/* Support routines for Value Range Propagation (VRP). Copyright (C) 2005-2023 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "tree.h" #include "gimple.h" #include "ssa.h" #include "optabs-tree.h" #include "gimple-pretty-print.h" #include "diagnostic-core.h" #include "flags.h" #include "fold-const.h" #include "calls.h" #include "cfganal.h" #include "gimple-iterator.h" #include "gimple-fold.h" #include "tree-cfg.h" #include "tree-ssa-loop-niter.h" #include "tree-ssa-loop.h" #include "intl.h" #include "cfgloop.h" #include "tree-scalar-evolution.h" #include "tree-ssa-propagate.h" #include "tree-chrec.h" #include "omp-general.h" #include "case-cfn-macros.h" #include "alloc-pool.h" #include "attribs.h" #include "range.h" #include "vr-values.h" #include "cfghooks.h" #include "range-op.h" #include "gimple-range.h" /* Return true if op is in a boolean [0, 1] value-range. */ bool simplify_using_ranges::op_with_boolean_value_range_p (tree op, gimple *s) { if (TYPE_PRECISION (TREE_TYPE (op)) == 1) return true; if (integer_zerop (op) || integer_onep (op)) return true; if (TREE_CODE (op) != SSA_NAME) return false; /* ?? Errr, this should probably check for [0,0] and [1,1] as well as [0,1]. */ value_range vr; return (query->range_of_expr (vr, op, s) && vr == range_true_and_false (TREE_TYPE (op))); } /* Helper function for simplify_internal_call_using_ranges and extract_range_basic. Return true if OP0 SUBCODE OP1 for SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or always overflow. Set *OVF to true if it is known to always overflow. */ static bool check_for_binary_op_overflow (range_query *query, enum tree_code subcode, tree type, tree op0, tree op1, bool *ovf, gimple *s = NULL) { value_range vr0, vr1; if (!query->range_of_expr (vr0, op0, s) || vr0.undefined_p ()) vr0.set_varying (TREE_TYPE (op0)); if (!query->range_of_expr (vr1, op1, s) || vr1.undefined_p ()) vr1.set_varying (TREE_TYPE (op1)); tree vr0min = wide_int_to_tree (TREE_TYPE (op0), vr0.lower_bound ()); tree vr0max = wide_int_to_tree (TREE_TYPE (op0), vr0.upper_bound ()); tree vr1min = wide_int_to_tree (TREE_TYPE (op1), vr1.lower_bound ()); tree vr1max = wide_int_to_tree (TREE_TYPE (op1), vr1.upper_bound ()); *ovf = arith_overflowed_p (subcode, type, vr0min, subcode == MINUS_EXPR ? vr1max : vr1min); if (arith_overflowed_p (subcode, type, vr0max, subcode == MINUS_EXPR ? vr1min : vr1max) != *ovf) return false; if (subcode == MULT_EXPR) { if (arith_overflowed_p (subcode, type, vr0min, vr1max) != *ovf || arith_overflowed_p (subcode, type, vr0max, vr1min) != *ovf) return false; } if (*ovf) { /* So far we found that there is an overflow on the boundaries. That doesn't prove that there is an overflow even for all values in between the boundaries. For that compute widest_int range of the result and see if it doesn't overlap the range of type. */ widest_int wmin, wmax; widest_int w[4]; int i; signop sign0 = TYPE_SIGN (TREE_TYPE (op0)); signop sign1 = TYPE_SIGN (TREE_TYPE (op1)); w[0] = widest_int::from (vr0.lower_bound (), sign0); w[1] = widest_int::from (vr0.upper_bound (), sign0); w[2] = widest_int::from (vr1.lower_bound (), sign1); w[3] = widest_int::from (vr1.upper_bound (), sign1); for (i = 0; i < 4; i++) { widest_int wt; switch (subcode) { case PLUS_EXPR: wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]); break; case MINUS_EXPR: wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]); break; case MULT_EXPR: wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]); break; default: gcc_unreachable (); } if (i == 0) { wmin = wt; wmax = wt; } else { wmin = wi::smin (wmin, wt); wmax = wi::smax (wmax, wt); } } /* The result of op0 CODE op1 is known to be in range [wmin, wmax]. */ widest_int wtmin = widest_int::from (irange_val_min (type), TYPE_SIGN (type)); widest_int wtmax = widest_int::from (irange_val_max (type), TYPE_SIGN (type)); /* If all values in [wmin, wmax] are smaller than [wtmin, wtmax] or all are larger than [wtmin, wtmax], the arithmetic operation will always overflow. */ if (wmax < wtmin || wmin > wtmax) return true; return false; } return true; } /* Set INIT, STEP, and DIRECTION the the corresponding values of NAME within LOOP, and return TRUE. Otherwise return FALSE, and set R to the conservative range of NAME within the loop. */ static bool get_scev_info (vrange &r, tree name, gimple *stmt, class loop *l, tree &init, tree &step, enum ev_direction &dir) { tree ev = analyze_scalar_evolution (l, name); tree chrec = instantiate_parameters (l, ev); tree type = TREE_TYPE (name); if (TREE_CODE (chrec) != POLYNOMIAL_CHREC) { r.set_varying (type); return false; } if (is_gimple_min_invariant (chrec)) { if (is_gimple_constant (chrec)) r.set (chrec, chrec); else r.set_varying (type); return false; } init = initial_condition_in_loop_num (chrec, l->num); step = evolution_part_in_loop_num (chrec, l->num); if (!init || !step) { r.set_varying (type); return false; } dir = scev_direction (chrec); if (dir == EV_DIR_UNKNOWN || scev_probably_wraps_p (NULL, init, step, stmt, get_chrec_loop (chrec), true)) { r.set_varying (type); return false; } return true; } /* Return TRUE if STEP * NIT may overflow when calculated in TYPE. */ static bool induction_variable_may_overflow_p (tree type, const wide_int &step, const widest_int &nit) { wi::overflow_type ovf; signop sign = TYPE_SIGN (type); widest_int max_step = wi::mul (widest_int::from (step, sign), nit, sign, &ovf); if (ovf || !wi::fits_to_tree_p (max_step, type)) return true; /* For a signed type we have to check whether the result has the expected signedness which is that of the step as number of iterations is unsigned. */ return (sign == SIGNED && wi::gts_p (max_step, 0) != wi::gts_p (step, 0)); } /* Set R to the range from BEGIN to END, assuming the direction of the loop is DIR. */ static void range_from_loop_direction (irange &r, tree type, const irange &begin, const irange &end, ev_direction dir) { signop sign = TYPE_SIGN (type); if (begin.undefined_p () || end.undefined_p ()) r.set_varying (type); else if (dir == EV_DIR_GROWS) { if (wi::gt_p (begin.lower_bound (), end.upper_bound (), sign)) r.set_varying (type); else r = int_range<1> (type, begin.lower_bound (), end.upper_bound ()); } else { if (wi::gt_p (end.lower_bound (), begin.upper_bound (), sign)) r.set_varying (type); else r = int_range<1> (type, end.lower_bound (), begin.upper_bound ()); } } /* Set V to the range of NAME in STMT within LOOP. Return TRUE if a range was found. */ bool range_of_var_in_loop (vrange &v, tree name, class loop *l, gimple *stmt, range_query *query) { tree init, step; enum ev_direction dir; if (!get_scev_info (v, name, stmt, l, init, step, dir)) return true; // Calculate ranges for the values from SCEV. irange &r = as_a (v); tree type = TREE_TYPE (init); int_range<2> rinit (type), rstep (type), max_init (type); if (!query->range_of_expr (rinit, init, stmt) || !query->range_of_expr (rstep, step, stmt)) return false; // Calculate the final range of NAME if possible. if (rinit.singleton_p () && rstep.singleton_p ()) { widest_int nit; if (!max_loop_iterations (l, &nit)) return false; if (!induction_variable_may_overflow_p (type, rstep.lower_bound (), nit)) { // Calculate the max bounds for init (init + niter * step). wide_int w = wide_int::from (nit, TYPE_PRECISION (type), TYPE_SIGN (type)); int_range<1> niter (type, w, w); int_range_max max_step; range_op_handler mult_handler (MULT_EXPR, type); range_op_handler plus_handler (PLUS_EXPR, type); if (!mult_handler.fold_range (max_step, type, niter, rstep) || !plus_handler.fold_range (max_init, type, rinit, max_step)) return false; } } range_from_loop_direction (r, type, rinit, max_init, dir); return true; } /* Helper function for vrp_evaluate_conditional_warnv & other optimizers. */ tree simplify_using_ranges::fold_cond_with_ops (enum tree_code code, tree op0, tree op1, gimple *s) { int_range_max r0, r1; if (!query->range_of_expr (r0, op0, s) || !query->range_of_expr (r1, op1, s)) return NULL_TREE; tree type = TREE_TYPE (op0); int_range<1> res; range_op_handler handler (code, type); if (handler && handler.fold_range (res, type, r0, r1)) { if (res == range_true (type)) return boolean_true_node; if (res == range_false (type)) return boolean_false_node; } return NULL; } /* Helper function for legacy_fold_cond. */ tree simplify_using_ranges::legacy_fold_cond_overflow (gimple *stmt) { tree ret; tree_code code = gimple_cond_code (stmt); tree op0 = gimple_cond_lhs (stmt); tree op1 = gimple_cond_rhs (stmt); /* We only deal with integral and pointer types. */ if (!INTEGRAL_TYPE_P (TREE_TYPE (op0)) && !POINTER_TYPE_P (TREE_TYPE (op0))) return NULL_TREE; /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed as a simple equality test, then prefer that over its current form for evaluation. An overflow test which collapses to an equality test can always be expressed as a comparison of one argument against zero. Overflow occurs when the chosen argument is zero and does not occur if the chosen argument is not zero. */ tree x; if (overflow_comparison_p (code, op0, op1, &x)) { wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED); /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0) B = A - 1; if (A > B) -> B = A - 1; if (A != 0) B = A + 1; if (B < A) -> B = A + 1; if (B == 0) B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */ if (integer_zerop (x)) { op1 = x; code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR; } /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0) B = A + 1; if (A < B) -> B = A + 1; if (B != 0) B = A - 1; if (B > A) -> B = A - 1; if (A == 0) B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */ else if (wi::to_wide (x) == max - 1) { op0 = op1; op1 = wide_int_to_tree (TREE_TYPE (op0), 0); code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR; } else { value_range vro, vri; tree type = TREE_TYPE (op0); if (code == GT_EXPR || code == GE_EXPR) { vro.set (type, wi::to_wide (TYPE_MIN_VALUE (type)), wi::to_wide (x), VR_ANTI_RANGE); vri.set (type, wi::to_wide (TYPE_MIN_VALUE (type)), wi::to_wide (x)); } else if (code == LT_EXPR || code == LE_EXPR) { vro.set (type, wi::to_wide (TYPE_MIN_VALUE (type)), wi::to_wide (x)); vri.set (type, wi::to_wide (TYPE_MIN_VALUE (type)), wi::to_wide (x), VR_ANTI_RANGE); } else gcc_unreachable (); value_range vr0; if (!query->range_of_expr (vr0, op0, stmt)) vr0.set_varying (TREE_TYPE (op0)); /* If vro, the range for OP0 to pass the overflow test, has no intersection with *vr0, OP0's known range, then the overflow test can't pass, so return the node for false. If it is the inverted range, vri, that has no intersection, then the overflow test must pass, so return the node for true. In other cases, we could proceed with a simplified condition comparing OP0 and X, with LE_EXPR for previously LE_ or LT_EXPR and GT_EXPR otherwise, but the comments next to the enclosing if suggest it's not generally profitable to do so. */ vro.intersect (vr0); if (vro.undefined_p ()) return boolean_false_node; vri.intersect (vr0); if (vri.undefined_p ()) return boolean_true_node; } } if ((ret = fold_cond_with_ops (code, op0, op1, stmt))) return ret; return NULL_TREE; } /* Visit conditional statement STMT. If we can determine which edge will be taken out of STMT's basic block, record it in *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */ void simplify_using_ranges::legacy_fold_cond (gcond *stmt, edge *taken_edge_p) { tree val; *taken_edge_p = NULL; if (dump_file && (dump_flags & TDF_DETAILS)) { tree use; ssa_op_iter i; fprintf (dump_file, "\nVisiting conditional with predicate: "); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "\nWith known ranges\n"); FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE) { fprintf (dump_file, "\t"); print_generic_expr (dump_file, use); fprintf (dump_file, ": "); Value_Range r (TREE_TYPE (use)); query->range_of_expr (r, use, stmt); r.dump (dump_file); } fprintf (dump_file, "\n"); } val = legacy_fold_cond_overflow (stmt); if (val) *taken_edge_p = find_taken_edge (gimple_bb (stmt), val); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nPredicate evaluates to: "); if (val == NULL_TREE) fprintf (dump_file, "DON'T KNOW\n"); else print_generic_stmt (dump_file, val); } } /* Searches the case label vector VEC for the ranges of CASE_LABELs that are used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1. Returns true if the default label is not needed. */ static bool find_case_label_ranges (gswitch *stmt, const value_range *vr, size_t *min_idx1, size_t *max_idx1, size_t *min_idx2, size_t *max_idx2) { size_t i, j, k, l; unsigned int n = gimple_switch_num_labels (stmt); bool take_default; tree case_low, case_high; tree min, max; value_range_kind kind = get_legacy_range (*vr, min, max); gcc_checking_assert (!vr->varying_p () && !vr->undefined_p ()); take_default = !find_case_label_range (stmt, min, max, &i, &j); /* Set second range to empty. */ *min_idx2 = 1; *max_idx2 = 0; if (kind == VR_RANGE) { *min_idx1 = i; *max_idx1 = j; return !take_default; } /* Set first range to all case labels. */ *min_idx1 = 1; *max_idx1 = n - 1; if (i > j) return false; /* Make sure all the values of case labels [i , j] are contained in range [MIN, MAX]. */ case_low = CASE_LOW (gimple_switch_label (stmt, i)); case_high = CASE_HIGH (gimple_switch_label (stmt, j)); if (tree_int_cst_compare (case_low, min) < 0) i += 1; if (case_high != NULL_TREE && tree_int_cst_compare (max, case_high) < 0) j -= 1; if (i > j) return false; /* If the range spans case labels [i, j], the corresponding anti-range spans the labels [1, i - 1] and [j + 1, n - 1]. */ k = j + 1; l = n - 1; if (k > l) { k = 1; l = 0; } j = i - 1; i = 1; if (i > j) { i = k; j = l; k = 1; l = 0; } *min_idx1 = i; *max_idx1 = j; *min_idx2 = k; *max_idx2 = l; return false; } /* Simplify boolean operations if the source is known to be already a boolean. */ bool simplify_using_ranges::simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree lhs, op0, op1; bool need_conversion; /* We handle only !=/== case here. */ gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR); op0 = gimple_assign_rhs1 (stmt); if (!op_with_boolean_value_range_p (op0, stmt)) return false; op1 = gimple_assign_rhs2 (stmt); if (!op_with_boolean_value_range_p (op1, stmt)) return false; /* Reduce number of cases to handle to NE_EXPR. As there is no BIT_XNOR_EXPR we cannot replace A == B with a single statement. */ if (rhs_code == EQ_EXPR) { if (TREE_CODE (op1) == INTEGER_CST) op1 = int_const_binop (BIT_XOR_EXPR, op1, build_int_cst (TREE_TYPE (op1), 1)); else return false; } lhs = gimple_assign_lhs (stmt); need_conversion = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)); /* Make sure to not sign-extend a 1-bit 1 when converting the result. */ if (need_conversion && !TYPE_UNSIGNED (TREE_TYPE (op0)) && TYPE_PRECISION (TREE_TYPE (op0)) == 1 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1) return false; /* For A != 0 we can substitute A itself. */ if (integer_zerop (op1)) gimple_assign_set_rhs_with_ops (gsi, need_conversion ? NOP_EXPR : TREE_CODE (op0), op0); /* For A != B we substitute A ^ B. Either with conversion. */ else if (need_conversion) { tree tem = make_ssa_name (TREE_TYPE (op0)); gassign *newop = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1); gsi_insert_before (gsi, newop, GSI_SAME_STMT); if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) && TYPE_PRECISION (TREE_TYPE (tem)) > 1) { value_range vr (TREE_TYPE (tem), wi::zero (TYPE_PRECISION (TREE_TYPE (tem))), wi::one (TYPE_PRECISION (TREE_TYPE (tem)))); set_range_info (tem, vr); } gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem); } /* Or without. */ else gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1); update_stmt (gsi_stmt (*gsi)); fold_stmt (gsi, follow_single_use_edges); return true; } /* Simplify a division or modulo operator to a right shift or bitwise and if the first operand is unsigned or is greater than zero and the second operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with constant op1 (op1min = op1) or with op1 in [op1min, op1max] range, optimize it into just op0 if op0's range is known to be a subset of [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned modulo. */ bool simplify_using_ranges::simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree val = NULL; tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); tree op0min = NULL_TREE, op0max = NULL_TREE; tree op1min = op1; value_range vr; if (TREE_CODE (op0) == INTEGER_CST) { op0min = op0; op0max = op0; } else { if (!query->range_of_expr (vr, op0, stmt)) vr.set_varying (TREE_TYPE (op0)); if (!vr.varying_p () && !vr.undefined_p ()) { tree type = vr.type (); op0min = wide_int_to_tree (type, vr.lower_bound ()); op0max = wide_int_to_tree (type, vr.upper_bound ()); } } if (rhs_code == TRUNC_MOD_EXPR && TREE_CODE (op1) == SSA_NAME) { value_range vr1; if (!query->range_of_expr (vr1, op1, stmt)) vr1.set_varying (TREE_TYPE (op1)); if (!vr1.varying_p () && !vr1.undefined_p ()) op1min = wide_int_to_tree (vr1.type (), vr1.lower_bound ()); } if (rhs_code == TRUNC_MOD_EXPR && TREE_CODE (op1min) == INTEGER_CST && tree_int_cst_sgn (op1min) == 1 && op0max && tree_int_cst_lt (op0max, op1min)) { if (TYPE_UNSIGNED (TREE_TYPE (op0)) || tree_int_cst_sgn (op0min) >= 0 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min), op0min)) { /* If op0 already has the range op0 % op1 has, then TRUNC_MOD_EXPR won't change anything. */ gimple_assign_set_rhs_from_tree (gsi, op0); return true; } } if (TREE_CODE (op0) != SSA_NAME) return false; if (!integer_pow2p (op1)) { /* X % -Y can be only optimized into X % Y either if X is not INT_MIN, or Y is not -1. Fold it now, as after remove_range_assertions the range info might be not available anymore. */ if (rhs_code == TRUNC_MOD_EXPR && fold_stmt (gsi, follow_single_use_edges)) return true; return false; } if (TYPE_UNSIGNED (TREE_TYPE (op0))) val = integer_one_node; else { tree zero = build_zero_cst (TREE_TYPE (op0)); val = fold_cond_with_ops (GE_EXPR, op0, zero, stmt); } if (val && integer_onep (val)) { tree t; if (rhs_code == TRUNC_DIV_EXPR) { t = build_int_cst (integer_type_node, tree_log2 (op1)); gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR); gimple_assign_set_rhs1 (stmt, op0); gimple_assign_set_rhs2 (stmt, t); } else { t = build_int_cst (TREE_TYPE (op1), 1); t = int_const_binop (MINUS_EXPR, op1, t); t = fold_convert (TREE_TYPE (op0), t); gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR); gimple_assign_set_rhs1 (stmt, op0); gimple_assign_set_rhs2 (stmt, t); } update_stmt (stmt); fold_stmt (gsi, follow_single_use_edges); return true; } return false; } /* Simplify a min or max if the ranges of the two operands are disjoint. Return true if we do simplify. */ bool simplify_using_ranges::simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); tree val; val = fold_cond_with_ops (LE_EXPR, op0, op1, stmt); if (!val) val = fold_cond_with_ops (LT_EXPR, op0, op1, stmt); if (val) { /* VAL == TRUE -> OP0 < or <= op1 VAL == FALSE -> OP0 > or >= op1. */ tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR) == integer_zerop (val)) ? op0 : op1; gimple_assign_set_rhs_from_tree (gsi, res); return true; } return false; } /* If the operand to an ABS_EXPR is >= 0, then eliminate the ABS_EXPR. If the operand is <= 0, then simplify the ABS_EXPR into a NEGATE_EXPR. */ bool simplify_using_ranges::simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree op = gimple_assign_rhs1 (stmt); tree zero = build_zero_cst (TREE_TYPE (op)); tree val = fold_cond_with_ops (LE_EXPR, op, zero, stmt); if (!val) { /* The range is neither <= 0 nor > 0. Now see if it is either < 0 or >= 0. */ val = fold_cond_with_ops (LT_EXPR, op, zero, stmt); } if (val) { gimple_assign_set_rhs1 (stmt, op); if (integer_zerop (val)) gimple_assign_set_rhs_code (stmt, SSA_NAME); else gimple_assign_set_rhs_code (stmt, NEGATE_EXPR); update_stmt (stmt); fold_stmt (gsi, follow_single_use_edges); return true; } return false; } /* value_range wrapper for wi_set_zero_nonzero_bits. Return TRUE if VR was a constant range and we were able to compute the bit masks. */ static bool vr_set_zero_nonzero_bits (const tree expr_type, const irange *vr, wide_int *may_be_nonzero, wide_int *must_be_nonzero) { if (vr->varying_p () || vr->undefined_p ()) { *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type)); *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type)); return false; } wi_set_zero_nonzero_bits (expr_type, vr->lower_bound (), vr->upper_bound (), *may_be_nonzero, *must_be_nonzero); return true; } /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR. If all the bits that are being cleared by & are already known to be zero from VR, or all the bits that are being set by | are already known to be one from VR, the bit operation is redundant. */ bool simplify_using_ranges::simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree op0 = gimple_assign_rhs1 (stmt); tree op1 = gimple_assign_rhs2 (stmt); tree op = NULL_TREE; value_range vr0, vr1; wide_int may_be_nonzero0, may_be_nonzero1; wide_int must_be_nonzero0, must_be_nonzero1; wide_int mask; if (!query->range_of_expr (vr0, op0, stmt) || vr0.undefined_p ()) return false; if (!query->range_of_expr (vr1, op1, stmt) || vr1.undefined_p ()) return false; if (!vr_set_zero_nonzero_bits (TREE_TYPE (op0), &vr0, &may_be_nonzero0, &must_be_nonzero0)) return false; if (!vr_set_zero_nonzero_bits (TREE_TYPE (op1), &vr1, &may_be_nonzero1, &must_be_nonzero1)) return false; switch (gimple_assign_rhs_code (stmt)) { case BIT_AND_EXPR: mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1); if (mask == 0) { op = op0; break; } mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0); if (mask == 0) { op = op1; break; } break; case BIT_IOR_EXPR: mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1); if (mask == 0) { op = op1; break; } mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0); if (mask == 0) { op = op0; break; } break; default: gcc_unreachable (); } if (op == NULL_TREE) return false; gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op); update_stmt (gsi_stmt (*gsi)); return true; } /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has a known value range VR. If there is one and only one value which will satisfy the conditional, then return that value. Else return NULL. If signed overflow must be undefined for the value to satisfy the conditional, then set *STRICT_OVERFLOW_P to true. */ static tree test_for_singularity (enum tree_code cond_code, tree op0, tree op1, const value_range *vr) { tree min = NULL; tree max = NULL; /* Extract minimum/maximum values which satisfy the conditional as it was written. */ if (cond_code == LE_EXPR || cond_code == LT_EXPR) { min = TYPE_MIN_VALUE (TREE_TYPE (op0)); max = op1; if (cond_code == LT_EXPR) { tree one = build_int_cst (TREE_TYPE (op0), 1); max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one); /* Signal to compare_values_warnv this expr doesn't overflow. */ if (EXPR_P (max)) suppress_warning (max, OPT_Woverflow); } } else if (cond_code == GE_EXPR || cond_code == GT_EXPR) { max = TYPE_MAX_VALUE (TREE_TYPE (op0)); min = op1; if (cond_code == GT_EXPR) { tree one = build_int_cst (TREE_TYPE (op0), 1); min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one); /* Signal to compare_values_warnv this expr doesn't overflow. */ if (EXPR_P (min)) suppress_warning (min, OPT_Woverflow); } } /* Now refine the minimum and maximum values using any value range information we have for op0. */ if (min && max) { tree type = TREE_TYPE (op0); tree tmin = wide_int_to_tree (type, vr->lower_bound ()); tree tmax = wide_int_to_tree (type, vr->upper_bound ()); if (compare_values (tmin, min) == 1) min = tmin; if (compare_values (tmax, max) == -1) max = tmax; /* If the new min/max values have converged to a single value, then there is only one value which can satisfy the condition, return that value. */ if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min)) return min; } return NULL; } /* Return whether the value range *VR fits in an integer type specified by PRECISION and UNSIGNED_P. */ bool range_fits_type_p (const irange *vr, unsigned dest_precision, signop dest_sgn) { tree src_type; unsigned src_precision; widest_int tem; signop src_sgn; /* We can only handle integral and pointer types. */ src_type = vr->type (); if (!INTEGRAL_TYPE_P (src_type) && !POINTER_TYPE_P (src_type)) return false; /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED, and so is an identity transform. */ src_precision = TYPE_PRECISION (vr->type ()); src_sgn = TYPE_SIGN (src_type); if ((src_precision < dest_precision && !(dest_sgn == UNSIGNED && src_sgn == SIGNED)) || (src_precision == dest_precision && src_sgn == dest_sgn)) return true; /* Now we can only handle ranges with constant bounds. */ if (vr->undefined_p () || vr->varying_p ()) return false; wide_int vrmin = vr->lower_bound (); wide_int vrmax = vr->upper_bound (); /* For sign changes, the MSB of the wide_int has to be clear. An unsigned value with its MSB set cannot be represented by a signed wide_int, while a negative value cannot be represented by an unsigned wide_int. */ if (src_sgn != dest_sgn && (wi::lts_p (vrmin, 0) || wi::lts_p (vrmax, 0))) return false; /* Then we can perform the conversion on both ends and compare the result for equality. */ signop sign = TYPE_SIGN (vr->type ()); tem = wi::ext (widest_int::from (vrmin, sign), dest_precision, dest_sgn); if (tem != widest_int::from (vrmin, sign)) return false; tem = wi::ext (widest_int::from (vrmax, sign), dest_precision, dest_sgn); if (tem != widest_int::from (vrmax, sign)) return false; return true; } // Clear edge E of EDGE_EXECUTABLE (it is unexecutable). If it wasn't // previously clear, propagate to successor blocks if appropriate. void simplify_using_ranges::set_and_propagate_unexecutable (edge e) { // If not_executable is already set, we're done. // This works in the absence of a flag as well. if ((e->flags & m_not_executable_flag) == m_not_executable_flag) return; e->flags |= m_not_executable_flag; m_flag_set_edges.safe_push (e); // Check if the destination block needs to propagate the property. basic_block bb = e->dest; // If any incoming edge is executable, we are done. edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if ((e->flags & m_not_executable_flag) == 0) return; // This block is also unexecutable, propagate to all exit edges as well. FOR_EACH_EDGE (e, ei, bb->succs) set_and_propagate_unexecutable (e); } /* If COND can be folded entirely as TRUE or FALSE, rewrite the conditional as such, and return TRUE. */ bool simplify_using_ranges::fold_cond (gcond *cond) { int_range_max r; if (query->range_of_stmt (r, cond) && r.singleton_p ()) { // COND has already been folded if arguments are constant. if (TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME && TREE_CODE (gimple_cond_rhs (cond)) != SSA_NAME) return false; if (dump_file) { fprintf (dump_file, "Folding predicate "); print_gimple_expr (dump_file, cond, 0); fprintf (dump_file, " to "); } edge e0 = EDGE_SUCC (gimple_bb (cond), 0); edge e1 = EDGE_SUCC (gimple_bb (cond), 1); if (r.zero_p ()) { if (dump_file) fprintf (dump_file, "0\n"); gimple_cond_make_false (cond); if (e0->flags & EDGE_TRUE_VALUE) set_and_propagate_unexecutable (e0); else set_and_propagate_unexecutable (e1); } else { if (dump_file) fprintf (dump_file, "1\n"); gimple_cond_make_true (cond); if (e0->flags & EDGE_FALSE_VALUE) set_and_propagate_unexecutable (e0); else set_and_propagate_unexecutable (e1); } update_stmt (cond); return true; } // FIXME: Audit the code below and make sure it never finds anything. edge taken_edge; legacy_fold_cond (cond, &taken_edge); if (taken_edge) { if (taken_edge->flags & EDGE_TRUE_VALUE) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nVRP Predicate evaluates to: 1\n"); gimple_cond_make_true (cond); } else if (taken_edge->flags & EDGE_FALSE_VALUE) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nVRP Predicate evaluates to: 0\n"); gimple_cond_make_false (cond); } else gcc_unreachable (); update_stmt (cond); return true; } return false; } /* Simplify a conditional using a relational operator to an equality test if the range information indicates only one value can satisfy the original conditional. */ bool simplify_using_ranges::simplify_cond_using_ranges_1 (gcond *stmt) { tree op0 = gimple_cond_lhs (stmt); tree op1 = gimple_cond_rhs (stmt); enum tree_code cond_code = gimple_cond_code (stmt); if (fold_cond (stmt)) return true; if (cond_code != NE_EXPR && cond_code != EQ_EXPR && TREE_CODE (op0) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (op0)) && is_gimple_min_invariant (op1)) { value_range vr; if (!query->range_of_expr (vr, op0, stmt)) vr.set_undefined (); /* If we have range information for OP0, then we might be able to simplify this conditional. */ if (!vr.undefined_p () && !vr.varying_p ()) { tree new_tree = test_for_singularity (cond_code, op0, op1, &vr); if (new_tree) { if (dump_file) { fprintf (dump_file, "Simplified relational "); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, " into "); } gimple_cond_set_code (stmt, EQ_EXPR); gimple_cond_set_lhs (stmt, op0); gimple_cond_set_rhs (stmt, new_tree); update_stmt (stmt); if (dump_file) { print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "\n"); } return true; } /* Try again after inverting the condition. We only deal with integral types here, so no need to worry about issues with inverting FP comparisons. */ new_tree = test_for_singularity (invert_tree_comparison (cond_code, false), op0, op1, &vr); if (new_tree) { if (dump_file) { fprintf (dump_file, "Simplified relational "); print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, " into "); } gimple_cond_set_code (stmt, NE_EXPR); gimple_cond_set_lhs (stmt, op0); gimple_cond_set_rhs (stmt, new_tree); update_stmt (stmt); if (dump_file) { print_gimple_stmt (dump_file, stmt, 0); fprintf (dump_file, "\n"); } return true; } } } // Try to simplify casted conditions. return simplify_casted_cond (stmt); } /* STMT is a conditional at the end of a basic block. If the conditional is of the form SSA_NAME op constant and the SSA_NAME was set via a type conversion, try to replace the SSA_NAME with the RHS of the type conversion. Doing so makes the conversion dead which helps subsequent passes. */ bool simplify_using_ranges::simplify_casted_cond (gcond *stmt) { tree op0 = gimple_cond_lhs (stmt); tree op1 = gimple_cond_rhs (stmt); /* If we have a comparison of an SSA_NAME (OP0) against a constant, see if OP0 was set by a type conversion where the source of the conversion is another SSA_NAME with a range that fits into the range of OP0's type. If so, the conversion is redundant as the earlier SSA_NAME can be used for the comparison directly if we just massage the constant in the comparison. */ if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == INTEGER_CST) { gimple *def_stmt = SSA_NAME_DEF_STMT (op0); tree innerop; if (!is_gimple_assign (def_stmt)) return false; switch (gimple_assign_rhs_code (def_stmt)) { CASE_CONVERT: innerop = gimple_assign_rhs1 (def_stmt); break; case VIEW_CONVERT_EXPR: innerop = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0); if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))) return false; break; default: return false; } if (TREE_CODE (innerop) == SSA_NAME && !POINTER_TYPE_P (TREE_TYPE (innerop)) && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop) && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0))) { value_range vr; if (query->range_of_expr (vr, innerop) && !vr.varying_p () && !vr.undefined_p () && range_fits_type_p (&vr, TYPE_PRECISION (TREE_TYPE (op0)), TYPE_SIGN (TREE_TYPE (op0))) && int_fits_type_p (op1, TREE_TYPE (innerop))) { tree newconst = fold_convert (TREE_TYPE (innerop), op1); gimple_cond_set_lhs (stmt, innerop); gimple_cond_set_rhs (stmt, newconst); update_stmt (stmt); return true; } } } return false; } /* Simplify a switch statement using the value range of the switch argument. */ bool simplify_using_ranges::simplify_switch_using_ranges (gswitch *stmt) { tree op = gimple_switch_index (stmt); value_range vr; bool take_default; edge e; edge_iterator ei; size_t i = 0, j = 0, n, n2; tree vec2; switch_update su; size_t k = 1, l = 0; if (TREE_CODE (op) == SSA_NAME) { if (!query->range_of_expr (vr, op, stmt) || vr.varying_p () || vr.undefined_p ()) return false; /* Find case label for min/max of the value range. */ take_default = !find_case_label_ranges (stmt, &vr, &i, &j, &k, &l); } else if (TREE_CODE (op) == INTEGER_CST) { take_default = !find_case_label_index (stmt, 1, op, &i); if (take_default) { i = 1; j = 0; } else { j = i; } } else return false; n = gimple_switch_num_labels (stmt); /* We can truncate the case label ranges that partially overlap with OP's value range. */ size_t min_idx = 1, max_idx = 0; tree min, max; value_range_kind kind = get_legacy_range (vr, min, max); if (!vr.undefined_p ()) find_case_label_range (stmt, min, max, &min_idx, &max_idx); if (min_idx <= max_idx) { tree min_label = gimple_switch_label (stmt, min_idx); tree max_label = gimple_switch_label (stmt, max_idx); /* Avoid changing the type of the case labels when truncating. */ tree case_label_type = TREE_TYPE (CASE_LOW (min_label)); tree vr_min = fold_convert (case_label_type, min); tree vr_max = fold_convert (case_label_type, max); if (kind == VR_RANGE) { /* If OP's value range is [2,8] and the low label range is 0 ... 3, truncate the label's range to 2 .. 3. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0) CASE_LOW (min_label) = vr_min; /* If OP's value range is [2,8] and the high label range is 7 ... 10, truncate the label's range to 7 .. 8. */ if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0 && CASE_HIGH (max_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0) CASE_HIGH (max_label) = vr_max; } else if (kind == VR_ANTI_RANGE) { tree one_cst = build_one_cst (case_label_type); if (min_label == max_label) { /* If OP's value range is ~[7,8] and the label's range is 7 ... 10, truncate the label's range to 9 ... 10. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0) CASE_LOW (min_label) = int_const_binop (PLUS_EXPR, vr_max, one_cst); /* If OP's value range is ~[7,8] and the label's range is 5 ... 8, truncate the label's range to 5 ... 6. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0) CASE_HIGH (min_label) = int_const_binop (MINUS_EXPR, vr_min, one_cst); } else { /* If OP's value range is ~[2,8] and the low label range is 0 ... 3, truncate the label's range to 0 ... 1. */ if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 && CASE_HIGH (min_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0) CASE_HIGH (min_label) = int_const_binop (MINUS_EXPR, vr_min, one_cst); /* If OP's value range is ~[2,8] and the high label range is 7 ... 10, truncate the label's range to 9 ... 10. */ if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0 && CASE_HIGH (max_label) != NULL_TREE && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0) CASE_LOW (max_label) = int_const_binop (PLUS_EXPR, vr_max, one_cst); } } /* Canonicalize singleton case ranges. */ if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label))) CASE_HIGH (min_label) = NULL_TREE; if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label))) CASE_HIGH (max_label) = NULL_TREE; } /* We can also eliminate case labels that lie completely outside OP's value range. */ /* Bail out if this is just all edges taken. */ if (i == 1 && j == n - 1 && take_default) return false; /* Build a new vector of taken case labels. */ vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default); n2 = 0; /* Add the default edge, if necessary. */ if (take_default) TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt); for (; i <= j; ++i, ++n2) TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i); for (; k <= l; ++k, ++n2) TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k); /* Mark needed edges. */ for (i = 0; i < n2; ++i) { e = find_edge (gimple_bb (stmt), label_to_block (cfun, CASE_LABEL (TREE_VEC_ELT (vec2, i)))); e->aux = (void *)-1; } /* Queue not needed edges for later removal. */ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) { if (e->aux == (void *)-1) { e->aux = NULL; continue; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "removing unreachable case label\n"); } to_remove_edges.safe_push (e); set_and_propagate_unexecutable (e); e->flags &= ~EDGE_EXECUTABLE; e->flags |= EDGE_IGNORE; } /* And queue an update for the stmt. */ su.stmt = stmt; su.vec = vec2; to_update_switch_stmts.safe_push (su); return true; } void simplify_using_ranges::cleanup_edges_and_switches (void) { int i; edge e; switch_update *su; /* Clear any edges marked as not executable. */ if (m_not_executable_flag) { FOR_EACH_VEC_ELT (m_flag_set_edges, i, e) e->flags &= ~m_not_executable_flag; } /* Remove dead edges from SWITCH_EXPR optimization. This leaves the CFG in a broken state and requires a cfg_cleanup run. */ FOR_EACH_VEC_ELT (to_remove_edges, i, e) remove_edge (e); /* Update SWITCH_EXPR case label vector. */ FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su) { size_t j; size_t n = TREE_VEC_LENGTH (su->vec); tree label; gimple_switch_set_num_labels (su->stmt, n); for (j = 0; j < n; j++) gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j)); /* As we may have replaced the default label with a regular one make sure to make it a real default label again. This ensures optimal expansion. */ label = gimple_switch_label (su->stmt, 0); CASE_LOW (label) = NULL_TREE; CASE_HIGH (label) = NULL_TREE; } if (!to_remove_edges.is_empty ()) { free_dominance_info (CDI_DOMINATORS); loops_state_set (LOOPS_NEED_FIXUP); } to_remove_edges.release (); to_update_switch_stmts.release (); } /* Simplify an integral conversion from an SSA name in STMT. */ static bool simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree innerop, middleop, finaltype; gimple *def_stmt; signop inner_sgn, middle_sgn, final_sgn; unsigned inner_prec, middle_prec, final_prec; widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax; finaltype = TREE_TYPE (gimple_assign_lhs (stmt)); if (!INTEGRAL_TYPE_P (finaltype)) return false; middleop = gimple_assign_rhs1 (stmt); def_stmt = SSA_NAME_DEF_STMT (middleop); if (!is_gimple_assign (def_stmt) || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))) return false; innerop = gimple_assign_rhs1 (def_stmt); if (TREE_CODE (innerop) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)) return false; /* Get the value-range of the inner operand. Use global ranges in case innerop was created during substitute-and-fold. */ wide_int imin, imax; value_range vr; if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))) return false; get_range_query (cfun)->range_of_expr (vr, innerop, stmt); if (vr.undefined_p () || vr.varying_p ()) return false; innermin = widest_int::from (vr.lower_bound (), TYPE_SIGN (TREE_TYPE (innerop))); innermax = widest_int::from (vr.upper_bound (), TYPE_SIGN (TREE_TYPE (innerop))); /* Simulate the conversion chain to check if the result is equal if the middle conversion is removed. */ inner_prec = TYPE_PRECISION (TREE_TYPE (innerop)); middle_prec = TYPE_PRECISION (TREE_TYPE (middleop)); final_prec = TYPE_PRECISION (finaltype); /* If the first conversion is not injective, the second must not be widening. */ if (wi::gtu_p (innermax - innermin, wi::mask (middle_prec, false)) && middle_prec < final_prec) return false; /* We also want a medium value so that we can track the effect that narrowing conversions with sign change have. */ inner_sgn = TYPE_SIGN (TREE_TYPE (innerop)); if (inner_sgn == UNSIGNED) innermed = wi::shifted_mask (1, inner_prec - 1, false); else innermed = 0; if (wi::cmp (innermin, innermed, inner_sgn) >= 0 || wi::cmp (innermed, innermax, inner_sgn) >= 0) innermed = innermin; middle_sgn = TYPE_SIGN (TREE_TYPE (middleop)); middlemin = wi::ext (innermin, middle_prec, middle_sgn); middlemed = wi::ext (innermed, middle_prec, middle_sgn); middlemax = wi::ext (innermax, middle_prec, middle_sgn); /* Require that the final conversion applied to both the original and the intermediate range produces the same result. */ final_sgn = TYPE_SIGN (finaltype); if (wi::ext (middlemin, final_prec, final_sgn) != wi::ext (innermin, final_prec, final_sgn) || wi::ext (middlemed, final_prec, final_sgn) != wi::ext (innermed, final_prec, final_sgn) || wi::ext (middlemax, final_prec, final_sgn) != wi::ext (innermax, final_prec, final_sgn)) return false; gimple_assign_set_rhs1 (stmt, innerop); fold_stmt (gsi, follow_single_use_edges); return true; } /* Simplify a conversion from integral SSA name to float in STMT. */ bool simplify_using_ranges::simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { tree rhs1 = gimple_assign_rhs1 (stmt); value_range vr; scalar_float_mode fltmode = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))); scalar_int_mode mode; tree tem; gassign *conv; /* We can only handle constant ranges. */ if (!query->range_of_expr (vr, rhs1, stmt) || vr.varying_p () || vr.undefined_p ()) return false; /* First check if we can use a signed type in place of an unsigned. */ scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1)); if (TYPE_UNSIGNED (TREE_TYPE (rhs1)) && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing && range_fits_type_p (&vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED)) mode = rhs_mode; /* If we can do the conversion in the current input mode do nothing. */ else if (can_float_p (fltmode, rhs_mode, TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing) return false; /* Otherwise search for a mode we can use, starting from the narrowest integer mode available. */ else { mode = NARROWEST_INT_MODE; for (;;) { /* If we cannot do a signed conversion to float from mode or if the value-range does not fit in the signed type try with a wider mode. */ if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing && range_fits_type_p (&vr, GET_MODE_PRECISION (mode), SIGNED)) break; /* But do not widen the input. Instead leave that to the optabs expansion code. */ if (!GET_MODE_WIDER_MODE (mode).exists (&mode) || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1))) return false; } } /* It works, insert a truncation or sign-change before the float conversion. */ tem = make_ssa_name (build_nonstandard_integer_type (GET_MODE_PRECISION (mode), 0)); conv = gimple_build_assign (tem, NOP_EXPR, rhs1); gsi_insert_before (gsi, conv, GSI_SAME_STMT); gimple_assign_set_rhs1 (stmt, tem); fold_stmt (gsi, follow_single_use_edges); return true; } /* Simplify an internal fn call using ranges if possible. */ bool simplify_using_ranges::simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) { enum tree_code subcode; bool is_ubsan = false; bool ovf = false; switch (gimple_call_internal_fn (stmt)) { case IFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; is_ubsan = true; break; case IFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; is_ubsan = true; break; case IFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; is_ubsan = true; break; case IFN_ADD_OVERFLOW: subcode = PLUS_EXPR; break; case IFN_SUB_OVERFLOW: subcode = MINUS_EXPR; break; case IFN_MUL_OVERFLOW: subcode = MULT_EXPR; break; default: return false; } tree op0 = gimple_call_arg (stmt, 0); tree op1 = gimple_call_arg (stmt, 1); tree type; if (is_ubsan) { type = TREE_TYPE (op0); if (VECTOR_TYPE_P (type)) return false; } else if (gimple_call_lhs (stmt) == NULL_TREE) return false; else type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt))); if (!check_for_binary_op_overflow (query, subcode, type, op0, op1, &ovf, stmt) || (is_ubsan && ovf)) return false; gimple *g; location_t loc = gimple_location (stmt); if (is_ubsan) g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1); else { int prec = TYPE_PRECISION (type); tree utype = type; if (ovf || !useless_type_conversion_p (type, TREE_TYPE (op0)) || !useless_type_conversion_p (type, TREE_TYPE (op1))) utype = build_nonstandard_integer_type (prec, 1); if (TREE_CODE (op0) == INTEGER_CST) op0 = fold_convert (utype, op0); else if (!useless_type_conversion_p (utype, TREE_TYPE (op0))) { g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); op0 = gimple_assign_lhs (g); } if (TREE_CODE (op1) == INTEGER_CST) op1 = fold_convert (utype, op1); else if (!useless_type_conversion_p (utype, TREE_TYPE (op1))) { g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); op1 = gimple_assign_lhs (g); } g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); if (utype != type) { g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, gimple_assign_lhs (g)); gimple_set_location (g, loc); gsi_insert_before (gsi, g, GSI_SAME_STMT); } g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR, gimple_assign_lhs (g), build_int_cst (type, ovf)); } gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } /* Return true if VAR is a two-valued variable. Set a and b with the two-values when it is true. Return false otherwise. */ bool simplify_using_ranges::two_valued_val_range_p (tree var, tree *a, tree *b, gimple *s) { value_range vr; if (!query->range_of_expr (vr, var, s)) return false; if (vr.varying_p () || vr.undefined_p ()) return false; if ((vr.num_pairs () == 1 && vr.upper_bound () - vr.lower_bound () == 1) || (vr.num_pairs () == 2 && vr.lower_bound (0) == vr.upper_bound (0) && vr.lower_bound (1) == vr.upper_bound (1))) { *a = wide_int_to_tree (TREE_TYPE (var), vr.lower_bound ()); *b = wide_int_to_tree (TREE_TYPE (var), vr.upper_bound ()); return true; } return false; } simplify_using_ranges::simplify_using_ranges (range_query *query, int not_executable_flag) : query (query) { to_remove_edges = vNULL; to_update_switch_stmts = vNULL; m_not_executable_flag = not_executable_flag; m_flag_set_edges = vNULL; } simplify_using_ranges::~simplify_using_ranges () { cleanup_edges_and_switches (); m_flag_set_edges.release (); } /* Simplify STMT using ranges if possible. */ bool simplify_using_ranges::simplify (gimple_stmt_iterator *gsi) { gcc_checking_assert (query); gimple *stmt = gsi_stmt (*gsi); if (is_gimple_assign (stmt)) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); tree lhs = gimple_assign_lhs (stmt); tree val1 = NULL_TREE, val2 = NULL_TREE; use_operand_p use_p; gimple *use_stmt; /* Convert: LHS = CST BINOP VAR Where VAR is two-valued and LHS is used in GIMPLE_COND only To: LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2) Also handles: LHS = VAR BINOP CST Where VAR is two-valued and LHS is used in GIMPLE_COND only To: LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */ if (TREE_CODE_CLASS (rhs_code) == tcc_binary && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) && ((TREE_CODE (rhs1) == INTEGER_CST && TREE_CODE (rhs2) == SSA_NAME) || (TREE_CODE (rhs2) == INTEGER_CST && TREE_CODE (rhs1) == SSA_NAME)) && single_imm_use (lhs, &use_p, &use_stmt) && gimple_code (use_stmt) == GIMPLE_COND) { tree new_rhs1 = NULL_TREE; tree new_rhs2 = NULL_TREE; tree cmp_var = NULL_TREE; if (TREE_CODE (rhs2) == SSA_NAME && two_valued_val_range_p (rhs2, &val1, &val2, stmt)) { /* Optimize RHS1 OP [VAL1, VAL2]. */ new_rhs1 = int_const_binop (rhs_code, rhs1, val1); new_rhs2 = int_const_binop (rhs_code, rhs1, val2); cmp_var = rhs2; } else if (TREE_CODE (rhs1) == SSA_NAME && two_valued_val_range_p (rhs1, &val1, &val2, stmt)) { /* Optimize [VAL1, VAL2] OP RHS2. */ new_rhs1 = int_const_binop (rhs_code, val1, rhs2); new_rhs2 = int_const_binop (rhs_code, val2, rhs2); cmp_var = rhs1; } /* If we could not find two-vals or the optimzation is invalid as in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */ if (new_rhs1 && new_rhs2) { tree cond = gimple_build (gsi, true, GSI_SAME_STMT, UNKNOWN_LOCATION, EQ_EXPR, boolean_type_node, cmp_var, val1); gimple_assign_set_rhs_with_ops (gsi, COND_EXPR, cond, new_rhs1, new_rhs2); update_stmt (gsi_stmt (*gsi)); fold_stmt (gsi, follow_single_use_edges); return true; } } switch (rhs_code) { case EQ_EXPR: case NE_EXPR: /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity if the RHS is zero or one, and the LHS are known to be boolean values. */ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_truth_ops_using_ranges (gsi, stmt); break; /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR and BIT_AND_EXPR respectively if the first operand is greater than zero and the second operand is an exact power of two. Also optimize TRUNC_MOD_EXPR away if the second operand is constant and the first operand already has the right value range. */ case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: if ((TREE_CODE (rhs1) == SSA_NAME || TREE_CODE (rhs1) == INTEGER_CST) && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_div_or_mod_using_ranges (gsi, stmt); break; /* Transform ABS (X) into X or -X as appropriate. */ case ABS_EXPR: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_abs_using_ranges (gsi, stmt); break; case BIT_AND_EXPR: case BIT_IOR_EXPR: /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR if all the bits being cleared are already cleared or all the bits being set are already set. */ if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_bit_ops_using_ranges (gsi, stmt); break; CASE_CONVERT: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_conversion_using_ranges (gsi, stmt); break; case FLOAT_EXPR: if (TREE_CODE (rhs1) == SSA_NAME && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_float_conversion_using_ranges (gsi, stmt); break; case MIN_EXPR: case MAX_EXPR: if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) return simplify_min_or_max_using_ranges (gsi, stmt); break; case RSHIFT_EXPR: { tree op0 = gimple_assign_rhs1 (stmt); tree type = TREE_TYPE (op0); int_range_max range; if (TYPE_SIGN (type) == SIGNED && query->range_of_expr (range, op0, stmt)) { unsigned prec = TYPE_PRECISION (TREE_TYPE (op0)); int_range<2> nzm1 (type, wi::minus_one (prec), wi::zero (prec), VR_ANTI_RANGE); range.intersect (nzm1); // If there are no ranges other than [-1, 0] remove the shift. if (range.undefined_p ()) { gimple_assign_set_rhs_from_tree (gsi, op0); return true; } return false; } break; } default: break; } } else if (gimple_code (stmt) == GIMPLE_COND) return simplify_cond_using_ranges_1 (as_a (stmt)); else if (gimple_code (stmt) == GIMPLE_SWITCH) return simplify_switch_using_ranges (as_a (stmt)); else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)) return simplify_internal_call_using_ranges (gsi, stmt); return false; }