/* Implementation of the MINLOC intrinsic Copyright 2002, 2007 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "libgfortran.h" #include #include #include #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_16) extern void minloc0_16_i8 (gfc_array_i16 * const restrict retarray, gfc_array_i8 * const restrict array); export_proto(minloc0_16_i8); void minloc0_16_i8 (gfc_array_i16 * const restrict retarray, gfc_array_i8 * const restrict array) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride; const GFC_INTEGER_8 *base; GFC_INTEGER_16 *dest; index_type rank; index_type n; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->data == NULL) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = rank-1; retarray->dim[0].stride = 1; retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank); } else { if (compile_options.bounds_check) { int ret_rank; index_type ret_extent; ret_rank = GFC_DESCRIPTOR_RANK (retarray); if (ret_rank != 1) runtime_error ("rank of return array in MINLOC intrinsic" " should be 1, is %d", ret_rank); ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; if (ret_extent != rank) runtime_error ("Incorrect extent in return value of" " MINLOC intrnisic: is %ld, should be %d", (long int) ret_extent, rank); } } dstride = retarray->dim[0].stride; dest = retarray->data; for (n = 0; n < rank; n++) { sstride[n] = array->dim[n].stride; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->data; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; { GFC_INTEGER_8 minval; minval = GFC_INTEGER_8_HUGE; while (base) { { /* Implementation start. */ if (*base < minval || !dest[0]) { minval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ } /* Advance to the next element. */ count[0]++; base += sstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; } } } } } extern void mminloc0_16_i8 (gfc_array_i16 * const restrict, gfc_array_i8 * const restrict, gfc_array_l1 * const restrict); export_proto(mminloc0_16_i8); void mminloc0_16_i8 (gfc_array_i16 * const restrict retarray, gfc_array_i8 * const restrict array, gfc_array_l1 * const restrict mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; index_type dstride; GFC_INTEGER_16 *dest; const GFC_INTEGER_8 *base; GFC_LOGICAL_1 *mbase; int rank; index_type n; int mask_kind; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->data == NULL) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = rank-1; retarray->dim[0].stride = 1; retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank); } else { if (compile_options.bounds_check) { int ret_rank, mask_rank; index_type ret_extent; int n; index_type array_extent, mask_extent; ret_rank = GFC_DESCRIPTOR_RANK (retarray); if (ret_rank != 1) runtime_error ("rank of return array in MINLOC intrinsic" " should be 1, is %d", ret_rank); ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; if (ret_extent != rank) runtime_error ("Incorrect extent in return value of" " MINLOC intrnisic: is %ld, should be %d", (long int) ret_extent, rank); mask_rank = GFC_DESCRIPTOR_RANK (mask); if (rank != mask_rank) runtime_error ("rank of MASK argument in MINLOC intrnisic" "should be %d, is %d", rank, mask_rank); for (n=0; ndim[n].ubound + 1 - array->dim[n].lbound; mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound; if (array_extent != mask_extent) runtime_error ("Incorrect extent in MASK argument of" " MINLOC intrinsic in dimension %d:" " is %ld, should be %ld", n + 1, (long int) mask_extent, (long int) array_extent); } } } mask_kind = GFC_DESCRIPTOR_SIZE (mask); mbase = mask->data; if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); dstride = retarray->dim[0].stride; dest = retarray->data; for (n = 0; n < rank; n++) { sstride[n] = array->dim[n].stride; mstride[n] = mask->dim[n].stride * mask_kind; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->data; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; { GFC_INTEGER_8 minval; minval = GFC_INTEGER_8_HUGE; while (base) { { /* Implementation start. */ if (*mbase && (*base < minval || !dest[0])) { minval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ } /* Advance to the next element. */ count[0]++; base += sstride[0]; mbase += mstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; } } } } } extern void sminloc0_16_i8 (gfc_array_i16 * const restrict, gfc_array_i8 * const restrict, GFC_LOGICAL_4 *); export_proto(sminloc0_16_i8); void sminloc0_16_i8 (gfc_array_i16 * const restrict retarray, gfc_array_i8 * const restrict array, GFC_LOGICAL_4 * mask) { index_type rank; index_type dstride; index_type n; GFC_INTEGER_16 *dest; if (*mask) { minloc0_16_i8 (retarray, array); return; } rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->data == NULL) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = rank-1; retarray->dim[0].stride = 1; retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank); } else { if (compile_options.bounds_check) { int ret_rank; index_type ret_extent; ret_rank = GFC_DESCRIPTOR_RANK (retarray); if (ret_rank != 1) runtime_error ("rank of return array in MINLOC intrinsic" " should be 1, is %d", ret_rank); ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; if (ret_extent != rank) runtime_error ("dimension of return array incorrect"); } } dstride = retarray->dim[0].stride; dest = retarray->data; for (n = 0; n