixels, as palette indices. The pixel at // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. Pix []uint8 // Stride is the Pix stride (in bytes) between vertically adjacent pixels. Stride int // Rect is the image's bounds. Rect Rectangle // Palette is the image's palette. Palette PalettedColorModel } func (p *Paletted) ColorModel() ColorModel { return p.Palette } func (p *Paletted) Bounds() Rectangle { return p.Rect } func (p *Paletted) At(x, y int) Color { if len(p.Palette) == 0 { return nil } if !(Point{x, y}.In(p.Rect)) { return p.Palette[0] } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) return p.Palette[p.Pix[i]] } func (p *Paletted) Set(x, y int, c Color) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) p.Pix[i] = uint8(p.Palette.Index(c)) } func (p *Paletted) ColorIndexAt(x, y int) uint8 { if !(Point{x, y}.In(p.Rect)) { return 0 } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) return p.Pix[i] } func (p *Paletted) SetColorIndex(x, y int, index uint8) { if !(Point{x, y}.In(p.Rect)) { return } i := (y-p.Rect.Min.Y)*p.Stride + (x - p.Rect.Min.X) p.Pix[i] = index } // SubImage returns an image representing the portion of the image p visible // through r. The returned value shares pixels with the original image. func (p *Paletted) SubImage(r Rectangle) Image { r = r.Intersect(p.Rect) // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside // either r1 or r2 if the intersection is empty. Without explicitly checking for // this, the Pix[i:] expression below can panic. if r.Empty() { return &Paletted{ Palette: p.Palette, } } i := (r.Min.Y-p.Rect.Min.Y)*p.Stride + (r.Min.X-p.Rect.Min.X)*1 return &Paletted{ Pix: p.Pix[i:], Stride: p.Stride, Rect: p.Rect.Intersect(r), Palette: p.Palette, } } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Paletted) Opaque() bool { var present [256]bool i0, i1 := 0, p.Rect.Dx() for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { present[c] = true } i0 += p.Stride i1 += p.Stride } for i, c := range p.Palette { if !present[i] { continue } _, _, _, a := c.RGBA() if a != 0xffff { return false } } return true } // NewPaletted returns a new Paletted with the given width, height and palette. func NewPaletted(w, h int, m PalettedColorModel) *Paletted { pix := make([]uint8, 1*w*h) return &Paletted{pix, 1 * w, Rectangle{ZP, Point{w, h}}, m} }