/* Specific implementation of the UNPACK intrinsic Copyright (C) 2008-2017 Free Software Foundation, Inc. Contributed by Thomas Koenig , based on unpack_generic.c by Paul Brook . This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #if defined (HAVE_GFC_REAL_8) void unpack0_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector, const gfc_array_l1 *mask, const GFC_REAL_8 *fptr) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rs; GFC_REAL_8 * restrict rptr; /* v.* indicates the vector array. */ index_type vstride0; GFC_REAL_8 *vptr; /* Value for field, this is constant. */ const GFC_REAL_8 fval = *fptr; /* m.* indicates the mask array. */ index_type mstride[GFC_MAX_DIMENSIONS]; index_type mstride0; const GFC_LOGICAL_1 *mptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; int empty; int mask_kind; empty = 0; mptr = mask->base_addr; /* Use the same loop for all logical types, by using GFC_LOGICAL_1 and using shifting to address size and endian issues. */ mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) { /* Do not convert a NULL pointer as we use test for NULL below. */ if (mptr) mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); } else runtime_error ("Funny sized logical array"); if (ret->base_addr == NULL) { /* The front end has signalled that we need to populate the return array descriptor. */ dim = GFC_DESCRIPTOR_RANK (mask); rs = 1; for (n = 0; n < dim; n++) { count[n] = 0; GFC_DIMENSION_SET(ret->dim[n], 0, GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); rs *= extent[n]; } ret->offset = 0; ret->base_addr = xmallocarray (rs, sizeof (GFC_REAL_8)); } else { dim = GFC_DESCRIPTOR_RANK (ret); /* Initialize to avoid -Wmaybe-uninitialized complaints. */ rstride[0] = 1; for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); } if (rstride[0] == 0) rstride[0] = 1; } if (empty) return; if (mstride[0] == 0) mstride[0] = 1; vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); if (vstride0 == 0) vstride0 = 1; rstride0 = rstride[0]; mstride0 = mstride[0]; rptr = ret->base_addr; vptr = vector->base_addr; while (rptr) { if (*mptr) { /* From vector. */ *rptr = *vptr; vptr += vstride0; } else { /* From field. */ *rptr = fval; } /* Advance to the next element. */ rptr += rstride0; mptr += mstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; mptr -= mstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; mptr += mstride[n]; } } } } void unpack1_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector, const gfc_array_l1 *mask, const gfc_array_r8 *field) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rs; GFC_REAL_8 * restrict rptr; /* v.* indicates the vector array. */ index_type vstride0; GFC_REAL_8 *vptr; /* f.* indicates the field array. */ index_type fstride[GFC_MAX_DIMENSIONS]; index_type fstride0; const GFC_REAL_8 *fptr; /* m.* indicates the mask array. */ index_type mstride[GFC_MAX_DIMENSIONS]; index_type mstride0; const GFC_LOGICAL_1 *mptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; int empty; int mask_kind; empty = 0; mptr = mask->base_addr; /* Use the same loop for all logical types, by using GFC_LOGICAL_1 and using shifting to address size and endian issues. */ mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) { /* Do not convert a NULL pointer as we use test for NULL below. */ if (mptr) mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); } else runtime_error ("Funny sized logical array"); if (ret->base_addr == NULL) { /* The front end has signalled that we need to populate the return array descriptor. */ dim = GFC_DESCRIPTOR_RANK (mask); rs = 1; for (n = 0; n < dim; n++) { count[n] = 0; GFC_DIMENSION_SET(ret->dim[n], 0, GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); rs *= extent[n]; } ret->offset = 0; ret->base_addr = xmallocarray (rs, sizeof (GFC_REAL_8)); } else { dim = GFC_DESCRIPTOR_RANK (ret); /* Initialize to avoid -Wmaybe-uninitialized complaints. */ rstride[0] = 1; for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n); fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); } if (rstride[0] == 0) rstride[0] = 1; } if (empty) return; if (fstride[0] == 0) fstride[0] = 1; if (mstride[0] == 0) mstride[0] = 1; vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); if (vstride0 == 0) vstride0 = 1; rstride0 = rstride[0]; fstride0 = fstride[0]; mstride0 = mstride[0]; rptr = ret->base_addr; fptr = field->base_addr; vptr = vector->base_addr; while (rptr) { if (*mptr) { /* From vector. */ *rptr = *vptr; vptr += vstride0; } else { /* From field. */ *rptr = *fptr; } /* Advance to the next element. */ rptr += rstride0; fptr += fstride0; mptr += mstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; fptr -= fstride[n] * extent[n]; mptr -= mstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; fptr += fstride[n]; mptr += mstride[n]; } } } } #endif