/* Generic implementation of the RESHAPE intrinsic Copyright 2002 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfor). Libgfor is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Ligbfor is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with libgfor; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include #include "libgfortran.h" void __unpack1 (const gfc_array_char * ret, const gfc_array_char * vector, const gfc_array_l4 * mask, const gfc_array_char * field) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; char *rptr; /* v.* indicates the vector array. */ index_type vstride0; char *vptr; /* f.* indicates the field array. */ index_type fstride[GFC_MAX_DIMENSIONS]; index_type fstride0; const char *fptr; /* m.* indicates the mask array. */ index_type mstride[GFC_MAX_DIMENSIONS]; index_type mstride0; const GFC_LOGICAL_4 *mptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; index_type size; index_type fsize; size = GFC_DESCRIPTOR_SIZE (ret); /* A field element size of 0 actually means this is a scalar. */ fsize = GFC_DESCRIPTOR_SIZE (field); dim = GFC_DESCRIPTOR_RANK (ret); for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound; rstride[n] = ret->dim[n].stride * size; fstride[n] = field->dim[n].stride * fsize; mstride[n] = mask->dim[n].stride; } if (rstride[0] == 0) rstride[0] = size; if (fstride[0] == 0) fstride[0] = fsize; if (mstride[0] == 0) mstride[0] = 1; vstride0 = vector->dim[0].stride * size; if (vstride0 == 0) vstride0 = size; rstride0 = rstride[0]; fstride0 = fstride[0]; mstride0 = mstride[0]; rptr = ret->data; fptr = field->data; mptr = mask->data; vptr = vector->data; /* Use the same loop for both logical types. */ if (GFC_DESCRIPTOR_SIZE (mask) != 4) { if (GFC_DESCRIPTOR_SIZE (mask) != 8) runtime_error ("Funny sized logical array"); for (n = 0; n < dim; n++) mstride[n] <<= 1; mstride0 <<= 1; mptr = GFOR_POINTER_L8_TO_L4 (mptr); } while (rptr) { if (*mptr) { /* From vector. */ memcpy (rptr, vptr, size); vptr += vstride0; } else { /* From field. */ memcpy (rptr, fptr, size); } /* Advance to the next element. */ rptr += rstride0; fptr += fstride0; mptr += mstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so proabably not worth it. */ rptr -= rstride[n] * extent[n]; fptr -= fstride[n] * extent[n]; mptr -= mstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; fptr += fstride[n]; mptr += mstride[n]; } } } } void __unpack0 (const gfc_array_char * ret, const gfc_array_char * vector, const gfc_array_l4 * mask, char * field) { gfc_array_char tmp; tmp.dtype = 0; tmp.data = field; __unpack1 (ret, vector, mask, &tmp); }