/* Implementation of the MATMUL intrinsic Copyright 2002, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "libgfortran.h" #include #include #include #if defined (HAVE_GFC_REAL_8) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be passed to us by the front-end, in which case we'll call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, const int *, const GFC_REAL_8 *, const GFC_REAL_8 *, const int *, const GFC_REAL_8 *, const int *, const GFC_REAL_8 *, GFC_REAL_8 *, const int *, int, int); /* The order of loops is different in the case of plain matrix multiplication C=MATMUL(A,B), and in the frequent special case where the argument A is the temporary result of a TRANSPOSE intrinsic: C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by looking at their strides. The equivalent Fortran pseudo-code is: DIMENSION A(M,COUNT), B(COUNT,N), C(M,N) IF (.NOT.IS_TRANSPOSED(A)) THEN C = 0 DO J=1,N DO K=1,COUNT DO I=1,M C(I,J) = C(I,J)+A(I,K)*B(K,J) ELSE DO J=1,N DO I=1,M S = 0 DO K=1,COUNT S = S+A(I,K)*B(K,J) C(I,J) = S ENDIF */ /* If try_blas is set to a nonzero value, then the matmul function will see if there is a way to perform the matrix multiplication by a call to the BLAS gemm function. */ extern void matmul_r8 (gfc_array_r8 * const restrict retarray, gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas, int blas_limit, blas_call gemm); export_proto(matmul_r8); void matmul_r8 (gfc_array_r8 * const restrict retarray, gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas, int blas_limit, blas_call gemm) { const GFC_REAL_8 * restrict abase; const GFC_REAL_8 * restrict bbase; GFC_REAL_8 * restrict dest; index_type rxstride, rystride, axstride, aystride, bxstride, bystride; index_type x, y, n, count, xcount, ycount; assert (GFC_DESCRIPTOR_RANK (a) == 2 || GFC_DESCRIPTOR_RANK (b) == 2); /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] Either A or B (but not both) can be rank 1: o One-dimensional argument A is implicitly treated as a row matrix dimensioned [1,count], so xcount=1. o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. */ if (retarray->data == NULL) { if (GFC_DESCRIPTOR_RANK (a) == 1) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound; retarray->dim[0].stride = 1; } else if (GFC_DESCRIPTOR_RANK (b) == 1) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound; retarray->dim[0].stride = 1; } else { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound; retarray->dim[0].stride = 1; retarray->dim[1].lbound = 0; retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound; retarray->dim[1].stride = retarray->dim[0].ubound+1; } retarray->data = internal_malloc_size (sizeof (GFC_REAL_8) * size0 ((array_t *) retarray)); retarray->offset = 0; } else if (unlikely (compile_options.bounds_check)) { index_type ret_extent, arg_extent; if (GFC_DESCRIPTOR_RANK (a) == 1) { arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound; ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic: is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); } else if (GFC_DESCRIPTOR_RANK (b) == 1) { arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound; ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic: is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); } else { arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound; ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic for dimension 1:" " is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound; ret_extent = retarray->dim[1].ubound + 1 - retarray->dim[1].lbound; if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic for dimension 2:" " is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); } } if (GFC_DESCRIPTOR_RANK (retarray) == 1) { /* One-dimensional result may be addressed in the code below either as a row or a column matrix. We want both cases to work. */ rxstride = rystride = retarray->dim[0].stride; } else { rxstride = retarray->dim[0].stride; rystride = retarray->dim[1].stride; } if (GFC_DESCRIPTOR_RANK (a) == 1) { /* Treat it as a a row matrix A[1,count]. */ axstride = a->dim[0].stride; aystride = 1; xcount = 1; count = a->dim[0].ubound + 1 - a->dim[0].lbound; } else { axstride = a->dim[0].stride; aystride = a->dim[1].stride; count = a->dim[1].ubound + 1 - a->dim[1].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; } if (count != b->dim[0].ubound + 1 - b->dim[0].lbound) { if (count > 0 || b->dim[0].ubound + 1 - b->dim[0].lbound > 0) runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); } if (GFC_DESCRIPTOR_RANK (b) == 1) { /* Treat it as a column matrix B[count,1] */ bxstride = b->dim[0].stride; /* bystride should never be used for 1-dimensional b. in case it is we want it to cause a segfault, rather than an incorrect result. */ bystride = 0xDEADBEEF; ycount = 1; } else { bxstride = b->dim[0].stride; bystride = b->dim[1].stride; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; } abase = a->data; bbase = b->data; dest = retarray->data; /* Now that everything is set up, we're performing the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) { const int m = xcount, n = ycount, k = count, ldc = rystride; const GFC_REAL_8 one = 1, zero = 0; const int lda = (axstride == 1) ? aystride : axstride, ldb = (bxstride == 1) ? bystride : bxstride; if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { assert (gemm != NULL); gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); return; } } if (rxstride == 1 && axstride == 1 && bxstride == 1) { const GFC_REAL_8 * restrict bbase_y; GFC_REAL_8 * restrict dest_y; const GFC_REAL_8 * restrict abase_n; GFC_REAL_8 bbase_yn; if (rystride == xcount) memset (dest, 0, (sizeof (GFC_REAL_8) * xcount * ycount)); else { for (y = 0; y < ycount; y++) for (x = 0; x < xcount; x++) dest[x + y*rystride] = (GFC_REAL_8)0; } for (y = 0; y < ycount; y++) { bbase_y = bbase + y*bystride; dest_y = dest + y*rystride; for (n = 0; n < count; n++) { abase_n = abase + n*aystride; bbase_yn = bbase_y[n]; for (x = 0; x < xcount; x++) { dest_y[x] += abase_n[x] * bbase_yn; } } } } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { if (GFC_DESCRIPTOR_RANK (a) != 1) { const GFC_REAL_8 *restrict abase_x; const GFC_REAL_8 *restrict bbase_y; GFC_REAL_8 *restrict dest_y; GFC_REAL_8 s; for (y = 0; y < ycount; y++) { bbase_y = &bbase[y*bystride]; dest_y = &dest[y*rystride]; for (x = 0; x < xcount; x++) { abase_x = &abase[x*axstride]; s = (GFC_REAL_8) 0; for (n = 0; n < count; n++) s += abase_x[n] * bbase_y[n]; dest_y[x] = s; } } } else { const GFC_REAL_8 *restrict bbase_y; GFC_REAL_8 s; for (y = 0; y < ycount; y++) { bbase_y = &bbase[y*bystride]; s = (GFC_REAL_8) 0; for (n = 0; n < count; n++) s += abase[n*axstride] * bbase_y[n]; dest[y*rystride] = s; } } } else if (axstride < aystride) { for (y = 0; y < ycount; y++) for (x = 0; x < xcount; x++) dest[x*rxstride + y*rystride] = (GFC_REAL_8)0; for (y = 0; y < ycount; y++) for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { const GFC_REAL_8 *restrict bbase_y; GFC_REAL_8 s; for (y = 0; y < ycount; y++) { bbase_y = &bbase[y*bystride]; s = (GFC_REAL_8) 0; for (n = 0; n < count; n++) s += abase[n*axstride] * bbase_y[n*bxstride]; dest[y*rxstride] = s; } } else { const GFC_REAL_8 *restrict abase_x; const GFC_REAL_8 *restrict bbase_y; GFC_REAL_8 *restrict dest_y; GFC_REAL_8 s; for (y = 0; y < ycount; y++) { bbase_y = &bbase[y*bystride]; dest_y = &dest[y*rystride]; for (x = 0; x < xcount; x++) { abase_x = &abase[x*axstride]; s = (GFC_REAL_8) 0; for (n = 0; n < count; n++) s += abase_x[n*aystride] * bbase_y[n*bxstride]; dest_y[x*rxstride] = s; } } } } #endif