/* Implementation of the MAXLOC intrinsic Copyright 2002, 2007, 2009 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include #if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_8) extern void maxloc0_8_r16 (gfc_array_i8 * const restrict retarray, gfc_array_r16 * const restrict array); export_proto(maxloc0_8_r16); void maxloc0_8_r16 (gfc_array_i8 * const restrict retarray, gfc_array_r16 * const restrict array) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride; const GFC_REAL_16 *base; GFC_INTEGER_8 * restrict dest; index_type rank; index_type n; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET (retarray->dim[0], 0, rank, sizeof (GFC_INTEGER_8)); retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->base_addr = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank); } else { if (unlikely (compile_options.bounds_check)) bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "MAXLOC"); } dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->base_addr; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 1; { GFC_REAL_16 maxval; #if defined(GFC_REAL_16_QUIET_NAN) int fast = 0; #endif #if defined(GFC_REAL_16_INFINITY) maxval = -GFC_REAL_16_INFINITY; #else maxval = -GFC_REAL_16_HUGE; #endif while (base) { do { /* Implementation start. */ #if defined(GFC_REAL_16_QUIET_NAN) } while (0); if (unlikely (!fast)) { do { if (*base >= maxval) { fast = 1; maxval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; break; } base += sstride[0]; } while (++count[0] != extent[0]); if (likely (fast)) continue; } else do { #endif if (*base > maxval) { maxval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ /* Advance to the next element. */ base += sstride[0]; } while (++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; } } while (count[n] == extent[n]); } } } extern void mmaxloc0_8_r16 (gfc_array_i8 * const restrict, gfc_array_r16 * const restrict, gfc_array_l1 * const restrict); export_proto(mmaxloc0_8_r16); void mmaxloc0_8_r16 (gfc_array_i8 * const restrict retarray, gfc_array_r16 * const restrict array, gfc_array_l1 * const restrict mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; index_type dstride; GFC_INTEGER_8 *dest; const GFC_REAL_16 *base; GFC_LOGICAL_1 *mbase; int rank; index_type n; int mask_kind; rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET (retarray->dim[0], 0, rank, sizeof (GFC_INTEGER_8)); retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->base_addr = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank); } else { if (unlikely (compile_options.bounds_check)) { bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "MAXLOC"); bounds_equal_extents ((array_t *) mask, (array_t *) array, "MASK argument", "MAXLOC"); } } mask_kind = GFC_DESCRIPTOR_SIZE (mask); mbase = mask->base_addr; if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); mstride[n] = GFC_DESCRIPTOR_SM(mask,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); count[n] = 0; if (extent[n] <= 0) { /* Set the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; return; } } base = array->base_addr; /* Initialize the return value. */ for (n = 0; n < rank; n++) dest[n * dstride] = 0; { GFC_REAL_16 maxval; int fast = 0; #if defined(GFC_REAL_16_INFINITY) maxval = -GFC_REAL_16_INFINITY; #else maxval = -GFC_REAL_16_HUGE; #endif while (base) { do { /* Implementation start. */ } while (0); if (unlikely (!fast)) { do { if (*mbase) { #if defined(GFC_REAL_16_QUIET_NAN) if (unlikely (dest[0] == 0)) for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; if (*base >= maxval) #endif { fast = 1; maxval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; break; } } base += sstride[0]; mbase += mstride[0]; } while (++count[0] != extent[0]); if (likely (fast)) continue; } else do { if (*mbase && *base > maxval) { maxval = *base; for (n = 0; n < rank; n++) dest[n * dstride] = count[n] + 1; } /* Implementation end. */ /* Advance to the next element. */ base += sstride[0]; mbase += mstride[0]; } while (++count[0] != extent[0]); n = 0; do { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the loop. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; } } while (count[n] == extent[n]); } } } extern void smaxloc0_8_r16 (gfc_array_i8 * const restrict, gfc_array_r16 * const restrict, GFC_LOGICAL_4 *); export_proto(smaxloc0_8_r16); void smaxloc0_8_r16 (gfc_array_i8 * const restrict retarray, gfc_array_r16 * const restrict array, GFC_LOGICAL_4 * mask) { index_type rank; index_type dstride; index_type n; GFC_INTEGER_8 *dest; if (*mask) { maxloc0_8_r16 (retarray, array); return; } rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->base_addr == NULL) { GFC_DIMENSION_SET (retarray->dim[0], 0, rank, sizeof (GFC_INTEGER_8)); retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->base_addr = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank); } else if (unlikely (compile_options.bounds_check)) { bounds_iforeach_return ((array_t *) retarray, (array_t *) array, "MAXLOC"); } dstride = GFC_DESCRIPTOR_STRIDE(retarray,0); dest = retarray->base_addr; for (n = 0; n