/* Switch Conversion converts variable initializations based on switch statements to initializations from a static array. Copyright (C) 2006, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Martin Jambor This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Switch initialization conversion The following pass changes simple initializations of scalars in a switch statement into initializations from a static array. Obviously, the values must be constant and known at compile time and a default branch must be provided. For example, the following code: int a,b; switch (argc) { case 1: case 2: a_1 = 8; b_1 = 6; break; case 3: a_2 = 9; b_2 = 5; break; case 12: a_3 = 10; b_3 = 4; break; default: a_4 = 16; b_4 = 1; break; } a_5 = PHI b_5 = PHI is changed into: static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4}; static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 10}; if (((unsigned) argc) - 1 < 11) { a_6 = CSWTCH02[argc - 1]; b_6 = CSWTCH01[argc - 1]; } else { a_7 = 16; b_7 = 1; } a_5 = PHI b_b = PHI There are further constraints. Specifically, the range of values across all case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default eight) times the number of the actual switch branches. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "line-map.h" #include "params.h" #include "flags.h" #include "tree.h" #include "basic-block.h" #include "tree-flow.h" #include "tree-flow-inline.h" #include "tree-ssa-operands.h" #include "input.h" #include "tree-pass.h" #include "gimple-pretty-print.h" #include "tree-dump.h" #include "timevar.h" #include "langhooks.h" /* The main structure of the pass. */ struct switch_conv_info { /* The expression used to decide the switch branch. */ tree index_expr; /* The following integer constants store the minimum and maximum value covered by the case labels. */ tree range_min; tree range_max; /* The difference between the above two numbers. Stored here because it is used in all the conversion heuristics, as well as for some of the transformation, and it is expensive to re-compute it all the time. */ tree range_size; /* Basic block that contains the actual GIMPLE_SWITCH. */ basic_block switch_bb; /* Basic block that is the target of the default case. */ basic_block default_bb; /* The single successor block of all branches out of the GIMPLE_SWITCH, if such a block exists. Otherwise NULL. */ basic_block final_bb; /* The probability of the default edge in the replaced switch. */ int default_prob; /* The count of the default edge in the replaced switch. */ gcov_type default_count; /* Combined count of all other (non-default) edges in the replaced switch. */ gcov_type other_count; /* Number of phi nodes in the final bb (that we'll be replacing). */ int phi_count; /* Array of default values, in the same order as phi nodes. */ tree *default_values; /* Constructors of new static arrays. */ VEC (constructor_elt, gc) **constructors; /* Array of ssa names that are initialized with a value from a new static array. */ tree *target_inbound_names; /* Array of ssa names that are initialized with the default value if the switch expression is out of range. */ tree *target_outbound_names; /* The first load statement that loads a temporary from a new static array. */ gimple arr_ref_first; /* The last load statement that loads a temporary from a new static array. */ gimple arr_ref_last; /* String reason why the case wasn't a good candidate that is written to the dump file, if there is one. */ const char *reason; /* Parameters for expand_switch_using_bit_tests. Should be computed the same way as in expand_case. */ unsigned int uniq; unsigned int count; }; /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */ static void collect_switch_conv_info (gimple swtch, struct switch_conv_info *info) { unsigned int branch_num = gimple_switch_num_labels (swtch); tree min_case, max_case; unsigned int count, i; edge e, e_default; edge_iterator ei; memset (info, 0, sizeof (*info)); /* The gimplifier has already sorted the cases by CASE_LOW and ensured there is a default label which is the first in the vector. */ gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE); /* Collect the bits we can deduce from the CFG. */ info->index_expr = gimple_switch_index (swtch); info->switch_bb = gimple_bb (swtch); info->default_bb = label_to_block (CASE_LABEL (gimple_switch_label (swtch, 0))); e_default = find_edge (info->switch_bb, info->default_bb); info->default_prob = e_default->probability; info->default_count = e_default->count; FOR_EACH_EDGE (e, ei, info->switch_bb->succs) if (e != e_default) info->other_count += e->count; /* See if there is one common successor block for all branch targets. If it exists, record it in FINAL_BB. */ FOR_EACH_EDGE (e, ei, info->switch_bb->succs) { if (! single_pred_p (e->dest)) { info->final_bb = e->dest; break; } } if (info->final_bb) FOR_EACH_EDGE (e, ei, info->switch_bb->succs) { if (e->dest == info->final_bb) continue; if (single_pred_p (e->dest) && single_succ_p (e->dest) && single_succ (e->dest) == info->final_bb) continue; info->final_bb = NULL; break; } /* Get upper and lower bounds of case values, and the covered range. */ min_case = gimple_switch_label (swtch, 1); max_case = gimple_switch_label (swtch, branch_num - 1); info->range_min = CASE_LOW (min_case); if (CASE_HIGH (max_case) != NULL_TREE) info->range_max = CASE_HIGH (max_case); else info->range_max = CASE_LOW (max_case); info->range_size = int_const_binop (MINUS_EXPR, info->range_max, info->range_min); /* Get a count of the number of case labels. Single-valued case labels simply count as one, but a case range counts double, since it may require two compares if it gets lowered as a branching tree. */ count = 0; for (i = 1; i < branch_num; i++) { tree elt = gimple_switch_label (swtch, i); count++; if (CASE_HIGH (elt) && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt))) count++; } info->count = count; /* Get the number of unique non-default targets out of the GIMPLE_SWITCH block. Assume a CFG cleanup would have already removed degenerate switch statements, this allows us to just use EDGE_COUNT. */ info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1; } /* Checks whether the range given by individual case statements of the SWTCH switch statement isn't too big and whether the number of branches actually satisfies the size of the new array. */ static bool check_range (struct switch_conv_info *info) { gcc_assert (info->range_size); if (!host_integerp (info->range_size, 1)) { info->reason = "index range way too large or otherwise unusable"; return false; } if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1) > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO)) { info->reason = "the maximum range-branch ratio exceeded"; return false; } return true; } /* Checks whether all but the FINAL_BB basic blocks are empty. */ static bool check_all_empty_except_final (struct switch_conv_info *info) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, info->switch_bb->succs) { if (e->dest == info->final_bb) continue; if (!empty_block_p (e->dest)) { info->reason = "bad case - a non-final BB not empty"; return false; } } return true; } /* This function checks whether all required values in phi nodes in final_bb are constants. Required values are those that correspond to a basic block which is a part of the examined switch statement. It returns true if the phi nodes are OK, otherwise false. */ static bool check_final_bb (struct switch_conv_info *info) { gimple_stmt_iterator gsi; info->phi_count = 0; for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); unsigned int i; info->phi_count++; for (i = 0; i < gimple_phi_num_args (phi); i++) { basic_block bb = gimple_phi_arg_edge (phi, i)->src; if (bb == info->switch_bb || (single_pred_p (bb) && single_pred (bb) == info->switch_bb)) { tree reloc, val; val = gimple_phi_arg_def (phi, i); if (!is_gimple_ip_invariant (val)) { info->reason = "non-invariant value from a case"; return false; /* Non-invariant argument. */ } reloc = initializer_constant_valid_p (val, TREE_TYPE (val)); if ((flag_pic && reloc != null_pointer_node) || (!flag_pic && reloc == NULL_TREE)) { if (reloc) info->reason = "value from a case would need runtime relocations"; else info->reason = "value from a case is not a valid initializer"; return false; } } } } return true; } /* The following function allocates default_values, target_{in,out}_names and constructors arrays. The last one is also populated with pointers to vectors that will become constructors of new arrays. */ static void create_temp_arrays (struct switch_conv_info *info) { int i; info->default_values = XCNEWVEC (tree, info->phi_count * 3); info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count); info->target_inbound_names = info->default_values + info->phi_count; info->target_outbound_names = info->target_inbound_names + info->phi_count; for (i = 0; i < info->phi_count; i++) info->constructors[i] = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1); } /* Free the arrays created by create_temp_arrays(). The vectors that are created by that function are not freed here, however, because they have already become constructors and must be preserved. */ static void free_temp_arrays (struct switch_conv_info *info) { XDELETEVEC (info->constructors); XDELETEVEC (info->default_values); } /* Populate the array of default values in the order of phi nodes. DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */ static void gather_default_values (tree default_case, struct switch_conv_info *info) { gimple_stmt_iterator gsi; basic_block bb = label_to_block (CASE_LABEL (default_case)); edge e; int i = 0; gcc_assert (CASE_LOW (default_case) == NULL_TREE); if (bb == info->final_bb) e = find_edge (info->switch_bb, bb); else e = single_succ_edge (bb); for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); tree val = PHI_ARG_DEF_FROM_EDGE (phi, e); gcc_assert (val); info->default_values[i++] = val; } } /* The following function populates the vectors in the constructors array with future contents of the static arrays. The vectors are populated in the order of phi nodes. SWTCH is the switch statement being converted. */ static void build_constructors (gimple swtch, struct switch_conv_info *info) { unsigned i, branch_num = gimple_switch_num_labels (swtch); tree pos = info->range_min; for (i = 1; i < branch_num; i++) { tree cs = gimple_switch_label (swtch, i); basic_block bb = label_to_block (CASE_LABEL (cs)); edge e; tree high; gimple_stmt_iterator gsi; int j; if (bb == info->final_bb) e = find_edge (info->switch_bb, bb); else e = single_succ_edge (bb); gcc_assert (e); while (tree_int_cst_lt (pos, CASE_LOW (cs))) { int k; for (k = 0; k < info->phi_count; k++) { constructor_elt *elt; elt = VEC_quick_push (constructor_elt, info->constructors[k], NULL); elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min); elt->value = info->default_values[k]; } pos = int_const_binop (PLUS_EXPR, pos, integer_one_node); } gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs))); j = 0; if (CASE_HIGH (cs)) high = CASE_HIGH (cs); else high = CASE_LOW (cs); for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); tree val = PHI_ARG_DEF_FROM_EDGE (phi, e); tree low = CASE_LOW (cs); pos = CASE_LOW (cs); do { constructor_elt *elt; elt = VEC_quick_push (constructor_elt, info->constructors[j], NULL); elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min); elt->value = val; pos = int_const_binop (PLUS_EXPR, pos, integer_one_node); } while (!tree_int_cst_lt (high, pos) && tree_int_cst_lt (low, pos)); j++; } } } /* If all values in the constructor vector are the same, return the value. Otherwise return NULL_TREE. Not supposed to be called for empty vectors. */ static tree constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec) { unsigned int i; tree prev = NULL_TREE; constructor_elt *elt; FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt) { if (!prev) prev = elt->value; else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST)) return NULL_TREE; } return prev; } /* Return type which should be used for array elements, either TYPE, or for integral type some smaller integral type that can still hold all the constants. */ static tree array_value_type (gimple swtch, tree type, int num, struct switch_conv_info *info) { unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]); constructor_elt *elt; enum machine_mode mode; int sign = 0; tree smaller_type; if (!INTEGRAL_TYPE_P (type)) return type; mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type))); if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode)) return type; if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32)) return type; FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt) { double_int cst; if (TREE_CODE (elt->value) != INTEGER_CST) return type; cst = TREE_INT_CST (elt->value); while (1) { unsigned int prec = GET_MODE_BITSIZE (mode); if (prec > HOST_BITS_PER_WIDE_INT) return type; if (sign >= 0 && double_int_equal_p (cst, double_int_zext (cst, prec))) { if (sign == 0 && double_int_equal_p (cst, double_int_sext (cst, prec))) break; sign = 1; break; } if (sign <= 0 && double_int_equal_p (cst, double_int_sext (cst, prec))) { sign = -1; break; } if (sign == 1) sign = 0; mode = GET_MODE_WIDER_MODE (mode); if (mode == VOIDmode || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type))) return type; } } if (sign == 0) sign = TYPE_UNSIGNED (type) ? 1 : -1; smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0); if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (TYPE_MODE (smaller_type))) return type; return smaller_type; } /* Create an appropriate array type and declaration and assemble a static array variable. Also create a load statement that initializes the variable in question with a value from the static array. SWTCH is the switch statement being converted, NUM is the index to arrays of constructors, default values and target SSA names for this particular array. ARR_INDEX_TYPE is the type of the index of the new array, PHI is the phi node of the final BB that corresponds to the value that will be loaded from the created array. TIDX is an ssa name of a temporary variable holding the index for loads from the new array. */ static void build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi, tree tidx, struct switch_conv_info *info) { tree name, cst; gimple load; gimple_stmt_iterator gsi = gsi_for_stmt (swtch); location_t loc = gimple_location (swtch); gcc_assert (info->default_values[num]); name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL); info->target_inbound_names[num] = name; cst = constructor_contains_same_values_p (info->constructors[num]); if (cst) load = gimple_build_assign (name, cst); else { tree array_type, ctor, decl, value_type, fetch, default_type; default_type = TREE_TYPE (info->default_values[num]); value_type = array_value_type (swtch, default_type, num, info); array_type = build_array_type (value_type, arr_index_type); if (default_type != value_type) { unsigned int i; constructor_elt *elt; FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt) elt->value = fold_convert (value_type, elt->value); } ctor = build_constructor (array_type, info->constructors[num]); TREE_CONSTANT (ctor) = true; TREE_STATIC (ctor) = true; decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type); TREE_STATIC (decl) = 1; DECL_INITIAL (decl) = ctor; DECL_NAME (decl) = create_tmp_var_name ("CSWTCH"); DECL_ARTIFICIAL (decl) = 1; TREE_CONSTANT (decl) = 1; TREE_READONLY (decl) = 1; varpool_finalize_decl (decl); fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE, NULL_TREE); if (default_type != value_type) { fetch = fold_convert (default_type, fetch); fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE, true, GSI_SAME_STMT); } load = gimple_build_assign (name, fetch); } SSA_NAME_DEF_STMT (name) = load; gsi_insert_before (&gsi, load, GSI_SAME_STMT); update_stmt (load); info->arr_ref_last = load; } /* Builds and initializes static arrays initialized with values gathered from the SWTCH switch statement. Also creates statements that load values from them. */ static void build_arrays (gimple swtch, struct switch_conv_info *info) { tree arr_index_type; tree tidx, sub, tmp, utype; gimple stmt; gimple_stmt_iterator gsi; int i; location_t loc = gimple_location (swtch); gsi = gsi_for_stmt (swtch); /* Make sure we do not generate arithmetics in a subrange. */ utype = TREE_TYPE (info->index_expr); if (TREE_TYPE (utype)) utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1); else utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1); arr_index_type = build_index_type (info->range_size); tmp = create_tmp_var (utype, "csui"); add_referenced_var (tmp); tidx = make_ssa_name (tmp, NULL); sub = fold_build2_loc (loc, MINUS_EXPR, utype, fold_convert_loc (loc, utype, info->index_expr), fold_convert_loc (loc, utype, info->range_min)); sub = force_gimple_operand_gsi (&gsi, sub, false, NULL, true, GSI_SAME_STMT); stmt = gimple_build_assign (tidx, sub); SSA_NAME_DEF_STMT (tidx) = stmt; gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); update_stmt (stmt); info->arr_ref_first = stmt; for (gsi = gsi_start_phis (info->final_bb), i = 0; !gsi_end_p (gsi); gsi_next (&gsi), i++) build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info); } /* Generates and appropriately inserts loads of default values at the position given by BSI. Returns the last inserted statement. */ static gimple gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info) { int i; gimple assign = NULL; for (i = 0; i < info->phi_count; i++) { tree name = make_ssa_name (SSA_NAME_VAR (info->target_inbound_names[i]), NULL); info->target_outbound_names[i] = name; assign = gimple_build_assign (name, info->default_values[i]); SSA_NAME_DEF_STMT (name) = assign; gsi_insert_before (gsi, assign, GSI_SAME_STMT); update_stmt (assign); } return assign; } /* Deletes the unused bbs and edges that now contain the switch statement and its empty branch bbs. BBD is the now dead BB containing the original switch statement, FINAL is the last BB of the converted switch statement (in terms of succession). */ static void prune_bbs (basic_block bbd, basic_block final) { edge_iterator ei; edge e; for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); ) { basic_block bb; bb = e->dest; remove_edge (e); if (bb != final) delete_basic_block (bb); } delete_basic_block (bbd); } /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge from the basic block loading values from an array and E2F from the basic block loading default values. BBF is the last switch basic block (see the bbf description in the comment below). */ static void fix_phi_nodes (edge e1f, edge e2f, basic_block bbf, struct switch_conv_info *info) { gimple_stmt_iterator gsi; int i; for (gsi = gsi_start_phis (bbf), i = 0; !gsi_end_p (gsi); gsi_next (&gsi), i++) { gimple phi = gsi_stmt (gsi); add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION); add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION); } } /* Creates a check whether the switch expression value actually falls into the range given by all the cases. If it does not, the temporaries are loaded with default values instead. SWTCH is the switch statement being converted. bb0 is the bb with the switch statement, however, we'll end it with a condition instead. bb1 is the bb to be used when the range check went ok. It is derived from the switch BB bb2 is the bb taken when the expression evaluated outside of the range covered by the created arrays. It is populated by loads of default values. bbF is a fall through for both bb1 and bb2 and contains exactly what originally followed the switch statement. bbD contains the switch statement (in the end). It is unreachable but we still need to strip off its edges. */ static void gen_inbound_check (gimple swtch, struct switch_conv_info *info) { tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION); tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION); tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION); gimple label1, label2, label3; tree utype, tidx; tree bound; gimple cond_stmt; gimple last_assign; gimple_stmt_iterator gsi; basic_block bb0, bb1, bb2, bbf, bbd; edge e01, e02, e21, e1d, e1f, e2f; location_t loc = gimple_location (swtch); gcc_assert (info->default_values); /* Make no effort to update the post-dominator tree. It is actually not that hard for the transformations we have performed, but it is not supported by iterate_fix_dominators. Freeing post-dominance info is dome early to avoid pointless work in create_basic_block, which is called when we split SWITCH_BB. */ free_dominance_info (CDI_POST_DOMINATORS); bb0 = gimple_bb (swtch); tidx = gimple_assign_lhs (info->arr_ref_first); utype = TREE_TYPE (tidx); /* (end of) block 0 */ gsi = gsi_for_stmt (info->arr_ref_first); gsi_next (&gsi); bound = fold_convert_loc (loc, utype, info->range_size); cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE); gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT); update_stmt (cond_stmt); /* block 2 */ label2 = gimple_build_label (label_decl2); gsi_insert_before (&gsi, label2, GSI_SAME_STMT); last_assign = gen_def_assigns (&gsi, info); /* block 1 */ label1 = gimple_build_label (label_decl1); gsi_insert_before (&gsi, label1, GSI_SAME_STMT); /* block F */ gsi = gsi_start_bb (info->final_bb); label3 = gimple_build_label (label_decl3); gsi_insert_before (&gsi, label3, GSI_SAME_STMT); /* cfg fix */ e02 = split_block (bb0, cond_stmt); bb2 = e02->dest; e21 = split_block (bb2, last_assign); bb1 = e21->dest; remove_edge (e21); e1d = split_block (bb1, info->arr_ref_last); bbd = e1d->dest; remove_edge (e1d); /* flags and profiles of the edge for in-range values */ e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE); e01->probability = REG_BR_PROB_BASE - info->default_prob; e01->count = info->other_count; /* flags and profiles of the edge taking care of out-of-range values */ e02->flags &= ~EDGE_FALLTHRU; e02->flags |= EDGE_FALSE_VALUE; e02->probability = info->default_prob; e02->count = info->default_count; bbf = info->final_bb; e1f = make_edge (bb1, bbf, EDGE_FALLTHRU); e1f->probability = REG_BR_PROB_BASE; e1f->count = info->other_count; e2f = make_edge (bb2, bbf, EDGE_FALLTHRU); e2f->probability = REG_BR_PROB_BASE; e2f->count = info->default_count; /* frequencies of the new BBs */ bb1->frequency = EDGE_FREQUENCY (e01); bb2->frequency = EDGE_FREQUENCY (e02); bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f); /* Tidy blocks that have become unreachable. */ prune_bbs (bbd, info->final_bb); /* Fixup the PHI nodes in bbF. */ fix_phi_nodes (e1f, e2f, bbf, info); /* Fix the dominator tree, if it is available. */ if (dom_info_available_p (CDI_DOMINATORS)) { VEC (basic_block, heap) *bbs_to_fix_dom; set_immediate_dominator (CDI_DOMINATORS, bb1, bb0); set_immediate_dominator (CDI_DOMINATORS, bb2, bb0); if (! get_immediate_dominator(CDI_DOMINATORS, bbf)) /* If bbD was the immediate dominator ... */ set_immediate_dominator (CDI_DOMINATORS, bbf, bb0); bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4); VEC_quick_push (basic_block, bbs_to_fix_dom, bb0); VEC_quick_push (basic_block, bbs_to_fix_dom, bb1); VEC_quick_push (basic_block, bbs_to_fix_dom, bb2); VEC_quick_push (basic_block, bbs_to_fix_dom, bbf); iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); VEC_free (basic_block, heap, bbs_to_fix_dom); } } /* The following function is invoked on every switch statement (the current one is given in SWTCH) and runs the individual phases of switch conversion on it one after another until one fails or the conversion is completed. Returns NULL on success, or a pointer to a string with the reason why the conversion failed. */ static const char * process_switch (gimple swtch) { struct switch_conv_info info; /* Degenerate case with only a default label should never happen. */ gcc_checking_assert (gimple_switch_num_labels (swtch) > 1); collect_switch_conv_info (swtch, &info); /* No error markers should reach here (they should be filtered out during gimplification). */ gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node); /* If there is no common successor, we cannot do the transformation. */ if (! info.final_bb) return "no common successor to all case label target blocks found"; if (info.uniq <= 2) { if (expand_switch_using_bit_tests_p (info.index_expr, info.range_size, info.uniq, info.count)) return "expanding as bit test is preferable"; } /* Check the case label values are within reasonable range: */ if (!check_range (&info)) { gcc_assert (info.reason); return info.reason; } /* For all the cases, see whether they are empty, the assignments they represent constant and so on... */ if (! check_all_empty_except_final (&info)) { gcc_assert (info.reason); return info.reason; } if (!check_final_bb (&info)) { gcc_assert (info.reason); return info.reason; } /* At this point all checks have passed and we can proceed with the transformation. */ create_temp_arrays (&info); gather_default_values (gimple_switch_label (swtch, 0), &info); build_constructors (swtch, &info); build_arrays (swtch, &info); /* Build the static arrays and assignments. */ gen_inbound_check (swtch, &info); /* Build the bounds check. */ /* Cleanup: */ free_temp_arrays (&info); return NULL; } /* The main function of the pass scans statements for switches and invokes process_switch on them. */ static unsigned int do_switchconv (void) { basic_block bb; FOR_EACH_BB (bb) { const char *failure_reason; gimple stmt = last_stmt (bb); if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) { if (dump_file) { expanded_location loc = expand_location (gimple_location (stmt)); fprintf (dump_file, "beginning to process the following " "SWITCH statement (%s:%d) : ------- \n", loc.file, loc.line); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); putc ('\n', dump_file); } failure_reason = process_switch (stmt); if (! failure_reason) { if (dump_file) { fputs ("Switch converted\n", dump_file); fputs ("--------------------------------\n", dump_file); } } else { if (dump_file) { fputs ("Bailing out - ", dump_file); fputs (failure_reason, dump_file); fputs ("\n--------------------------------\n", dump_file); } } } } return 0; } /* The pass gate. */ static bool switchconv_gate (void) { return flag_tree_switch_conversion != 0; } struct gimple_opt_pass pass_convert_switch = { { GIMPLE_PASS, "switchconv", /* name */ switchconv_gate, /* gate */ do_switchconv, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_SWITCH_CONVERSION, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ } };