/* Generic routines for manipulating SSA_NAME expressions Copyright (C) 2003-2013 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "gimple.h" #include "gimple-ssa.h" #include "tree-phinodes.h" #include "ssa-iterators.h" #include "tree-ssanames.h" #include "tree-into-ssa.h" #include "tree-ssa.h" #include "tree-pass.h" /* Rewriting a function into SSA form can create a huge number of SSA_NAMEs, many of which may be thrown away shortly after their creation if jumps were threaded through PHI nodes. While our garbage collection mechanisms will handle this situation, it is extremely wasteful to create nodes and throw them away, especially when the nodes can be reused. For PR 8361, we can significantly reduce the number of nodes allocated and thus the total amount of memory allocated by managing SSA_NAMEs a little. This additionally helps reduce the amount of work done by the garbage collector. Similar results have been seen on a wider variety of tests (such as the compiler itself). Right now we maintain our free list on a per-function basis. It may or may not make sense to maintain the free list for the duration of a compilation unit. External code should rely solely upon HIGHEST_SSA_VERSION and the externally defined functions. External code should not know about the details of the free list management. External code should also not assume the version number on nodes is monotonically increasing. We reuse the version number when we reuse an SSA_NAME expression. This helps keep arrays and bitmaps more compact. */ /* Version numbers with special meanings. We start allocating new version numbers after the special ones. */ #define UNUSED_NAME_VERSION 0 unsigned int ssa_name_nodes_reused; unsigned int ssa_name_nodes_created; #define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames /* Initialize management of SSA_NAMEs to default SIZE. If SIZE is zero use default. */ void init_ssanames (struct function *fn, int size) { if (size < 50) size = 50; vec_alloc (SSANAMES (fn), size); /* Version 0 is special, so reserve the first slot in the table. Though currently unused, we may use version 0 in alias analysis as part of the heuristics used to group aliases when the alias sets are too large. We use vec::quick_push here because we know that SSA_NAMES has at least 50 elements reserved in it. */ SSANAMES (fn)->quick_push (NULL_TREE); FREE_SSANAMES (fn) = NULL; fn->gimple_df->ssa_renaming_needed = 0; fn->gimple_df->rename_vops = 0; } /* Finalize management of SSA_NAMEs. */ void fini_ssanames (void) { vec_free (SSANAMES (cfun)); vec_free (FREE_SSANAMES (cfun)); } /* Dump some simple statistics regarding the re-use of SSA_NAME nodes. */ void ssanames_print_statistics (void) { fprintf (stderr, "SSA_NAME nodes allocated: %u\n", ssa_name_nodes_created); fprintf (stderr, "SSA_NAME nodes reused: %u\n", ssa_name_nodes_reused); } /* Return an SSA_NAME node for variable VAR defined in statement STMT in function FN. STMT may be an empty statement for artificial references (e.g., default definitions created when a variable is used without a preceding definition). */ tree make_ssa_name_fn (struct function *fn, tree var, gimple stmt) { tree t; use_operand_p imm; gcc_assert (TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL || TREE_CODE (var) == RESULT_DECL || (TYPE_P (var) && is_gimple_reg_type (var))); /* If our free list has an element, then use it. */ if (!vec_safe_is_empty (FREE_SSANAMES (fn))) { t = FREE_SSANAMES (fn)->pop (); if (GATHER_STATISTICS) ssa_name_nodes_reused++; /* The node was cleared out when we put it on the free list, so there is no need to do so again here. */ gcc_assert (ssa_name (SSA_NAME_VERSION (t)) == NULL); (*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t; } else { t = make_node (SSA_NAME); SSA_NAME_VERSION (t) = SSANAMES (fn)->length (); vec_safe_push (SSANAMES (fn), t); if (GATHER_STATISTICS) ssa_name_nodes_created++; } if (TYPE_P (var)) { TREE_TYPE (t) = var; SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE); } else { TREE_TYPE (t) = TREE_TYPE (var); SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var); } SSA_NAME_DEF_STMT (t) = stmt; if (POINTER_TYPE_P (TREE_TYPE (t))) SSA_NAME_PTR_INFO (t) = NULL; else SSA_NAME_RANGE_INFO (t) = NULL; SSA_NAME_IN_FREE_LIST (t) = 0; SSA_NAME_IS_DEFAULT_DEF (t) = 0; imm = &(SSA_NAME_IMM_USE_NODE (t)); imm->use = NULL; imm->prev = imm; imm->next = imm; imm->loc.ssa_name = t; return t; } /* Store range information MIN, and MAX to tree ssa_name NAME. */ void set_range_info (tree name, double_int min, double_int max) { gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); range_info_def *ri = SSA_NAME_RANGE_INFO (name); /* Allocate if not available. */ if (ri == NULL) { ri = ggc_alloc_cleared_range_info_def (); SSA_NAME_RANGE_INFO (name) = ri; ri->nonzero_bits = double_int::mask (TYPE_PRECISION (TREE_TYPE (name))); } /* Set the values. */ ri->min = min; ri->max = max; /* If it is a range, try to improve nonzero_bits from the min/max. */ if (min.cmp (max, TYPE_UNSIGNED (TREE_TYPE (name))) != 1) { int prec = TYPE_PRECISION (TREE_TYPE (name)); double_int xorv; min = min.zext (prec); max = max.zext (prec); xorv = min ^ max; if (xorv.high) xorv = double_int::mask (2 * HOST_BITS_PER_WIDE_INT - clz_hwi (xorv.high)); else if (xorv.low) xorv = double_int::mask (HOST_BITS_PER_WIDE_INT - clz_hwi (xorv.low)); ri->nonzero_bits = ri->nonzero_bits & (min | xorv); } } /* Gets range information MIN, MAX and returns enum value_range_type corresponding to tree ssa_name NAME. enum value_range_type returned is used to determine if MIN and MAX are valid values. */ enum value_range_type get_range_info (const_tree name, double_int *min, double_int *max) { enum value_range_type range_type; gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); gcc_assert (min && max); range_info_def *ri = SSA_NAME_RANGE_INFO (name); /* Return VR_VARYING for SSA_NAMEs with NULL RANGE_INFO or SSA_NAMEs with integral types width > 2 * HOST_BITS_PER_WIDE_INT precision. */ if (!ri || (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (name))) > 2 * HOST_BITS_PER_WIDE_INT)) return VR_VARYING; /* If min > max, it is VR_ANTI_RANGE. */ if (ri->min.cmp (ri->max, TYPE_UNSIGNED (TREE_TYPE (name))) == 1) { /* VR_ANTI_RANGE ~[min, max] is encoded as [max + 1, min - 1]. */ range_type = VR_ANTI_RANGE; *min = ri->max + double_int_one; *max = ri->min - double_int_one; } else { /* Otherwise (when min <= max), it is VR_RANGE. */ range_type = VR_RANGE; *min = ri->min; *max = ri->max; } return range_type; } /* Change non-zero bits bitmask of NAME. */ void set_nonzero_bits (tree name, double_int mask) { gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); if (SSA_NAME_RANGE_INFO (name) == NULL) set_range_info (name, tree_to_double_int (TYPE_MIN_VALUE (TREE_TYPE (name))), tree_to_double_int (TYPE_MAX_VALUE (TREE_TYPE (name)))); range_info_def *ri = SSA_NAME_RANGE_INFO (name); ri->nonzero_bits = mask & double_int::mask (TYPE_PRECISION (TREE_TYPE (name))); } /* Return a double_int with potentially non-zero bits in SSA_NAME NAME, or double_int_minus_one if unknown. */ double_int get_nonzero_bits (const_tree name) { if (POINTER_TYPE_P (TREE_TYPE (name))) { struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name); if (pi && pi->align) { double_int al = double_int::from_uhwi (pi->align - 1); return ((double_int::mask (TYPE_PRECISION (TREE_TYPE (name))) & ~al) | double_int::from_uhwi (pi->misalign)); } return double_int_minus_one; } range_info_def *ri = SSA_NAME_RANGE_INFO (name); if (!ri || (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (name))) > 2 * HOST_BITS_PER_WIDE_INT)) return double_int_minus_one; return ri->nonzero_bits; } /* We no longer need the SSA_NAME expression VAR, release it so that it may be reused. Note it is assumed that no calls to make_ssa_name will be made until all uses of the ssa name are released and that the only use of the SSA_NAME expression is to check its SSA_NAME_VAR. All other fields must be assumed clobbered. */ void release_ssa_name (tree var) { if (!var) return; /* Never release the default definition for a symbol. It's a special SSA name that should always exist once it's created. */ if (SSA_NAME_IS_DEFAULT_DEF (var)) return; /* If VAR has been registered for SSA updating, don't remove it. After update_ssa has run, the name will be released. */ if (name_registered_for_update_p (var)) { release_ssa_name_after_update_ssa (var); return; } /* release_ssa_name can be called multiple times on a single SSA_NAME. However, it should only end up on our free list one time. We keep a status bit in the SSA_NAME node itself to indicate it has been put on the free list. Note that once on the freelist you can not reference the SSA_NAME's defining statement. */ if (! SSA_NAME_IN_FREE_LIST (var)) { tree saved_ssa_name_var = SSA_NAME_VAR (var); int saved_ssa_name_version = SSA_NAME_VERSION (var); use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var)); if (MAY_HAVE_DEBUG_STMTS) insert_debug_temp_for_var_def (NULL, var); #ifdef ENABLE_CHECKING verify_imm_links (stderr, var); #endif while (imm->next != imm) delink_imm_use (imm->next); (*SSANAMES (cfun))[SSA_NAME_VERSION (var)] = NULL_TREE; memset (var, 0, tree_size (var)); imm->prev = imm; imm->next = imm; imm->loc.ssa_name = var; /* First put back the right tree node so that the tree checking macros do not complain. */ TREE_SET_CODE (var, SSA_NAME); /* Restore the version number. */ SSA_NAME_VERSION (var) = saved_ssa_name_version; /* Hopefully this can go away once we have the new incremental SSA updating code installed. */ SET_SSA_NAME_VAR_OR_IDENTIFIER (var, saved_ssa_name_var); /* Note this SSA_NAME is now in the first list. */ SSA_NAME_IN_FREE_LIST (var) = 1; /* And finally put it on the free list. */ vec_safe_push (FREE_SSANAMES (cfun), var); } } /* If the alignment of the pointer described by PI is known, return true and store the alignment and the deviation from it into *ALIGNP and *MISALIGNP respectively. Otherwise return false. */ bool get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp, unsigned int *misalignp) { if (pi->align) { *alignp = pi->align; *misalignp = pi->misalign; return true; } else return false; } /* State that the pointer described by PI has unknown alignment. */ void mark_ptr_info_alignment_unknown (struct ptr_info_def *pi) { pi->align = 0; pi->misalign = 0; } /* Store the the power-of-two byte alignment and the deviation from that alignment of pointer described by PI to ALIOGN and MISALIGN respectively. */ void set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align, unsigned int misalign) { gcc_checking_assert (align != 0); gcc_assert ((align & (align - 1)) == 0); gcc_assert ((misalign & ~(align - 1)) == 0); pi->align = align; pi->misalign = misalign; } /* If pointer described by PI has known alignment, increase its known misalignment by INCREMENT modulo its current alignment. */ void adjust_ptr_info_misalignment (struct ptr_info_def *pi, unsigned int increment) { if (pi->align != 0) { pi->misalign += increment; pi->misalign &= (pi->align - 1); } } /* Return the alias information associated with pointer T. It creates a new instance if none existed. */ struct ptr_info_def * get_ptr_info (tree t) { struct ptr_info_def *pi; gcc_assert (POINTER_TYPE_P (TREE_TYPE (t))); pi = SSA_NAME_PTR_INFO (t); if (pi == NULL) { pi = ggc_alloc_cleared_ptr_info_def (); pt_solution_reset (&pi->pt); mark_ptr_info_alignment_unknown (pi); SSA_NAME_PTR_INFO (t) = pi; } return pi; } /* Creates a new SSA name using the template NAME tobe defined by statement STMT in function FN. */ tree copy_ssa_name_fn (struct function *fn, tree name, gimple stmt) { tree new_name; if (SSA_NAME_VAR (name)) new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt); else { new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt); SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name)); } return new_name; } /* Creates a duplicate of the ptr_info_def at PTR_INFO for use by the SSA name NAME. */ void duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info) { struct ptr_info_def *new_ptr_info; gcc_assert (POINTER_TYPE_P (TREE_TYPE (name))); gcc_assert (!SSA_NAME_PTR_INFO (name)); if (!ptr_info) return; new_ptr_info = ggc_alloc_ptr_info_def (); *new_ptr_info = *ptr_info; SSA_NAME_PTR_INFO (name) = new_ptr_info; } /* Creates a duplicate of the range_info_def at RANGE_INFO for use by the SSA name NAME. */ void duplicate_ssa_name_range_info (tree name, struct range_info_def *range_info) { struct range_info_def *new_range_info; gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); gcc_assert (!SSA_NAME_RANGE_INFO (name)); if (!range_info) return; new_range_info = ggc_alloc_range_info_def (); *new_range_info = *range_info; SSA_NAME_RANGE_INFO (name) = new_range_info; } /* Creates a duplicate of a ssa name NAME tobe defined by statement STMT in function FN. */ tree duplicate_ssa_name_fn (struct function *fn, tree name, gimple stmt) { tree new_name = copy_ssa_name_fn (fn, name, stmt); if (POINTER_TYPE_P (TREE_TYPE (name))) { struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name); if (old_ptr_info) duplicate_ssa_name_ptr_info (new_name, old_ptr_info); } else { struct range_info_def *old_range_info = SSA_NAME_RANGE_INFO (name); if (old_range_info) duplicate_ssa_name_range_info (new_name, old_range_info); } return new_name; } /* Release all the SSA_NAMEs created by STMT. */ void release_defs (gimple stmt) { tree def; ssa_op_iter iter; /* Make sure that we are in SSA. Otherwise, operand cache may point to garbage. */ gcc_assert (gimple_in_ssa_p (cfun)); FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) if (TREE_CODE (def) == SSA_NAME) release_ssa_name (def); } /* Replace the symbol associated with SSA_NAME with SYM. */ void replace_ssa_name_symbol (tree ssa_name, tree sym) { SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym); TREE_TYPE (ssa_name) = TREE_TYPE (sym); } /* Return SSA names that are unused to GGC memory and compact the SSA version namespace. This is used to keep footprint of compiler during interprocedural optimization. */ static unsigned int release_dead_ssa_names (void) { unsigned i, j; int n = vec_safe_length (FREE_SSANAMES (cfun)); /* Now release the freelist. */ vec_free (FREE_SSANAMES (cfun)); /* And compact the SSA number space. We make sure to not change the relative order of SSA versions. */ for (i = 1, j = 1; i < cfun->gimple_df->ssa_names->length (); ++i) { tree name = ssa_name (i); if (name) { if (i != j) { SSA_NAME_VERSION (name) = j; (*cfun->gimple_df->ssa_names)[j] = name; } j++; } } cfun->gimple_df->ssa_names->truncate (j); statistics_counter_event (cfun, "SSA names released", n); statistics_counter_event (cfun, "SSA name holes removed", i - j); if (dump_file) fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n", n, n * 100.0 / num_ssa_names, i - j); return 0; } namespace { const pass_data pass_data_release_ssa_names = { GIMPLE_PASS, /* type */ "release_ssa", /* name */ OPTGROUP_NONE, /* optinfo_flags */ false, /* has_gate */ true, /* has_execute */ TV_TREE_SSA_OTHER, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ TODO_remove_unused_locals, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_release_ssa_names : public gimple_opt_pass { public: pass_release_ssa_names (gcc::context *ctxt) : gimple_opt_pass (pass_data_release_ssa_names, ctxt) {} /* opt_pass methods: */ unsigned int execute () { return release_dead_ssa_names (); } }; // class pass_release_ssa_names } // anon namespace gimple_opt_pass * make_pass_release_ssa_names (gcc::context *ctxt) { return new pass_release_ssa_names (ctxt); }