/* Tree based points-to analysis Copyright (C) 2005-2015 Free Software Foundation, Inc. Contributed by Daniel Berlin This file is part of GCC. GCC is free software; you can redistribute it and/or modify under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "tree.h" #include "gimple.h" #include "rtl.h" #include "ssa.h" #include "flags.h" #include "alias.h" #include "fold-const.h" #include "stor-layout.h" #include "stmt.h" #include "internal-fn.h" #include "gimple-iterator.h" #include "cgraph.h" #include "tree-into-ssa.h" #include "insn-config.h" #include "expmed.h" #include "dojump.h" #include "explow.h" #include "calls.h" #include "emit-rtl.h" #include "varasm.h" #include "expr.h" #include "tree-dfa.h" #include "tree-inline.h" #include "diagnostic-core.h" #include "tree-pass.h" #include "alloc-pool.h" #include "splay-tree.h" #include "params.h" #include "tree-pretty-print.h" #include "gimple-walk.h" /* The idea behind this analyzer is to generate set constraints from the program, then solve the resulting constraints in order to generate the points-to sets. Set constraints are a way of modeling program analysis problems that involve sets. They consist of an inclusion constraint language, describing the variables (each variable is a set) and operations that are involved on the variables, and a set of rules that derive facts from these operations. To solve a system of set constraints, you derive all possible facts under the rules, which gives you the correct sets as a consequence. See "Efficient Field-sensitive pointer analysis for C" by "David J. Pearce and Paul H. J. Kelly and Chris Hankin, at http://citeseer.ist.psu.edu/pearce04efficient.html Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at http://citeseer.ist.psu.edu/heintze01ultrafast.html There are three types of real constraint expressions, DEREF, ADDRESSOF, and SCALAR. Each constraint expression consists of a constraint type, a variable, and an offset. SCALAR is a constraint expression type used to represent x, whether it appears on the LHS or the RHS of a statement. DEREF is a constraint expression type used to represent *x, whether it appears on the LHS or the RHS of a statement. ADDRESSOF is a constraint expression used to represent &x, whether it appears on the LHS or the RHS of a statement. Each pointer variable in the program is assigned an integer id, and each field of a structure variable is assigned an integer id as well. Structure variables are linked to their list of fields through a "next field" in each variable that points to the next field in offset order. Each variable for a structure field has 1. "size", that tells the size in bits of that field. 2. "fullsize, that tells the size in bits of the entire structure. 3. "offset", that tells the offset in bits from the beginning of the structure to this field. Thus, struct f { int a; int b; } foo; int *bar; looks like foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL bar -> id 3, size 32, offset 0, fullsize 32, next NULL In order to solve the system of set constraints, the following is done: 1. Each constraint variable x has a solution set associated with it, Sol(x). 2. Constraints are separated into direct, copy, and complex. Direct constraints are ADDRESSOF constraints that require no extra processing, such as P = &Q Copy constraints are those of the form P = Q. Complex constraints are all the constraints involving dereferences and offsets (including offsetted copies). 3. All direct constraints of the form P = &Q are processed, such that Q is added to Sol(P) 4. All complex constraints for a given constraint variable are stored in a linked list attached to that variable's node. 5. A directed graph is built out of the copy constraints. Each constraint variable is a node in the graph, and an edge from Q to P is added for each copy constraint of the form P = Q 6. The graph is then walked, and solution sets are propagated along the copy edges, such that an edge from Q to P causes Sol(P) <- Sol(P) union Sol(Q). 7. As we visit each node, all complex constraints associated with that node are processed by adding appropriate copy edges to the graph, or the appropriate variables to the solution set. 8. The process of walking the graph is iterated until no solution sets change. Prior to walking the graph in steps 6 and 7, We perform static cycle elimination on the constraint graph, as well as off-line variable substitution. TODO: Adding offsets to pointer-to-structures can be handled (IE not punted on and turned into anything), but isn't. You can just see what offset inside the pointed-to struct it's going to access. TODO: Constant bounded arrays can be handled as if they were structs of the same number of elements. TODO: Modeling heap and incoming pointers becomes much better if we add fields to them as we discover them, which we could do. TODO: We could handle unions, but to be honest, it's probably not worth the pain or slowdown. */ /* IPA-PTA optimizations possible. When the indirect function called is ANYTHING we can add disambiguation based on the function signatures (or simply the parameter count which is the varinfo size). We also do not need to consider functions that do not have their address taken. The is_global_var bit which marks escape points is overly conservative in IPA mode. Split it to is_escape_point and is_global_var - only externally visible globals are escape points in IPA mode. This is also needed to fix the pt_solution_includes_global predicate (and thus ptr_deref_may_alias_global_p). The way we introduce DECL_PT_UID to avoid fixing up all points-to sets in the translation unit when we copy a DECL during inlining pessimizes precision. The advantage is that the DECL_PT_UID keeps compile-time and memory usage overhead low - the points-to sets do not grow or get unshared as they would during a fixup phase. An alternative solution is to delay IPA PTA until after all inlining transformations have been applied. The way we propagate clobber/use information isn't optimized. It should use a new complex constraint that properly filters out local variables of the callee (though that would make the sets invalid after inlining). OTOH we might as well admit defeat to WHOPR and simply do all the clobber/use analysis and propagation after PTA finished but before we threw away points-to information for memory variables. WHOPR and PTA do not play along well anyway - the whole constraint solving would need to be done in WPA phase and it will be very interesting to apply the results to local SSA names during LTRANS phase. We probably should compute a per-function unit-ESCAPE solution propagating it simply like the clobber / uses solutions. The solution can go alongside the non-IPA espaced solution and be used to query which vars escape the unit through a function. We never put function decls in points-to sets so we do not keep the set of called functions for indirect calls. And probably more. */ static bool use_field_sensitive = true; static int in_ipa_mode = 0; /* Used for predecessor bitmaps. */ static bitmap_obstack predbitmap_obstack; /* Used for points-to sets. */ static bitmap_obstack pta_obstack; /* Used for oldsolution members of variables. */ static bitmap_obstack oldpta_obstack; /* Used for per-solver-iteration bitmaps. */ static bitmap_obstack iteration_obstack; static unsigned int create_variable_info_for (tree, const char *); typedef struct constraint_graph *constraint_graph_t; static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool); struct constraint; typedef struct constraint *constraint_t; #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \ if (a) \ EXECUTE_IF_SET_IN_BITMAP (a, b, c, d) static struct constraint_stats { unsigned int total_vars; unsigned int nonpointer_vars; unsigned int unified_vars_static; unsigned int unified_vars_dynamic; unsigned int iterations; unsigned int num_edges; unsigned int num_implicit_edges; unsigned int points_to_sets_created; } stats; struct variable_info { /* ID of this variable */ unsigned int id; /* True if this is a variable created by the constraint analysis, such as heap variables and constraints we had to break up. */ unsigned int is_artificial_var : 1; /* True if this is a special variable whose solution set should not be changed. */ unsigned int is_special_var : 1; /* True for variables whose size is not known or variable. */ unsigned int is_unknown_size_var : 1; /* True for (sub-)fields that represent a whole variable. */ unsigned int is_full_var : 1; /* True if this is a heap variable. */ unsigned int is_heap_var : 1; /* True if this field may contain pointers. */ unsigned int may_have_pointers : 1; /* True if this field has only restrict qualified pointers. */ unsigned int only_restrict_pointers : 1; /* True if this represents a heap var created for a restrict qualified pointer. */ unsigned int is_restrict_var : 1; /* True if this represents a global variable. */ unsigned int is_global_var : 1; /* True if this represents a IPA function info. */ unsigned int is_fn_info : 1; /* ??? Store somewhere better. */ unsigned short ruid; /* The ID of the variable for the next field in this structure or zero for the last field in this structure. */ unsigned next; /* The ID of the variable for the first field in this structure. */ unsigned head; /* Offset of this variable, in bits, from the base variable */ unsigned HOST_WIDE_INT offset; /* Size of the variable, in bits. */ unsigned HOST_WIDE_INT size; /* Full size of the base variable, in bits. */ unsigned HOST_WIDE_INT fullsize; /* Name of this variable */ const char *name; /* Tree that this variable is associated with. */ tree decl; /* Points-to set for this variable. */ bitmap solution; /* Old points-to set for this variable. */ bitmap oldsolution; }; typedef struct variable_info *varinfo_t; static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT); static varinfo_t first_or_preceding_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT); static varinfo_t lookup_vi_for_tree (tree); static inline bool type_can_have_subvars (const_tree); /* Pool of variable info structures. */ static object_allocator variable_info_pool ("Variable info pool"); /* Map varinfo to final pt_solution. */ static hash_map *final_solutions; struct obstack final_solutions_obstack; /* Table of variable info structures for constraint variables. Indexed directly by variable info id. */ static vec varmap; /* Return the varmap element N */ static inline varinfo_t get_varinfo (unsigned int n) { return varmap[n]; } /* Return the next variable in the list of sub-variables of VI or NULL if VI is the last sub-variable. */ static inline varinfo_t vi_next (varinfo_t vi) { return get_varinfo (vi->next); } /* Static IDs for the special variables. Variable ID zero is unused and used as terminator for the sub-variable chain. */ enum { nothing_id = 1, anything_id = 2, string_id = 3, escaped_id = 4, nonlocal_id = 5, storedanything_id = 6, integer_id = 7 }; /* Return a new variable info structure consisting for a variable named NAME, and using constraint graph node NODE. Append it to the vector of variable info structures. */ static varinfo_t new_var_info (tree t, const char *name) { unsigned index = varmap.length (); varinfo_t ret = variable_info_pool.allocate (); ret->id = index; ret->name = name; ret->decl = t; /* Vars without decl are artificial and do not have sub-variables. */ ret->is_artificial_var = (t == NULL_TREE); ret->is_special_var = false; ret->is_unknown_size_var = false; ret->is_full_var = (t == NULL_TREE); ret->is_heap_var = false; ret->may_have_pointers = true; ret->only_restrict_pointers = false; ret->is_restrict_var = false; ret->ruid = 0; ret->is_global_var = (t == NULL_TREE); ret->is_fn_info = false; if (t && DECL_P (t)) ret->is_global_var = (is_global_var (t) /* We have to treat even local register variables as escape points. */ || (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))); ret->solution = BITMAP_ALLOC (&pta_obstack); ret->oldsolution = NULL; ret->next = 0; ret->head = ret->id; stats.total_vars++; varmap.safe_push (ret); return ret; } /* A map mapping call statements to per-stmt variables for uses and clobbers specific to the call. */ static hash_map *call_stmt_vars; /* Lookup or create the variable for the call statement CALL. */ static varinfo_t get_call_vi (gcall *call) { varinfo_t vi, vi2; bool existed; varinfo_t *slot_p = &call_stmt_vars->get_or_insert (call, &existed); if (existed) return *slot_p; vi = new_var_info (NULL_TREE, "CALLUSED"); vi->offset = 0; vi->size = 1; vi->fullsize = 2; vi->is_full_var = true; vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED"); vi2->offset = 1; vi2->size = 1; vi2->fullsize = 2; vi2->is_full_var = true; vi->next = vi2->id; *slot_p = vi; return vi; } /* Lookup the variable for the call statement CALL representing the uses. Returns NULL if there is nothing special about this call. */ static varinfo_t lookup_call_use_vi (gcall *call) { varinfo_t *slot_p = call_stmt_vars->get (call); if (slot_p) return *slot_p; return NULL; } /* Lookup the variable for the call statement CALL representing the clobbers. Returns NULL if there is nothing special about this call. */ static varinfo_t lookup_call_clobber_vi (gcall *call) { varinfo_t uses = lookup_call_use_vi (call); if (!uses) return NULL; return vi_next (uses); } /* Lookup or create the variable for the call statement CALL representing the uses. */ static varinfo_t get_call_use_vi (gcall *call) { return get_call_vi (call); } /* Lookup or create the variable for the call statement CALL representing the clobbers. */ static varinfo_t ATTRIBUTE_UNUSED get_call_clobber_vi (gcall *call) { return vi_next (get_call_vi (call)); } enum constraint_expr_type {SCALAR, DEREF, ADDRESSOF}; /* An expression that appears in a constraint. */ struct constraint_expr { /* Constraint type. */ constraint_expr_type type; /* Variable we are referring to in the constraint. */ unsigned int var; /* Offset, in bits, of this constraint from the beginning of variables it ends up referring to. IOW, in a deref constraint, we would deref, get the result set, then add OFFSET to each member. */ HOST_WIDE_INT offset; }; /* Use 0x8000... as special unknown offset. */ #define UNKNOWN_OFFSET HOST_WIDE_INT_MIN typedef struct constraint_expr ce_s; static void get_constraint_for_1 (tree, vec *, bool, bool); static void get_constraint_for (tree, vec *); static void get_constraint_for_rhs (tree, vec *); static void do_deref (vec *); /* Our set constraints are made up of two constraint expressions, one LHS, and one RHS. As described in the introduction, our set constraints each represent an operation between set valued variables. */ struct constraint { struct constraint_expr lhs; struct constraint_expr rhs; }; /* List of constraints that we use to build the constraint graph from. */ static vec constraints; static object_allocator constraint_pool ("Constraint pool"); /* The constraint graph is represented as an array of bitmaps containing successor nodes. */ struct constraint_graph { /* Size of this graph, which may be different than the number of nodes in the variable map. */ unsigned int size; /* Explicit successors of each node. */ bitmap *succs; /* Implicit predecessors of each node (Used for variable substitution). */ bitmap *implicit_preds; /* Explicit predecessors of each node (Used for variable substitution). */ bitmap *preds; /* Indirect cycle representatives, or -1 if the node has no indirect cycles. */ int *indirect_cycles; /* Representative node for a node. rep[a] == a unless the node has been unified. */ unsigned int *rep; /* Equivalence class representative for a label. This is used for variable substitution. */ int *eq_rep; /* Pointer equivalence label for a node. All nodes with the same pointer equivalence label can be unified together at some point (either during constraint optimization or after the constraint graph is built). */ unsigned int *pe; /* Pointer equivalence representative for a label. This is used to handle nodes that are pointer equivalent but not location equivalent. We can unite these once the addressof constraints are transformed into initial points-to sets. */ int *pe_rep; /* Pointer equivalence label for each node, used during variable substitution. */ unsigned int *pointer_label; /* Location equivalence label for each node, used during location equivalence finding. */ unsigned int *loc_label; /* Pointed-by set for each node, used during location equivalence finding. This is pointed-by rather than pointed-to, because it is constructed using the predecessor graph. */ bitmap *pointed_by; /* Points to sets for pointer equivalence. This is *not* the actual points-to sets for nodes. */ bitmap *points_to; /* Bitmap of nodes where the bit is set if the node is a direct node. Used for variable substitution. */ sbitmap direct_nodes; /* Bitmap of nodes where the bit is set if the node is address taken. Used for variable substitution. */ bitmap address_taken; /* Vector of complex constraints for each graph node. Complex constraints are those involving dereferences or offsets that are not 0. */ vec *complex; }; static constraint_graph_t graph; /* During variable substitution and the offline version of indirect cycle finding, we create nodes to represent dereferences and address taken constraints. These represent where these start and end. */ #define FIRST_REF_NODE (varmap).length () #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1)) /* Return the representative node for NODE, if NODE has been unioned with another NODE. This function performs path compression along the way to finding the representative. */ static unsigned int find (unsigned int node) { gcc_checking_assert (node < graph->size); if (graph->rep[node] != node) return graph->rep[node] = find (graph->rep[node]); return node; } /* Union the TO and FROM nodes to the TO nodes. Note that at some point in the future, we may want to do union-by-rank, in which case we are going to have to return the node we unified to. */ static bool unite (unsigned int to, unsigned int from) { gcc_checking_assert (to < graph->size && from < graph->size); if (to != from && graph->rep[from] != to) { graph->rep[from] = to; return true; } return false; } /* Create a new constraint consisting of LHS and RHS expressions. */ static constraint_t new_constraint (const struct constraint_expr lhs, const struct constraint_expr rhs) { constraint_t ret = constraint_pool.allocate (); ret->lhs = lhs; ret->rhs = rhs; return ret; } /* Print out constraint C to FILE. */ static void dump_constraint (FILE *file, constraint_t c) { if (c->lhs.type == ADDRESSOF) fprintf (file, "&"); else if (c->lhs.type == DEREF) fprintf (file, "*"); fprintf (file, "%s", get_varinfo (c->lhs.var)->name); if (c->lhs.offset == UNKNOWN_OFFSET) fprintf (file, " + UNKNOWN"); else if (c->lhs.offset != 0) fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset); fprintf (file, " = "); if (c->rhs.type == ADDRESSOF) fprintf (file, "&"); else if (c->rhs.type == DEREF) fprintf (file, "*"); fprintf (file, "%s", get_varinfo (c->rhs.var)->name); if (c->rhs.offset == UNKNOWN_OFFSET) fprintf (file, " + UNKNOWN"); else if (c->rhs.offset != 0) fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset); } void debug_constraint (constraint_t); void debug_constraints (void); void debug_constraint_graph (void); void debug_solution_for_var (unsigned int); void debug_sa_points_to_info (void); /* Print out constraint C to stderr. */ DEBUG_FUNCTION void debug_constraint (constraint_t c) { dump_constraint (stderr, c); fprintf (stderr, "\n"); } /* Print out all constraints to FILE */ static void dump_constraints (FILE *file, int from) { int i; constraint_t c; for (i = from; constraints.iterate (i, &c); i++) if (c) { dump_constraint (file, c); fprintf (file, "\n"); } } /* Print out all constraints to stderr. */ DEBUG_FUNCTION void debug_constraints (void) { dump_constraints (stderr, 0); } /* Print the constraint graph in dot format. */ static void dump_constraint_graph (FILE *file) { unsigned int i; /* Only print the graph if it has already been initialized: */ if (!graph) return; /* Prints the header of the dot file: */ fprintf (file, "strict digraph {\n"); fprintf (file, " node [\n shape = box\n ]\n"); fprintf (file, " edge [\n fontsize = \"12\"\n ]\n"); fprintf (file, "\n // List of nodes and complex constraints in " "the constraint graph:\n"); /* The next lines print the nodes in the graph together with the complex constraints attached to them. */ for (i = 1; i < graph->size; i++) { if (i == FIRST_REF_NODE) continue; if (find (i) != i) continue; if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); if (graph->complex[i].exists ()) { unsigned j; constraint_t c; fprintf (file, " [label=\"\\N\\n"); for (j = 0; graph->complex[i].iterate (j, &c); ++j) { dump_constraint (file, c); fprintf (file, "\\l"); } fprintf (file, "\"]"); } fprintf (file, ";\n"); } /* Go over the edges. */ fprintf (file, "\n // Edges in the constraint graph:\n"); for (i = 1; i < graph->size; i++) { unsigned j; bitmap_iterator bi; if (find (i) != i) continue; EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi) { unsigned to = find (j); if (i == to) continue; if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (file, " -> "); if (to < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (to)->name); else fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name); fprintf (file, ";\n"); } } /* Prints the tail of the dot file. */ fprintf (file, "}\n"); } /* Print out the constraint graph to stderr. */ DEBUG_FUNCTION void debug_constraint_graph (void) { dump_constraint_graph (stderr); } /* SOLVER FUNCTIONS The solver is a simple worklist solver, that works on the following algorithm: sbitmap changed_nodes = all zeroes; changed_count = 0; For each node that is not already collapsed: changed_count++; set bit in changed nodes while (changed_count > 0) { compute topological ordering for constraint graph find and collapse cycles in the constraint graph (updating changed if necessary) for each node (n) in the graph in topological order: changed_count--; Process each complex constraint associated with the node, updating changed if necessary. For each outgoing edge from n, propagate the solution from n to the destination of the edge, updating changed as necessary. } */ /* Return true if two constraint expressions A and B are equal. */ static bool constraint_expr_equal (struct constraint_expr a, struct constraint_expr b) { return a.type == b.type && a.var == b.var && a.offset == b.offset; } /* Return true if constraint expression A is less than constraint expression B. This is just arbitrary, but consistent, in order to give them an ordering. */ static bool constraint_expr_less (struct constraint_expr a, struct constraint_expr b) { if (a.type == b.type) { if (a.var == b.var) return a.offset < b.offset; else return a.var < b.var; } else return a.type < b.type; } /* Return true if constraint A is less than constraint B. This is just arbitrary, but consistent, in order to give them an ordering. */ static bool constraint_less (const constraint_t &a, const constraint_t &b) { if (constraint_expr_less (a->lhs, b->lhs)) return true; else if (constraint_expr_less (b->lhs, a->lhs)) return false; else return constraint_expr_less (a->rhs, b->rhs); } /* Return true if two constraints A and B are equal. */ static bool constraint_equal (struct constraint a, struct constraint b) { return constraint_expr_equal (a.lhs, b.lhs) && constraint_expr_equal (a.rhs, b.rhs); } /* Find a constraint LOOKFOR in the sorted constraint vector VEC */ static constraint_t constraint_vec_find (vec vec, struct constraint lookfor) { unsigned int place; constraint_t found; if (!vec.exists ()) return NULL; place = vec.lower_bound (&lookfor, constraint_less); if (place >= vec.length ()) return NULL; found = vec[place]; if (!constraint_equal (*found, lookfor)) return NULL; return found; } /* Union two constraint vectors, TO and FROM. Put the result in TO. Returns true of TO set is changed. */ static bool constraint_set_union (vec *to, vec *from) { int i; constraint_t c; bool any_change = false; FOR_EACH_VEC_ELT (*from, i, c) { if (constraint_vec_find (*to, *c) == NULL) { unsigned int place = to->lower_bound (c, constraint_less); to->safe_insert (place, c); any_change = true; } } return any_change; } /* Expands the solution in SET to all sub-fields of variables included. */ static bitmap solution_set_expand (bitmap set, bitmap *expanded) { bitmap_iterator bi; unsigned j; if (*expanded) return *expanded; *expanded = BITMAP_ALLOC (&iteration_obstack); /* In a first pass expand to the head of the variables we need to add all sub-fields off. This avoids quadratic behavior. */ EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi) { varinfo_t v = get_varinfo (j); if (v->is_artificial_var || v->is_full_var) continue; bitmap_set_bit (*expanded, v->head); } /* In the second pass now expand all head variables with subfields. */ EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi) { varinfo_t v = get_varinfo (j); if (v->head != j) continue; for (v = vi_next (v); v != NULL; v = vi_next (v)) bitmap_set_bit (*expanded, v->id); } /* And finally set the rest of the bits from SET. */ bitmap_ior_into (*expanded, set); return *expanded; } /* Union solution sets TO and DELTA, and add INC to each member of DELTA in the process. */ static bool set_union_with_increment (bitmap to, bitmap delta, HOST_WIDE_INT inc, bitmap *expanded_delta) { bool changed = false; bitmap_iterator bi; unsigned int i; /* If the solution of DELTA contains anything it is good enough to transfer this to TO. */ if (bitmap_bit_p (delta, anything_id)) return bitmap_set_bit (to, anything_id); /* If the offset is unknown we have to expand the solution to all subfields. */ if (inc == UNKNOWN_OFFSET) { delta = solution_set_expand (delta, expanded_delta); changed |= bitmap_ior_into (to, delta); return changed; } /* For non-zero offset union the offsetted solution into the destination. */ EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi) { varinfo_t vi = get_varinfo (i); /* If this is a variable with just one field just set its bit in the result. */ if (vi->is_artificial_var || vi->is_unknown_size_var || vi->is_full_var) changed |= bitmap_set_bit (to, i); else { HOST_WIDE_INT fieldoffset = vi->offset + inc; unsigned HOST_WIDE_INT size = vi->size; /* If the offset makes the pointer point to before the variable use offset zero for the field lookup. */ if (fieldoffset < 0) vi = get_varinfo (vi->head); else vi = first_or_preceding_vi_for_offset (vi, fieldoffset); do { changed |= bitmap_set_bit (to, vi->id); if (vi->is_full_var || vi->next == 0) break; /* We have to include all fields that overlap the current field shifted by inc. */ vi = vi_next (vi); } while (vi->offset < fieldoffset + size); } } return changed; } /* Insert constraint C into the list of complex constraints for graph node VAR. */ static void insert_into_complex (constraint_graph_t graph, unsigned int var, constraint_t c) { vec complex = graph->complex[var]; unsigned int place = complex.lower_bound (c, constraint_less); /* Only insert constraints that do not already exist. */ if (place >= complex.length () || !constraint_equal (*c, *complex[place])) graph->complex[var].safe_insert (place, c); } /* Condense two variable nodes into a single variable node, by moving all associated info from FROM to TO. Returns true if TO node's constraint set changes after the merge. */ static bool merge_node_constraints (constraint_graph_t graph, unsigned int to, unsigned int from) { unsigned int i; constraint_t c; bool any_change = false; gcc_checking_assert (find (from) == to); /* Move all complex constraints from src node into to node */ FOR_EACH_VEC_ELT (graph->complex[from], i, c) { /* In complex constraints for node FROM, we may have either a = *FROM, and *FROM = a, or an offseted constraint which are always added to the rhs node's constraints. */ if (c->rhs.type == DEREF) c->rhs.var = to; else if (c->lhs.type == DEREF) c->lhs.var = to; else c->rhs.var = to; } any_change = constraint_set_union (&graph->complex[to], &graph->complex[from]); graph->complex[from].release (); return any_change; } /* Remove edges involving NODE from GRAPH. */ static void clear_edges_for_node (constraint_graph_t graph, unsigned int node) { if (graph->succs[node]) BITMAP_FREE (graph->succs[node]); } /* Merge GRAPH nodes FROM and TO into node TO. */ static void merge_graph_nodes (constraint_graph_t graph, unsigned int to, unsigned int from) { if (graph->indirect_cycles[from] != -1) { /* If we have indirect cycles with the from node, and we have none on the to node, the to node has indirect cycles from the from node now that they are unified. If indirect cycles exist on both, unify the nodes that they are in a cycle with, since we know they are in a cycle with each other. */ if (graph->indirect_cycles[to] == -1) graph->indirect_cycles[to] = graph->indirect_cycles[from]; } /* Merge all the successor edges. */ if (graph->succs[from]) { if (!graph->succs[to]) graph->succs[to] = BITMAP_ALLOC (&pta_obstack); bitmap_ior_into (graph->succs[to], graph->succs[from]); } clear_edges_for_node (graph, from); } /* Add an indirect graph edge to GRAPH, going from TO to FROM if it doesn't exist in the graph already. */ static void add_implicit_graph_edge (constraint_graph_t graph, unsigned int to, unsigned int from) { if (to == from) return; if (!graph->implicit_preds[to]) graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack); if (bitmap_set_bit (graph->implicit_preds[to], from)) stats.num_implicit_edges++; } /* Add a predecessor graph edge to GRAPH, going from TO to FROM if it doesn't exist in the graph already. Return false if the edge already existed, true otherwise. */ static void add_pred_graph_edge (constraint_graph_t graph, unsigned int to, unsigned int from) { if (!graph->preds[to]) graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_set_bit (graph->preds[to], from); } /* Add a graph edge to GRAPH, going from FROM to TO if it doesn't exist in the graph already. Return false if the edge already existed, true otherwise. */ static bool add_graph_edge (constraint_graph_t graph, unsigned int to, unsigned int from) { if (to == from) { return false; } else { bool r = false; if (!graph->succs[from]) graph->succs[from] = BITMAP_ALLOC (&pta_obstack); if (bitmap_set_bit (graph->succs[from], to)) { r = true; if (to < FIRST_REF_NODE && from < FIRST_REF_NODE) stats.num_edges++; } return r; } } /* Initialize the constraint graph structure to contain SIZE nodes. */ static void init_graph (unsigned int size) { unsigned int j; graph = XCNEW (struct constraint_graph); graph->size = size; graph->succs = XCNEWVEC (bitmap, graph->size); graph->indirect_cycles = XNEWVEC (int, graph->size); graph->rep = XNEWVEC (unsigned int, graph->size); /* ??? Macros do not support template types with multiple arguments, so we use a typedef to work around it. */ typedef vec vec_constraint_t_heap; graph->complex = XCNEWVEC (vec_constraint_t_heap, size); graph->pe = XCNEWVEC (unsigned int, graph->size); graph->pe_rep = XNEWVEC (int, graph->size); for (j = 0; j < graph->size; j++) { graph->rep[j] = j; graph->pe_rep[j] = -1; graph->indirect_cycles[j] = -1; } } /* Build the constraint graph, adding only predecessor edges right now. */ static void build_pred_graph (void) { int i; constraint_t c; unsigned int j; graph->implicit_preds = XCNEWVEC (bitmap, graph->size); graph->preds = XCNEWVEC (bitmap, graph->size); graph->pointer_label = XCNEWVEC (unsigned int, graph->size); graph->loc_label = XCNEWVEC (unsigned int, graph->size); graph->pointed_by = XCNEWVEC (bitmap, graph->size); graph->points_to = XCNEWVEC (bitmap, graph->size); graph->eq_rep = XNEWVEC (int, graph->size); graph->direct_nodes = sbitmap_alloc (graph->size); graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack); bitmap_clear (graph->direct_nodes); for (j = 1; j < FIRST_REF_NODE; j++) { if (!get_varinfo (j)->is_special_var) bitmap_set_bit (graph->direct_nodes, j); } for (j = 0; j < graph->size; j++) graph->eq_rep[j] = -1; for (j = 0; j < varmap.length (); j++) graph->indirect_cycles[j] = -1; FOR_EACH_VEC_ELT (constraints, i, c) { struct constraint_expr lhs = c->lhs; struct constraint_expr rhs = c->rhs; unsigned int lhsvar = lhs.var; unsigned int rhsvar = rhs.var; if (lhs.type == DEREF) { /* *x = y. */ if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR) add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar); } else if (rhs.type == DEREF) { /* x = *y */ if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR) add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar); else bitmap_clear_bit (graph->direct_nodes, lhsvar); } else if (rhs.type == ADDRESSOF) { varinfo_t v; /* x = &y */ if (graph->points_to[lhsvar] == NULL) graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_set_bit (graph->points_to[lhsvar], rhsvar); if (graph->pointed_by[rhsvar] == NULL) graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar); /* Implicitly, *x = y */ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar); /* All related variables are no longer direct nodes. */ bitmap_clear_bit (graph->direct_nodes, rhsvar); v = get_varinfo (rhsvar); if (!v->is_full_var) { v = get_varinfo (v->head); do { bitmap_clear_bit (graph->direct_nodes, v->id); v = vi_next (v); } while (v != NULL); } bitmap_set_bit (graph->address_taken, rhsvar); } else if (lhsvar > anything_id && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0) { /* x = y */ add_pred_graph_edge (graph, lhsvar, rhsvar); /* Implicitly, *x = *y */ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, FIRST_REF_NODE + rhsvar); } else if (lhs.offset != 0 || rhs.offset != 0) { if (rhs.offset != 0) bitmap_clear_bit (graph->direct_nodes, lhs.var); else if (lhs.offset != 0) bitmap_clear_bit (graph->direct_nodes, rhs.var); } } } /* Build the constraint graph, adding successor edges. */ static void build_succ_graph (void) { unsigned i, t; constraint_t c; FOR_EACH_VEC_ELT (constraints, i, c) { struct constraint_expr lhs; struct constraint_expr rhs; unsigned int lhsvar; unsigned int rhsvar; if (!c) continue; lhs = c->lhs; rhs = c->rhs; lhsvar = find (lhs.var); rhsvar = find (rhs.var); if (lhs.type == DEREF) { if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR) add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar); } else if (rhs.type == DEREF) { if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR) add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar); } else if (rhs.type == ADDRESSOF) { /* x = &y */ gcc_checking_assert (find (rhs.var) == rhs.var); bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar); } else if (lhsvar > anything_id && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0) { add_graph_edge (graph, lhsvar, rhsvar); } } /* Add edges from STOREDANYTHING to all non-direct nodes that can receive pointers. */ t = find (storedanything_id); for (i = integer_id + 1; i < FIRST_REF_NODE; ++i) { if (!bitmap_bit_p (graph->direct_nodes, i) && get_varinfo (i)->may_have_pointers) add_graph_edge (graph, find (i), t); } /* Everything stored to ANYTHING also potentially escapes. */ add_graph_edge (graph, find (escaped_id), t); } /* Changed variables on the last iteration. */ static bitmap changed; /* Strongly Connected Component visitation info. */ struct scc_info { sbitmap visited; sbitmap deleted; unsigned int *dfs; unsigned int *node_mapping; int current_index; vec scc_stack; }; /* Recursive routine to find strongly connected components in GRAPH. SI is the SCC info to store the information in, and N is the id of current graph node we are processing. This is Tarjan's strongly connected component finding algorithm, as modified by Nuutila to keep only non-root nodes on the stack. The algorithm can be found in "On finding the strongly connected connected components in a directed graph" by Esko Nuutila and Eljas Soisalon-Soininen, in Information Processing Letters volume 49, number 1, pages 9-14. */ static void scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n) { unsigned int i; bitmap_iterator bi; unsigned int my_dfs; bitmap_set_bit (si->visited, n); si->dfs[n] = si->current_index ++; my_dfs = si->dfs[n]; /* Visit all the successors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi) { unsigned int w; if (i > LAST_REF_NODE) break; w = find (i); if (bitmap_bit_p (si->deleted, w)) continue; if (!bitmap_bit_p (si->visited, w)) scc_visit (graph, si, w); unsigned int t = find (w); gcc_checking_assert (find (n) == n); if (si->dfs[t] < si->dfs[n]) si->dfs[n] = si->dfs[t]; } /* See if any components have been identified. */ if (si->dfs[n] == my_dfs) { if (si->scc_stack.length () > 0 && si->dfs[si->scc_stack.last ()] >= my_dfs) { bitmap scc = BITMAP_ALLOC (NULL); unsigned int lowest_node; bitmap_iterator bi; bitmap_set_bit (scc, n); while (si->scc_stack.length () != 0 && si->dfs[si->scc_stack.last ()] >= my_dfs) { unsigned int w = si->scc_stack.pop (); bitmap_set_bit (scc, w); } lowest_node = bitmap_first_set_bit (scc); gcc_assert (lowest_node < FIRST_REF_NODE); /* Collapse the SCC nodes into a single node, and mark the indirect cycles. */ EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi) { if (i < FIRST_REF_NODE) { if (unite (lowest_node, i)) unify_nodes (graph, lowest_node, i, false); } else { unite (lowest_node, i); graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node; } } } bitmap_set_bit (si->deleted, n); } else si->scc_stack.safe_push (n); } /* Unify node FROM into node TO, updating the changed count if necessary when UPDATE_CHANGED is true. */ static void unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from, bool update_changed) { gcc_checking_assert (to != from && find (to) == to); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Unifying %s to %s\n", get_varinfo (from)->name, get_varinfo (to)->name); if (update_changed) stats.unified_vars_dynamic++; else stats.unified_vars_static++; merge_graph_nodes (graph, to, from); if (merge_node_constraints (graph, to, from)) { if (update_changed) bitmap_set_bit (changed, to); } /* Mark TO as changed if FROM was changed. If TO was already marked as changed, decrease the changed count. */ if (update_changed && bitmap_clear_bit (changed, from)) bitmap_set_bit (changed, to); varinfo_t fromvi = get_varinfo (from); if (fromvi->solution) { /* If the solution changes because of the merging, we need to mark the variable as changed. */ varinfo_t tovi = get_varinfo (to); if (bitmap_ior_into (tovi->solution, fromvi->solution)) { if (update_changed) bitmap_set_bit (changed, to); } BITMAP_FREE (fromvi->solution); if (fromvi->oldsolution) BITMAP_FREE (fromvi->oldsolution); if (stats.iterations > 0 && tovi->oldsolution) BITMAP_FREE (tovi->oldsolution); } if (graph->succs[to]) bitmap_clear_bit (graph->succs[to], to); } /* Information needed to compute the topological ordering of a graph. */ struct topo_info { /* sbitmap of visited nodes. */ sbitmap visited; /* Array that stores the topological order of the graph, *in reverse*. */ vec topo_order; }; /* Initialize and return a topological info structure. */ static struct topo_info * init_topo_info (void) { size_t size = graph->size; struct topo_info *ti = XNEW (struct topo_info); ti->visited = sbitmap_alloc (size); bitmap_clear (ti->visited); ti->topo_order.create (1); return ti; } /* Free the topological sort info pointed to by TI. */ static void free_topo_info (struct topo_info *ti) { sbitmap_free (ti->visited); ti->topo_order.release (); free (ti); } /* Visit the graph in topological order, and store the order in the topo_info structure. */ static void topo_visit (constraint_graph_t graph, struct topo_info *ti, unsigned int n) { bitmap_iterator bi; unsigned int j; bitmap_set_bit (ti->visited, n); if (graph->succs[n]) EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi) { if (!bitmap_bit_p (ti->visited, j)) topo_visit (graph, ti, j); } ti->topo_order.safe_push (n); } /* Process a constraint C that represents x = *(y + off), using DELTA as the starting solution for y. */ static void do_sd_constraint (constraint_graph_t graph, constraint_t c, bitmap delta, bitmap *expanded_delta) { unsigned int lhs = c->lhs.var; bool flag = false; bitmap sol = get_varinfo (lhs)->solution; unsigned int j; bitmap_iterator bi; HOST_WIDE_INT roffset = c->rhs.offset; /* Our IL does not allow this. */ gcc_checking_assert (c->lhs.offset == 0); /* If the solution of Y contains anything it is good enough to transfer this to the LHS. */ if (bitmap_bit_p (delta, anything_id)) { flag |= bitmap_set_bit (sol, anything_id); goto done; } /* If we do not know at with offset the rhs is dereferenced compute the reachability set of DELTA, conservatively assuming it is dereferenced at all valid offsets. */ if (roffset == UNKNOWN_OFFSET) { delta = solution_set_expand (delta, expanded_delta); /* No further offset processing is necessary. */ roffset = 0; } /* For each variable j in delta (Sol(y)), add an edge in the graph from j to x, and union Sol(j) into Sol(x). */ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi) { varinfo_t v = get_varinfo (j); HOST_WIDE_INT fieldoffset = v->offset + roffset; unsigned HOST_WIDE_INT size = v->size; unsigned int t; if (v->is_full_var) ; else if (roffset != 0) { if (fieldoffset < 0) v = get_varinfo (v->head); else v = first_or_preceding_vi_for_offset (v, fieldoffset); } /* We have to include all fields that overlap the current field shifted by roffset. */ do { t = find (v->id); /* Adding edges from the special vars is pointless. They don't have sets that can change. */ if (get_varinfo (t)->is_special_var) flag |= bitmap_ior_into (sol, get_varinfo (t)->solution); /* Merging the solution from ESCAPED needlessly increases the set. Use ESCAPED as representative instead. */ else if (v->id == escaped_id) flag |= bitmap_set_bit (sol, escaped_id); else if (v->may_have_pointers && add_graph_edge (graph, lhs, t)) flag |= bitmap_ior_into (sol, get_varinfo (t)->solution); if (v->is_full_var || v->next == 0) break; v = vi_next (v); } while (v->offset < fieldoffset + size); } done: /* If the LHS solution changed, mark the var as changed. */ if (flag) { get_varinfo (lhs)->solution = sol; bitmap_set_bit (changed, lhs); } } /* Process a constraint C that represents *(x + off) = y using DELTA as the starting solution for x. */ static void do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta) { unsigned int rhs = c->rhs.var; bitmap sol = get_varinfo (rhs)->solution; unsigned int j; bitmap_iterator bi; HOST_WIDE_INT loff = c->lhs.offset; bool escaped_p = false; /* Our IL does not allow this. */ gcc_checking_assert (c->rhs.offset == 0); /* If the solution of y contains ANYTHING simply use the ANYTHING solution. This avoids needlessly increasing the points-to sets. */ if (bitmap_bit_p (sol, anything_id)) sol = get_varinfo (find (anything_id))->solution; /* If the solution for x contains ANYTHING we have to merge the solution of y into all pointer variables which we do via STOREDANYTHING. */ if (bitmap_bit_p (delta, anything_id)) { unsigned t = find (storedanything_id); if (add_graph_edge (graph, t, rhs)) { if (bitmap_ior_into (get_varinfo (t)->solution, sol)) bitmap_set_bit (changed, t); } return; } /* If we do not know at with offset the rhs is dereferenced compute the reachability set of DELTA, conservatively assuming it is dereferenced at all valid offsets. */ if (loff == UNKNOWN_OFFSET) { delta = solution_set_expand (delta, expanded_delta); loff = 0; } /* For each member j of delta (Sol(x)), add an edge from y to j and union Sol(y) into Sol(j) */ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi) { varinfo_t v = get_varinfo (j); unsigned int t; HOST_WIDE_INT fieldoffset = v->offset + loff; unsigned HOST_WIDE_INT size = v->size; if (v->is_full_var) ; else if (loff != 0) { if (fieldoffset < 0) v = get_varinfo (v->head); else v = first_or_preceding_vi_for_offset (v, fieldoffset); } /* We have to include all fields that overlap the current field shifted by loff. */ do { if (v->may_have_pointers) { /* If v is a global variable then this is an escape point. */ if (v->is_global_var && !escaped_p) { t = find (escaped_id); if (add_graph_edge (graph, t, rhs) && bitmap_ior_into (get_varinfo (t)->solution, sol)) bitmap_set_bit (changed, t); /* Enough to let rhs escape once. */ escaped_p = true; } if (v->is_special_var) break; t = find (v->id); if (add_graph_edge (graph, t, rhs) && bitmap_ior_into (get_varinfo (t)->solution, sol)) bitmap_set_bit (changed, t); } if (v->is_full_var || v->next == 0) break; v = vi_next (v); } while (v->offset < fieldoffset + size); } } /* Handle a non-simple (simple meaning requires no iteration), constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */ static void do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta, bitmap *expanded_delta) { if (c->lhs.type == DEREF) { if (c->rhs.type == ADDRESSOF) { gcc_unreachable (); } else { /* *x = y */ do_ds_constraint (c, delta, expanded_delta); } } else if (c->rhs.type == DEREF) { /* x = *y */ if (!(get_varinfo (c->lhs.var)->is_special_var)) do_sd_constraint (graph, c, delta, expanded_delta); } else { bitmap tmp; bool flag = false; gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR && c->rhs.offset != 0 && c->lhs.offset == 0); tmp = get_varinfo (c->lhs.var)->solution; flag = set_union_with_increment (tmp, delta, c->rhs.offset, expanded_delta); if (flag) bitmap_set_bit (changed, c->lhs.var); } } /* Initialize and return a new SCC info structure. */ static struct scc_info * init_scc_info (size_t size) { struct scc_info *si = XNEW (struct scc_info); size_t i; si->current_index = 0; si->visited = sbitmap_alloc (size); bitmap_clear (si->visited); si->deleted = sbitmap_alloc (size); bitmap_clear (si->deleted); si->node_mapping = XNEWVEC (unsigned int, size); si->dfs = XCNEWVEC (unsigned int, size); for (i = 0; i < size; i++) si->node_mapping[i] = i; si->scc_stack.create (1); return si; } /* Free an SCC info structure pointed to by SI */ static void free_scc_info (struct scc_info *si) { sbitmap_free (si->visited); sbitmap_free (si->deleted); free (si->node_mapping); free (si->dfs); si->scc_stack.release (); free (si); } /* Find indirect cycles in GRAPH that occur, using strongly connected components, and note them in the indirect cycles map. This technique comes from Ben Hardekopf and Calvin Lin, "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of Lines of Code", submitted to PLDI 2007. */ static void find_indirect_cycles (constraint_graph_t graph) { unsigned int i; unsigned int size = graph->size; struct scc_info *si = init_scc_info (size); for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ ) if (!bitmap_bit_p (si->visited, i) && find (i) == i) scc_visit (graph, si, i); free_scc_info (si); } /* Compute a topological ordering for GRAPH, and store the result in the topo_info structure TI. */ static void compute_topo_order (constraint_graph_t graph, struct topo_info *ti) { unsigned int i; unsigned int size = graph->size; for (i = 0; i != size; ++i) if (!bitmap_bit_p (ti->visited, i) && find (i) == i) topo_visit (graph, ti, i); } /* Structure used to for hash value numbering of pointer equivalence classes. */ typedef struct equiv_class_label { hashval_t hashcode; unsigned int equivalence_class; bitmap labels; } *equiv_class_label_t; typedef const struct equiv_class_label *const_equiv_class_label_t; /* Equiv_class_label hashtable helpers. */ struct equiv_class_hasher : free_ptr_hash { static inline hashval_t hash (const equiv_class_label *); static inline bool equal (const equiv_class_label *, const equiv_class_label *); }; /* Hash function for a equiv_class_label_t */ inline hashval_t equiv_class_hasher::hash (const equiv_class_label *ecl) { return ecl->hashcode; } /* Equality function for two equiv_class_label_t's. */ inline bool equiv_class_hasher::equal (const equiv_class_label *eql1, const equiv_class_label *eql2) { return (eql1->hashcode == eql2->hashcode && bitmap_equal_p (eql1->labels, eql2->labels)); } /* A hashtable for mapping a bitmap of labels->pointer equivalence classes. */ static hash_table *pointer_equiv_class_table; /* A hashtable for mapping a bitmap of labels->location equivalence classes. */ static hash_table *location_equiv_class_table; /* Lookup a equivalence class in TABLE by the bitmap of LABELS with hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS is equivalent to. */ static equiv_class_label * equiv_class_lookup_or_add (hash_table *table, bitmap labels) { equiv_class_label **slot; equiv_class_label ecl; ecl.labels = labels; ecl.hashcode = bitmap_hash (labels); slot = table->find_slot (&ecl, INSERT); if (!*slot) { *slot = XNEW (struct equiv_class_label); (*slot)->labels = labels; (*slot)->hashcode = ecl.hashcode; (*slot)->equivalence_class = 0; } return *slot; } /* Perform offline variable substitution. This is a worst case quadratic time way of identifying variables that must have equivalent points-to sets, including those caused by static cycles, and single entry subgraphs, in the constraint graph. The technique is described in "Exploiting Pointer and Location Equivalence to Optimize Pointer Analysis. In the 14th International Static Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm, and is equivalent to value numbering the collapsed constraint graph including evaluating unions. The general method of finding equivalence classes is as follows: Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints. Initialize all non-REF nodes to be direct nodes. For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh variable} For each constraint containing the dereference, we also do the same thing. We then compute SCC's in the graph and unify nodes in the same SCC, including pts sets. For each non-collapsed node x: Visit all unvisited explicit incoming edges. Ignoring all non-pointers, set pts(x) = Union of pts(a) for y where y->x. Lookup the equivalence class for pts(x). If we found one, equivalence_class(x) = found class. Otherwise, equivalence_class(x) = new class, and new_class is added to the lookup table. All direct nodes with the same equivalence class can be replaced with a single representative node. All unlabeled nodes (label == 0) are not pointers and all edges involving them can be eliminated. We perform these optimizations during rewrite_constraints In addition to pointer equivalence class finding, we also perform location equivalence class finding. This is the set of variables that always appear together in points-to sets. We use this to compress the size of the points-to sets. */ /* Current maximum pointer equivalence class id. */ static int pointer_equiv_class; /* Current maximum location equivalence class id. */ static int location_equiv_class; /* Recursive routine to find strongly connected components in GRAPH, and label it's nodes with DFS numbers. */ static void condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n) { unsigned int i; bitmap_iterator bi; unsigned int my_dfs; gcc_checking_assert (si->node_mapping[n] == n); bitmap_set_bit (si->visited, n); si->dfs[n] = si->current_index ++; my_dfs = si->dfs[n]; /* Visit all the successors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi) { unsigned int w = si->node_mapping[i]; if (bitmap_bit_p (si->deleted, w)) continue; if (!bitmap_bit_p (si->visited, w)) condense_visit (graph, si, w); unsigned int t = si->node_mapping[w]; gcc_checking_assert (si->node_mapping[n] == n); if (si->dfs[t] < si->dfs[n]) si->dfs[n] = si->dfs[t]; } /* Visit all the implicit predecessors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi) { unsigned int w = si->node_mapping[i]; if (bitmap_bit_p (si->deleted, w)) continue; if (!bitmap_bit_p (si->visited, w)) condense_visit (graph, si, w); unsigned int t = si->node_mapping[w]; gcc_assert (si->node_mapping[n] == n); if (si->dfs[t] < si->dfs[n]) si->dfs[n] = si->dfs[t]; } /* See if any components have been identified. */ if (si->dfs[n] == my_dfs) { while (si->scc_stack.length () != 0 && si->dfs[si->scc_stack.last ()] >= my_dfs) { unsigned int w = si->scc_stack.pop (); si->node_mapping[w] = n; if (!bitmap_bit_p (graph->direct_nodes, w)) bitmap_clear_bit (graph->direct_nodes, n); /* Unify our nodes. */ if (graph->preds[w]) { if (!graph->preds[n]) graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior_into (graph->preds[n], graph->preds[w]); } if (graph->implicit_preds[w]) { if (!graph->implicit_preds[n]) graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior_into (graph->implicit_preds[n], graph->implicit_preds[w]); } if (graph->points_to[w]) { if (!graph->points_to[n]) graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior_into (graph->points_to[n], graph->points_to[w]); } } bitmap_set_bit (si->deleted, n); } else si->scc_stack.safe_push (n); } /* Label pointer equivalences. This performs a value numbering of the constraint graph to discover which variables will always have the same points-to sets under the current set of constraints. The way it value numbers is to store the set of points-to bits generated by the constraints and graph edges. This is just used as a hash and equality comparison. The *actual set of points-to bits* is completely irrelevant, in that we don't care about being able to extract them later. The equality values (currently bitmaps) just have to satisfy a few constraints, the main ones being: 1. The combining operation must be order independent. 2. The end result of a given set of operations must be unique iff the combination of input values is unique 3. Hashable. */ static void label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n) { unsigned int i, first_pred; bitmap_iterator bi; bitmap_set_bit (si->visited, n); /* Label and union our incoming edges's points to sets. */ first_pred = -1U; EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi) { unsigned int w = si->node_mapping[i]; if (!bitmap_bit_p (si->visited, w)) label_visit (graph, si, w); /* Skip unused edges */ if (w == n || graph->pointer_label[w] == 0) continue; if (graph->points_to[w]) { if (!graph->points_to[n]) { if (first_pred == -1U) first_pred = w; else { graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior (graph->points_to[n], graph->points_to[first_pred], graph->points_to[w]); } } else bitmap_ior_into (graph->points_to[n], graph->points_to[w]); } } /* Indirect nodes get fresh variables and a new pointer equiv class. */ if (!bitmap_bit_p (graph->direct_nodes, n)) { if (!graph->points_to[n]) { graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack); if (first_pred != -1U) bitmap_copy (graph->points_to[n], graph->points_to[first_pred]); } bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n); graph->pointer_label[n] = pointer_equiv_class++; equiv_class_label_t ecl; ecl = equiv_class_lookup_or_add (pointer_equiv_class_table, graph->points_to[n]); ecl->equivalence_class = graph->pointer_label[n]; return; } /* If there was only a single non-empty predecessor the pointer equiv class is the same. */ if (!graph->points_to[n]) { if (first_pred != -1U) { graph->pointer_label[n] = graph->pointer_label[first_pred]; graph->points_to[n] = graph->points_to[first_pred]; } return; } if (!bitmap_empty_p (graph->points_to[n])) { equiv_class_label_t ecl; ecl = equiv_class_lookup_or_add (pointer_equiv_class_table, graph->points_to[n]); if (ecl->equivalence_class == 0) ecl->equivalence_class = pointer_equiv_class++; else { BITMAP_FREE (graph->points_to[n]); graph->points_to[n] = ecl->labels; } graph->pointer_label[n] = ecl->equivalence_class; } } /* Print the pred graph in dot format. */ static void dump_pred_graph (struct scc_info *si, FILE *file) { unsigned int i; /* Only print the graph if it has already been initialized: */ if (!graph) return; /* Prints the header of the dot file: */ fprintf (file, "strict digraph {\n"); fprintf (file, " node [\n shape = box\n ]\n"); fprintf (file, " edge [\n fontsize = \"12\"\n ]\n"); fprintf (file, "\n // List of nodes and complex constraints in " "the constraint graph:\n"); /* The next lines print the nodes in the graph together with the complex constraints attached to them. */ for (i = 1; i < graph->size; i++) { if (i == FIRST_REF_NODE) continue; if (si->node_mapping[i] != i) continue; if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); if (graph->points_to[i] && !bitmap_empty_p (graph->points_to[i])) { fprintf (file, "[label=\"%s = {", get_varinfo (i)->name); unsigned j; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi) fprintf (file, " %d", j); fprintf (file, " }\"]"); } fprintf (file, ";\n"); } /* Go over the edges. */ fprintf (file, "\n // Edges in the constraint graph:\n"); for (i = 1; i < graph->size; i++) { unsigned j; bitmap_iterator bi; if (si->node_mapping[i] != i) continue; EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi) { unsigned from = si->node_mapping[j]; if (from < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (from)->name); else fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name); fprintf (file, " -> "); if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (file, ";\n"); } } /* Prints the tail of the dot file. */ fprintf (file, "}\n"); } /* Perform offline variable substitution, discovering equivalence classes, and eliminating non-pointer variables. */ static struct scc_info * perform_var_substitution (constraint_graph_t graph) { unsigned int i; unsigned int size = graph->size; struct scc_info *si = init_scc_info (size); bitmap_obstack_initialize (&iteration_obstack); pointer_equiv_class_table = new hash_table (511); location_equiv_class_table = new hash_table (511); pointer_equiv_class = 1; location_equiv_class = 1; /* Condense the nodes, which means to find SCC's, count incoming predecessors, and unite nodes in SCC's. */ for (i = 1; i < FIRST_REF_NODE; i++) if (!bitmap_bit_p (si->visited, si->node_mapping[i])) condense_visit (graph, si, si->node_mapping[i]); if (dump_file && (dump_flags & TDF_GRAPH)) { fprintf (dump_file, "\n\n// The constraint graph before var-substitution " "in dot format:\n"); dump_pred_graph (si, dump_file); fprintf (dump_file, "\n\n"); } bitmap_clear (si->visited); /* Actually the label the nodes for pointer equivalences */ for (i = 1; i < FIRST_REF_NODE; i++) if (!bitmap_bit_p (si->visited, si->node_mapping[i])) label_visit (graph, si, si->node_mapping[i]); /* Calculate location equivalence labels. */ for (i = 1; i < FIRST_REF_NODE; i++) { bitmap pointed_by; bitmap_iterator bi; unsigned int j; if (!graph->pointed_by[i]) continue; pointed_by = BITMAP_ALLOC (&iteration_obstack); /* Translate the pointed-by mapping for pointer equivalence labels. */ EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi) { bitmap_set_bit (pointed_by, graph->pointer_label[si->node_mapping[j]]); } /* The original pointed_by is now dead. */ BITMAP_FREE (graph->pointed_by[i]); /* Look up the location equivalence label if one exists, or make one otherwise. */ equiv_class_label_t ecl; ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by); if (ecl->equivalence_class == 0) ecl->equivalence_class = location_equiv_class++; else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found location equivalence for node %s\n", get_varinfo (i)->name); BITMAP_FREE (pointed_by); } graph->loc_label[i] = ecl->equivalence_class; } if (dump_file && (dump_flags & TDF_DETAILS)) for (i = 1; i < FIRST_REF_NODE; i++) { unsigned j = si->node_mapping[i]; if (j != i) { fprintf (dump_file, "%s node id %d ", bitmap_bit_p (graph->direct_nodes, i) ? "Direct" : "Indirect", i); if (i < FIRST_REF_NODE) fprintf (dump_file, "\"%s\"", get_varinfo (i)->name); else fprintf (dump_file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (dump_file, " mapped to SCC leader node id %d ", j); if (j < FIRST_REF_NODE) fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name); else fprintf (dump_file, "\"*%s\"\n", get_varinfo (j - FIRST_REF_NODE)->name); } else { fprintf (dump_file, "Equivalence classes for %s node id %d ", bitmap_bit_p (graph->direct_nodes, i) ? "direct" : "indirect", i); if (i < FIRST_REF_NODE) fprintf (dump_file, "\"%s\"", get_varinfo (i)->name); else fprintf (dump_file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (dump_file, ": pointer %d, location %d\n", graph->pointer_label[i], graph->loc_label[i]); } } /* Quickly eliminate our non-pointer variables. */ for (i = 1; i < FIRST_REF_NODE; i++) { unsigned int node = si->node_mapping[i]; if (graph->pointer_label[node] == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "%s is a non-pointer variable, eliminating edges.\n", get_varinfo (node)->name); stats.nonpointer_vars++; clear_edges_for_node (graph, node); } } return si; } /* Free information that was only necessary for variable substitution. */ static void free_var_substitution_info (struct scc_info *si) { free_scc_info (si); free (graph->pointer_label); free (graph->loc_label); free (graph->pointed_by); free (graph->points_to); free (graph->eq_rep); sbitmap_free (graph->direct_nodes); delete pointer_equiv_class_table; pointer_equiv_class_table = NULL; delete location_equiv_class_table; location_equiv_class_table = NULL; bitmap_obstack_release (&iteration_obstack); } /* Return an existing node that is equivalent to NODE, which has equivalence class LABEL, if one exists. Return NODE otherwise. */ static unsigned int find_equivalent_node (constraint_graph_t graph, unsigned int node, unsigned int label) { /* If the address version of this variable is unused, we can substitute it for anything else with the same label. Otherwise, we know the pointers are equivalent, but not the locations, and we can unite them later. */ if (!bitmap_bit_p (graph->address_taken, node)) { gcc_checking_assert (label < graph->size); if (graph->eq_rep[label] != -1) { /* Unify the two variables since we know they are equivalent. */ if (unite (graph->eq_rep[label], node)) unify_nodes (graph, graph->eq_rep[label], node, false); return graph->eq_rep[label]; } else { graph->eq_rep[label] = node; graph->pe_rep[label] = node; } } else { gcc_checking_assert (label < graph->size); graph->pe[node] = label; if (graph->pe_rep[label] == -1) graph->pe_rep[label] = node; } return node; } /* Unite pointer equivalent but not location equivalent nodes in GRAPH. This may only be performed once variable substitution is finished. */ static void unite_pointer_equivalences (constraint_graph_t graph) { unsigned int i; /* Go through the pointer equivalences and unite them to their representative, if they aren't already. */ for (i = 1; i < FIRST_REF_NODE; i++) { unsigned int label = graph->pe[i]; if (label) { int label_rep = graph->pe_rep[label]; if (label_rep == -1) continue; label_rep = find (label_rep); if (label_rep >= 0 && unite (label_rep, find (i))) unify_nodes (graph, label_rep, i, false); } } } /* Move complex constraints to the GRAPH nodes they belong to. */ static void move_complex_constraints (constraint_graph_t graph) { int i; constraint_t c; FOR_EACH_VEC_ELT (constraints, i, c) { if (c) { struct constraint_expr lhs = c->lhs; struct constraint_expr rhs = c->rhs; if (lhs.type == DEREF) { insert_into_complex (graph, lhs.var, c); } else if (rhs.type == DEREF) { if (!(get_varinfo (lhs.var)->is_special_var)) insert_into_complex (graph, rhs.var, c); } else if (rhs.type != ADDRESSOF && lhs.var > anything_id && (lhs.offset != 0 || rhs.offset != 0)) { insert_into_complex (graph, rhs.var, c); } } } } /* Optimize and rewrite complex constraints while performing collapsing of equivalent nodes. SI is the SCC_INFO that is the result of perform_variable_substitution. */ static void rewrite_constraints (constraint_graph_t graph, struct scc_info *si) { int i; constraint_t c; #ifdef ENABLE_CHECKING for (unsigned int j = 0; j < graph->size; j++) gcc_assert (find (j) == j); #endif FOR_EACH_VEC_ELT (constraints, i, c) { struct constraint_expr lhs = c->lhs; struct constraint_expr rhs = c->rhs; unsigned int lhsvar = find (lhs.var); unsigned int rhsvar = find (rhs.var); unsigned int lhsnode, rhsnode; unsigned int lhslabel, rhslabel; lhsnode = si->node_mapping[lhsvar]; rhsnode = si->node_mapping[rhsvar]; lhslabel = graph->pointer_label[lhsnode]; rhslabel = graph->pointer_label[rhsnode]; /* See if it is really a non-pointer variable, and if so, ignore the constraint. */ if (lhslabel == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "%s is a non-pointer variable," "ignoring constraint:", get_varinfo (lhs.var)->name); dump_constraint (dump_file, c); fprintf (dump_file, "\n"); } constraints[i] = NULL; continue; } if (rhslabel == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "%s is a non-pointer variable," "ignoring constraint:", get_varinfo (rhs.var)->name); dump_constraint (dump_file, c); fprintf (dump_file, "\n"); } constraints[i] = NULL; continue; } lhsvar = find_equivalent_node (graph, lhsvar, lhslabel); rhsvar = find_equivalent_node (graph, rhsvar, rhslabel); c->lhs.var = lhsvar; c->rhs.var = rhsvar; } } /* Eliminate indirect cycles involving NODE. Return true if NODE was part of an SCC, false otherwise. */ static bool eliminate_indirect_cycles (unsigned int node) { if (graph->indirect_cycles[node] != -1 && !bitmap_empty_p (get_varinfo (node)->solution)) { unsigned int i; auto_vec queue; int queuepos; unsigned int to = find (graph->indirect_cycles[node]); bitmap_iterator bi; /* We can't touch the solution set and call unify_nodes at the same time, because unify_nodes is going to do bitmap unions into it. */ EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi) { if (find (i) == i && i != to) { if (unite (to, i)) queue.safe_push (i); } } for (queuepos = 0; queue.iterate (queuepos, &i); queuepos++) { unify_nodes (graph, to, i, true); } return true; } return false; } /* Solve the constraint graph GRAPH using our worklist solver. This is based on the PW* family of solvers from the "Efficient Field Sensitive Pointer Analysis for C" paper. It works by iterating over all the graph nodes, processing the complex constraints and propagating the copy constraints, until everything stops changed. This corresponds to steps 6-8 in the solving list given above. */ static void solve_graph (constraint_graph_t graph) { unsigned int size = graph->size; unsigned int i; bitmap pts; changed = BITMAP_ALLOC (NULL); /* Mark all initial non-collapsed nodes as changed. */ for (i = 1; i < size; i++) { varinfo_t ivi = get_varinfo (i); if (find (i) == i && !bitmap_empty_p (ivi->solution) && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i])) || graph->complex[i].length () > 0)) bitmap_set_bit (changed, i); } /* Allocate a bitmap to be used to store the changed bits. */ pts = BITMAP_ALLOC (&pta_obstack); while (!bitmap_empty_p (changed)) { unsigned int i; struct topo_info *ti = init_topo_info (); stats.iterations++; bitmap_obstack_initialize (&iteration_obstack); compute_topo_order (graph, ti); while (ti->topo_order.length () != 0) { i = ti->topo_order.pop (); /* If this variable is not a representative, skip it. */ if (find (i) != i) continue; /* In certain indirect cycle cases, we may merge this variable to another. */ if (eliminate_indirect_cycles (i) && find (i) != i) continue; /* If the node has changed, we need to process the complex constraints and outgoing edges again. */ if (bitmap_clear_bit (changed, i)) { unsigned int j; constraint_t c; bitmap solution; vec complex = graph->complex[i]; varinfo_t vi = get_varinfo (i); bool solution_empty; /* Compute the changed set of solution bits. If anything is in the solution just propagate that. */ if (bitmap_bit_p (vi->solution, anything_id)) { /* If anything is also in the old solution there is nothing to do. ??? But we shouldn't ended up with "changed" set ... */ if (vi->oldsolution && bitmap_bit_p (vi->oldsolution, anything_id)) continue; bitmap_copy (pts, get_varinfo (find (anything_id))->solution); } else if (vi->oldsolution) bitmap_and_compl (pts, vi->solution, vi->oldsolution); else bitmap_copy (pts, vi->solution); if (bitmap_empty_p (pts)) continue; if (vi->oldsolution) bitmap_ior_into (vi->oldsolution, pts); else { vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack); bitmap_copy (vi->oldsolution, pts); } solution = vi->solution; solution_empty = bitmap_empty_p (solution); /* Process the complex constraints */ bitmap expanded_pts = NULL; FOR_EACH_VEC_ELT (complex, j, c) { /* XXX: This is going to unsort the constraints in some cases, which will occasionally add duplicate constraints during unification. This does not affect correctness. */ c->lhs.var = find (c->lhs.var); c->rhs.var = find (c->rhs.var); /* The only complex constraint that can change our solution to non-empty, given an empty solution, is a constraint where the lhs side is receiving some set from elsewhere. */ if (!solution_empty || c->lhs.type != DEREF) do_complex_constraint (graph, c, pts, &expanded_pts); } BITMAP_FREE (expanded_pts); solution_empty = bitmap_empty_p (solution); if (!solution_empty) { bitmap_iterator bi; unsigned eff_escaped_id = find (escaped_id); /* Propagate solution to all successors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi) { bitmap tmp; bool flag; unsigned int to = find (j); tmp = get_varinfo (to)->solution; flag = false; /* Don't try to propagate to ourselves. */ if (to == i) continue; /* If we propagate from ESCAPED use ESCAPED as placeholder. */ if (i == eff_escaped_id) flag = bitmap_set_bit (tmp, escaped_id); else flag = bitmap_ior_into (tmp, pts); if (flag) bitmap_set_bit (changed, to); } } } } free_topo_info (ti); bitmap_obstack_release (&iteration_obstack); } BITMAP_FREE (pts); BITMAP_FREE (changed); bitmap_obstack_release (&oldpta_obstack); } /* Map from trees to variable infos. */ static hash_map *vi_for_tree; /* Insert ID as the variable id for tree T in the vi_for_tree map. */ static void insert_vi_for_tree (tree t, varinfo_t vi) { gcc_assert (vi); gcc_assert (!vi_for_tree->put (t, vi)); } /* Find the variable info for tree T in VI_FOR_TREE. If T does not exist in the map, return NULL, otherwise, return the varinfo we found. */ static varinfo_t lookup_vi_for_tree (tree t) { varinfo_t *slot = vi_for_tree->get (t); if (slot == NULL) return NULL; return *slot; } /* Return a printable name for DECL */ static const char * alias_get_name (tree decl) { const char *res = NULL; char *temp; int num_printed = 0; if (!dump_file) return "NULL"; if (TREE_CODE (decl) == SSA_NAME) { res = get_name (decl); if (res) num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl)); else num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl)); if (num_printed > 0) { res = ggc_strdup (temp); free (temp); } } else if (DECL_P (decl)) { if (DECL_ASSEMBLER_NAME_SET_P (decl)) res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); else { res = get_name (decl); if (!res) { num_printed = asprintf (&temp, "D.%u", DECL_UID (decl)); if (num_printed > 0) { res = ggc_strdup (temp); free (temp); } } } } if (res != NULL) return res; return "NULL"; } /* Find the variable id for tree T in the map. If T doesn't exist in the map, create an entry for it and return it. */ static varinfo_t get_vi_for_tree (tree t) { varinfo_t *slot = vi_for_tree->get (t); if (slot == NULL) return get_varinfo (create_variable_info_for (t, alias_get_name (t))); return *slot; } /* Get a scalar constraint expression for a new temporary variable. */ static struct constraint_expr new_scalar_tmp_constraint_exp (const char *name) { struct constraint_expr tmp; varinfo_t vi; vi = new_var_info (NULL_TREE, name); vi->offset = 0; vi->size = -1; vi->fullsize = -1; vi->is_full_var = 1; tmp.var = vi->id; tmp.type = SCALAR; tmp.offset = 0; return tmp; } /* Get a constraint expression vector from an SSA_VAR_P node. If address_p is true, the result will be taken its address of. */ static void get_constraint_for_ssa_var (tree t, vec *results, bool address_p) { struct constraint_expr cexpr; varinfo_t vi; /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */ gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t)); /* For parameters, get at the points-to set for the actual parm decl. */ if (TREE_CODE (t) == SSA_NAME && SSA_NAME_IS_DEFAULT_DEF (t) && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)) { get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p); return; } /* For global variables resort to the alias target. */ if (TREE_CODE (t) == VAR_DECL && (TREE_STATIC (t) || DECL_EXTERNAL (t))) { varpool_node *node = varpool_node::get (t); if (node && node->alias && node->analyzed) { node = node->ultimate_alias_target (); t = node->decl; } } vi = get_vi_for_tree (t); cexpr.var = vi->id; cexpr.type = SCALAR; cexpr.offset = 0; /* If we are not taking the address of the constraint expr, add all sub-fiels of the variable as well. */ if (!address_p && !vi->is_full_var) { for (; vi; vi = vi_next (vi)) { cexpr.var = vi->id; results->safe_push (cexpr); } return; } results->safe_push (cexpr); } /* Process constraint T, performing various simplifications and then adding it to our list of overall constraints. */ static void process_constraint (constraint_t t) { struct constraint_expr rhs = t->rhs; struct constraint_expr lhs = t->lhs; gcc_assert (rhs.var < varmap.length ()); gcc_assert (lhs.var < varmap.length ()); /* If we didn't get any useful constraint from the lhs we get &ANYTHING as fallback from get_constraint_for. Deal with it here by turning it into *ANYTHING. */ if (lhs.type == ADDRESSOF && lhs.var == anything_id) lhs.type = DEREF; /* ADDRESSOF on the lhs is invalid. */ gcc_assert (lhs.type != ADDRESSOF); /* We shouldn't add constraints from things that cannot have pointers. It's not completely trivial to avoid in the callers, so do it here. */ if (rhs.type != ADDRESSOF && !get_varinfo (rhs.var)->may_have_pointers) return; /* Likewise adding to the solution of a non-pointer var isn't useful. */ if (!get_varinfo (lhs.var)->may_have_pointers) return; /* This can happen in our IR with things like n->a = *p */ if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id) { /* Split into tmp = *rhs, *lhs = tmp */ struct constraint_expr tmplhs; tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp"); process_constraint (new_constraint (tmplhs, rhs)); process_constraint (new_constraint (lhs, tmplhs)); } else if (rhs.type == ADDRESSOF && lhs.type == DEREF) { /* Split into tmp = &rhs, *lhs = tmp */ struct constraint_expr tmplhs; tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp"); process_constraint (new_constraint (tmplhs, rhs)); process_constraint (new_constraint (lhs, tmplhs)); } else { gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0); constraints.safe_push (t); } } /* Return the position, in bits, of FIELD_DECL from the beginning of its structure. */ static HOST_WIDE_INT bitpos_of_field (const tree fdecl) { if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl)) || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl))) return -1; return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl))); } /* Get constraint expressions for offsetting PTR by OFFSET. Stores the resulting constraint expressions in *RESULTS. */ static void get_constraint_for_ptr_offset (tree ptr, tree offset, vec *results) { struct constraint_expr c; unsigned int j, n; HOST_WIDE_INT rhsoffset; /* If we do not do field-sensitive PTA adding offsets to pointers does not change the points-to solution. */ if (!use_field_sensitive) { get_constraint_for_rhs (ptr, results); return; } /* If the offset is not a non-negative integer constant that fits in a HOST_WIDE_INT, we have to fall back to a conservative solution which includes all sub-fields of all pointed-to variables of ptr. */ if (offset == NULL_TREE || TREE_CODE (offset) != INTEGER_CST) rhsoffset = UNKNOWN_OFFSET; else { /* Sign-extend the offset. */ offset_int soffset = offset_int::from (offset, SIGNED); if (!wi::fits_shwi_p (soffset)) rhsoffset = UNKNOWN_OFFSET; else { /* Make sure the bit-offset also fits. */ HOST_WIDE_INT rhsunitoffset = soffset.to_shwi (); rhsoffset = rhsunitoffset * BITS_PER_UNIT; if (rhsunitoffset != rhsoffset / BITS_PER_UNIT) rhsoffset = UNKNOWN_OFFSET; } } get_constraint_for_rhs (ptr, results); if (rhsoffset == 0) return; /* As we are eventually appending to the solution do not use vec::iterate here. */ n = results->length (); for (j = 0; j < n; j++) { varinfo_t curr; c = (*results)[j]; curr = get_varinfo (c.var); if (c.type == ADDRESSOF /* If this varinfo represents a full variable just use it. */ && curr->is_full_var) ; else if (c.type == ADDRESSOF /* If we do not know the offset add all subfields. */ && rhsoffset == UNKNOWN_OFFSET) { varinfo_t temp = get_varinfo (curr->head); do { struct constraint_expr c2; c2.var = temp->id; c2.type = ADDRESSOF; c2.offset = 0; if (c2.var != c.var) results->safe_push (c2); temp = vi_next (temp); } while (temp); } else if (c.type == ADDRESSOF) { varinfo_t temp; unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset; /* If curr->offset + rhsoffset is less than zero adjust it. */ if (rhsoffset < 0 && curr->offset < offset) offset = 0; /* We have to include all fields that overlap the current field shifted by rhsoffset. And we include at least the last or the first field of the variable to represent reachability of off-bound addresses, in particular &object + 1, conservatively correct. */ temp = first_or_preceding_vi_for_offset (curr, offset); c.var = temp->id; c.offset = 0; temp = vi_next (temp); while (temp && temp->offset < offset + curr->size) { struct constraint_expr c2; c2.var = temp->id; c2.type = ADDRESSOF; c2.offset = 0; results->safe_push (c2); temp = vi_next (temp); } } else if (c.type == SCALAR) { gcc_assert (c.offset == 0); c.offset = rhsoffset; } else /* We shouldn't get any DEREFs here. */ gcc_unreachable (); (*results)[j] = c; } } /* Given a COMPONENT_REF T, return the constraint_expr vector for it. If address_p is true the result will be taken its address of. If lhs_p is true then the constraint expression is assumed to be used as the lhs. */ static void get_constraint_for_component_ref (tree t, vec *results, bool address_p, bool lhs_p) { tree orig_t = t; HOST_WIDE_INT bitsize = -1; HOST_WIDE_INT bitmaxsize = -1; HOST_WIDE_INT bitpos; tree forzero; /* Some people like to do cute things like take the address of &0->a.b */ forzero = t; while (handled_component_p (forzero) || INDIRECT_REF_P (forzero) || TREE_CODE (forzero) == MEM_REF) forzero = TREE_OPERAND (forzero, 0); if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero)) { struct constraint_expr temp; temp.offset = 0; temp.var = integer_id; temp.type = SCALAR; results->safe_push (temp); return; } t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize); /* Pretend to take the address of the base, we'll take care of adding the required subset of sub-fields below. */ get_constraint_for_1 (t, results, true, lhs_p); gcc_assert (results->length () == 1); struct constraint_expr &result = results->last (); if (result.type == SCALAR && get_varinfo (result.var)->is_full_var) /* For single-field vars do not bother about the offset. */ result.offset = 0; else if (result.type == SCALAR) { /* In languages like C, you can access one past the end of an array. You aren't allowed to dereference it, so we can ignore this constraint. When we handle pointer subtraction, we may have to do something cute here. */ if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize && bitmaxsize != 0) { /* It's also not true that the constraint will actually start at the right offset, it may start in some padding. We only care about setting the constraint to the first actual field it touches, so walk to find it. */ struct constraint_expr cexpr = result; varinfo_t curr; results->pop (); cexpr.offset = 0; for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr)) { if (ranges_overlap_p (curr->offset, curr->size, bitpos, bitmaxsize)) { cexpr.var = curr->id; results->safe_push (cexpr); if (address_p) break; } } /* If we are going to take the address of this field then to be able to compute reachability correctly add at least the last field of the variable. */ if (address_p && results->length () == 0) { curr = get_varinfo (cexpr.var); while (curr->next != 0) curr = vi_next (curr); cexpr.var = curr->id; results->safe_push (cexpr); } else if (results->length () == 0) /* Assert that we found *some* field there. The user couldn't be accessing *only* padding. */ /* Still the user could access one past the end of an array embedded in a struct resulting in accessing *only* padding. */ /* Or accessing only padding via type-punning to a type that has a filed just in padding space. */ { cexpr.type = SCALAR; cexpr.var = anything_id; cexpr.offset = 0; results->safe_push (cexpr); } } else if (bitmaxsize == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Access to zero-sized part of variable," "ignoring\n"); } else if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Access to past the end of variable, ignoring\n"); } else if (result.type == DEREF) { /* If we do not know exactly where the access goes say so. Note that only for non-structure accesses we know that we access at most one subfiled of any variable. */ if (bitpos == -1 || bitsize != bitmaxsize || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)) || result.offset == UNKNOWN_OFFSET) result.offset = UNKNOWN_OFFSET; else result.offset += bitpos; } else if (result.type == ADDRESSOF) { /* We can end up here for component references on a VIEW_CONVERT_EXPR <>(&foobar). */ result.type = SCALAR; result.var = anything_id; result.offset = 0; } else gcc_unreachable (); } /* Dereference the constraint expression CONS, and return the result. DEREF (ADDRESSOF) = SCALAR DEREF (SCALAR) = DEREF DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp)) This is needed so that we can handle dereferencing DEREF constraints. */ static void do_deref (vec *constraints) { struct constraint_expr *c; unsigned int i = 0; FOR_EACH_VEC_ELT (*constraints, i, c) { if (c->type == SCALAR) c->type = DEREF; else if (c->type == ADDRESSOF) c->type = SCALAR; else if (c->type == DEREF) { struct constraint_expr tmplhs; tmplhs = new_scalar_tmp_constraint_exp ("dereftmp"); process_constraint (new_constraint (tmplhs, *c)); c->var = tmplhs.var; } else gcc_unreachable (); } } /* Given a tree T, return the constraint expression for taking the address of it. */ static void get_constraint_for_address_of (tree t, vec *results) { struct constraint_expr *c; unsigned int i; get_constraint_for_1 (t, results, true, true); FOR_EACH_VEC_ELT (*results, i, c) { if (c->type == DEREF) c->type = SCALAR; else c->type = ADDRESSOF; } } /* Given a tree T, return the constraint expression for it. */ static void get_constraint_for_1 (tree t, vec *results, bool address_p, bool lhs_p) { struct constraint_expr temp; /* x = integer is all glommed to a single variable, which doesn't point to anything by itself. That is, of course, unless it is an integer constant being treated as a pointer, in which case, we will return that this is really the addressof anything. This happens below, since it will fall into the default case. The only case we know something about an integer treated like a pointer is when it is the NULL pointer, and then we just say it points to NULL. Do not do that if -fno-delete-null-pointer-checks though, because in that case *NULL does not fail, so it _should_ alias *anything. It is not worth adding a new option or renaming the existing one, since this case is relatively obscure. */ if ((TREE_CODE (t) == INTEGER_CST && integer_zerop (t)) /* The only valid CONSTRUCTORs in gimple with pointer typed elements are zero-initializer. But in IPA mode we also process global initializers, so verify at least. */ || (TREE_CODE (t) == CONSTRUCTOR && CONSTRUCTOR_NELTS (t) == 0)) { if (flag_delete_null_pointer_checks) temp.var = nothing_id; else temp.var = nonlocal_id; temp.type = ADDRESSOF; temp.offset = 0; results->safe_push (temp); return; } /* String constants are read-only, ideally we'd have a CONST_DECL for those. */ if (TREE_CODE (t) == STRING_CST) { temp.var = string_id; temp.type = SCALAR; temp.offset = 0; results->safe_push (temp); return; } switch (TREE_CODE_CLASS (TREE_CODE (t))) { case tcc_expression: { switch (TREE_CODE (t)) { case ADDR_EXPR: get_constraint_for_address_of (TREE_OPERAND (t, 0), results); return; default:; } break; } case tcc_reference: { switch (TREE_CODE (t)) { case MEM_REF: { struct constraint_expr cs; varinfo_t vi, curr; get_constraint_for_ptr_offset (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), results); do_deref (results); /* If we are not taking the address then make sure to process all subvariables we might access. */ if (address_p) return; cs = results->last (); if (cs.type == DEREF && type_can_have_subvars (TREE_TYPE (t))) { /* For dereferences this means we have to defer it to solving time. */ results->last ().offset = UNKNOWN_OFFSET; return; } if (cs.type != SCALAR) return; vi = get_varinfo (cs.var); curr = vi_next (vi); if (!vi->is_full_var && curr) { unsigned HOST_WIDE_INT size; if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t)))) size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t))); else size = -1; for (; curr; curr = vi_next (curr)) { if (curr->offset - vi->offset < size) { cs.var = curr->id; results->safe_push (cs); } else break; } } return; } case ARRAY_REF: case ARRAY_RANGE_REF: case COMPONENT_REF: case IMAGPART_EXPR: case REALPART_EXPR: case BIT_FIELD_REF: get_constraint_for_component_ref (t, results, address_p, lhs_p); return; case VIEW_CONVERT_EXPR: get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p, lhs_p); return; /* We are missing handling for TARGET_MEM_REF here. */ default:; } break; } case tcc_exceptional: { switch (TREE_CODE (t)) { case SSA_NAME: { get_constraint_for_ssa_var (t, results, address_p); return; } case CONSTRUCTOR: { unsigned int i; tree val; auto_vec tmp; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val) { struct constraint_expr *rhsp; unsigned j; get_constraint_for_1 (val, &tmp, address_p, lhs_p); FOR_EACH_VEC_ELT (tmp, j, rhsp) results->safe_push (*rhsp); tmp.truncate (0); } /* We do not know whether the constructor was complete, so technically we have to add &NOTHING or &ANYTHING like we do for an empty constructor as well. */ return; } default:; } break; } case tcc_declaration: { get_constraint_for_ssa_var (t, results, address_p); return; } case tcc_constant: { /* We cannot refer to automatic variables through constants. */ temp.type = ADDRESSOF; temp.var = nonlocal_id; temp.offset = 0; results->safe_push (temp); return; } default:; } /* The default fallback is a constraint from anything. */ temp.type = ADDRESSOF; temp.var = anything_id; temp.offset = 0; results->safe_push (temp); } /* Given a gimple tree T, return the constraint expression vector for it. */ static void get_constraint_for (tree t, vec *results) { gcc_assert (results->length () == 0); get_constraint_for_1 (t, results, false, true); } /* Given a gimple tree T, return the constraint expression vector for it to be used as the rhs of a constraint. */ static void get_constraint_for_rhs (tree t, vec *results) { gcc_assert (results->length () == 0); get_constraint_for_1 (t, results, false, false); } /* Efficiently generates constraints from all entries in *RHSC to all entries in *LHSC. */ static void process_all_all_constraints (vec lhsc, vec rhsc) { struct constraint_expr *lhsp, *rhsp; unsigned i, j; if (lhsc.length () <= 1 || rhsc.length () <= 1) { FOR_EACH_VEC_ELT (lhsc, i, lhsp) FOR_EACH_VEC_ELT (rhsc, j, rhsp) process_constraint (new_constraint (*lhsp, *rhsp)); } else { struct constraint_expr tmp; tmp = new_scalar_tmp_constraint_exp ("allalltmp"); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (tmp, *rhsp)); FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (*lhsp, tmp)); } } /* Handle aggregate copies by expanding into copies of the respective fields of the structures. */ static void do_structure_copy (tree lhsop, tree rhsop) { struct constraint_expr *lhsp, *rhsp; auto_vec lhsc; auto_vec rhsc; unsigned j; get_constraint_for (lhsop, &lhsc); get_constraint_for_rhs (rhsop, &rhsc); lhsp = &lhsc[0]; rhsp = &rhsc[0]; if (lhsp->type == DEREF || (lhsp->type == ADDRESSOF && lhsp->var == anything_id) || rhsp->type == DEREF) { if (lhsp->type == DEREF) { gcc_assert (lhsc.length () == 1); lhsp->offset = UNKNOWN_OFFSET; } if (rhsp->type == DEREF) { gcc_assert (rhsc.length () == 1); rhsp->offset = UNKNOWN_OFFSET; } process_all_all_constraints (lhsc, rhsc); } else if (lhsp->type == SCALAR && (rhsp->type == SCALAR || rhsp->type == ADDRESSOF)) { HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset; HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset; unsigned k = 0; get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize); get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize); for (j = 0; lhsc.iterate (j, &lhsp);) { varinfo_t lhsv, rhsv; rhsp = &rhsc[k]; lhsv = get_varinfo (lhsp->var); rhsv = get_varinfo (rhsp->var); if (lhsv->may_have_pointers && (lhsv->is_full_var || rhsv->is_full_var || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size, rhsv->offset + lhsoffset, rhsv->size))) process_constraint (new_constraint (*lhsp, *rhsp)); if (!rhsv->is_full_var && (lhsv->is_full_var || (lhsv->offset + rhsoffset + lhsv->size > rhsv->offset + lhsoffset + rhsv->size))) { ++k; if (k >= rhsc.length ()) break; } else ++j; } } else gcc_unreachable (); } /* Create constraints ID = { rhsc }. */ static void make_constraints_to (unsigned id, vec rhsc) { struct constraint_expr *c; struct constraint_expr includes; unsigned int j; includes.var = id; includes.offset = 0; includes.type = SCALAR; FOR_EACH_VEC_ELT (rhsc, j, c) process_constraint (new_constraint (includes, *c)); } /* Create a constraint ID = OP. */ static void make_constraint_to (unsigned id, tree op) { auto_vec rhsc; get_constraint_for_rhs (op, &rhsc); make_constraints_to (id, rhsc); } /* Create a constraint ID = &FROM. */ static void make_constraint_from (varinfo_t vi, int from) { struct constraint_expr lhs, rhs; lhs.var = vi->id; lhs.offset = 0; lhs.type = SCALAR; rhs.var = from; rhs.offset = 0; rhs.type = ADDRESSOF; process_constraint (new_constraint (lhs, rhs)); } /* Create a constraint ID = FROM. */ static void make_copy_constraint (varinfo_t vi, int from) { struct constraint_expr lhs, rhs; lhs.var = vi->id; lhs.offset = 0; lhs.type = SCALAR; rhs.var = from; rhs.offset = 0; rhs.type = SCALAR; process_constraint (new_constraint (lhs, rhs)); } /* Make constraints necessary to make OP escape. */ static void make_escape_constraint (tree op) { make_constraint_to (escaped_id, op); } /* Add constraints to that the solution of VI is transitively closed. */ static void make_transitive_closure_constraints (varinfo_t vi) { struct constraint_expr lhs, rhs; /* VAR = *VAR; */ lhs.type = SCALAR; lhs.var = vi->id; lhs.offset = 0; rhs.type = DEREF; rhs.var = vi->id; rhs.offset = UNKNOWN_OFFSET; process_constraint (new_constraint (lhs, rhs)); } /* Temporary storage for fake var decls. */ struct obstack fake_var_decl_obstack; /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */ static tree build_fake_var_decl (tree type) { tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl); memset (decl, 0, sizeof (struct tree_var_decl)); TREE_SET_CODE (decl, VAR_DECL); TREE_TYPE (decl) = type; DECL_UID (decl) = allocate_decl_uid (); SET_DECL_PT_UID (decl, -1); layout_decl (decl, 0); return decl; } /* Create a new artificial heap variable with NAME. Return the created variable. */ static varinfo_t make_heapvar (const char *name) { varinfo_t vi; tree heapvar; heapvar = build_fake_var_decl (ptr_type_node); DECL_EXTERNAL (heapvar) = 1; vi = new_var_info (heapvar, name); vi->is_artificial_var = true; vi->is_heap_var = true; vi->is_unknown_size_var = true; vi->offset = 0; vi->fullsize = ~0; vi->size = ~0; vi->is_full_var = true; insert_vi_for_tree (heapvar, vi); return vi; } /* Create a new artificial heap variable with NAME and make a constraint from it to LHS. Set flags according to a tag used for tracking restrict pointers. */ static varinfo_t make_constraint_from_restrict (varinfo_t lhs, const char *name) { varinfo_t vi = make_heapvar (name); vi->is_restrict_var = 1; vi->is_global_var = 1; vi->may_have_pointers = 1; make_constraint_from (lhs, vi->id); return vi; } /* Create a new artificial heap variable with NAME and make a constraint from it to LHS. Set flags according to a tag used for tracking restrict pointers and make the artificial heap point to global memory. */ static varinfo_t make_constraint_from_global_restrict (varinfo_t lhs, const char *name) { varinfo_t vi = make_constraint_from_restrict (lhs, name); make_copy_constraint (vi, nonlocal_id); return vi; } /* In IPA mode there are varinfos for different aspects of reach function designator. One for the points-to set of the return value, one for the variables that are clobbered by the function, one for its uses and one for each parameter (including a single glob for remaining variadic arguments). */ enum { fi_clobbers = 1, fi_uses = 2, fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 }; /* Get a constraint for the requested part of a function designator FI when operating in IPA mode. */ static struct constraint_expr get_function_part_constraint (varinfo_t fi, unsigned part) { struct constraint_expr c; gcc_assert (in_ipa_mode); if (fi->id == anything_id) { /* ??? We probably should have a ANYFN special variable. */ c.var = anything_id; c.offset = 0; c.type = SCALAR; } else if (TREE_CODE (fi->decl) == FUNCTION_DECL) { varinfo_t ai = first_vi_for_offset (fi, part); if (ai) c.var = ai->id; else c.var = anything_id; c.offset = 0; c.type = SCALAR; } else { c.var = fi->id; c.offset = part; c.type = DEREF; } return c; } /* For non-IPA mode, generate constraints necessary for a call on the RHS. */ static void handle_rhs_call (gcall *stmt, vec *results) { struct constraint_expr rhsc; unsigned i; bool returns_uses = false; for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree arg = gimple_call_arg (stmt, i); int flags = gimple_call_arg_flags (stmt, i); /* If the argument is not used we can ignore it. */ if (flags & EAF_UNUSED) continue; /* As we compute ESCAPED context-insensitive we do not gain any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE set. The argument would still get clobbered through the escape solution. */ if ((flags & EAF_NOCLOBBER) && (flags & EAF_NOESCAPE)) { varinfo_t uses = get_call_use_vi (stmt); if (!(flags & EAF_DIRECT)) { varinfo_t tem = new_var_info (NULL_TREE, "callarg"); make_constraint_to (tem->id, arg); make_transitive_closure_constraints (tem); make_copy_constraint (uses, tem->id); } else make_constraint_to (uses->id, arg); returns_uses = true; } else if (flags & EAF_NOESCAPE) { struct constraint_expr lhs, rhs; varinfo_t uses = get_call_use_vi (stmt); varinfo_t clobbers = get_call_clobber_vi (stmt); varinfo_t tem = new_var_info (NULL_TREE, "callarg"); make_constraint_to (tem->id, arg); if (!(flags & EAF_DIRECT)) make_transitive_closure_constraints (tem); make_copy_constraint (uses, tem->id); make_copy_constraint (clobbers, tem->id); /* Add *tem = nonlocal, do not add *tem = callused as EAF_NOESCAPE parameters do not escape to other parameters and all other uses appear in NONLOCAL as well. */ lhs.type = DEREF; lhs.var = tem->id; lhs.offset = 0; rhs.type = SCALAR; rhs.var = nonlocal_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); returns_uses = true; } else make_escape_constraint (arg); } /* If we added to the calls uses solution make sure we account for pointers to it to be returned. */ if (returns_uses) { rhsc.var = get_call_use_vi (stmt)->id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* The static chain escapes as well. */ if (gimple_call_chain (stmt)) make_escape_constraint (gimple_call_chain (stmt)); /* And if we applied NRV the address of the return slot escapes as well. */ if (gimple_call_return_slot_opt_p (stmt) && gimple_call_lhs (stmt) != NULL_TREE && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt)))) { auto_vec tmpc; struct constraint_expr lhsc, *c; get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc); lhsc.var = escaped_id; lhsc.offset = 0; lhsc.type = SCALAR; FOR_EACH_VEC_ELT (tmpc, i, c) process_constraint (new_constraint (lhsc, *c)); } /* Regular functions return nonlocal memory. */ rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* For non-IPA mode, generate constraints necessary for a call that returns a pointer and assigns it to LHS. This simply makes the LHS point to global and escaped variables. */ static void handle_lhs_call (gcall *stmt, tree lhs, int flags, vec rhsc, tree fndecl) { auto_vec lhsc; get_constraint_for (lhs, &lhsc); /* If the store is to a global decl make sure to add proper escape constraints. */ lhs = get_base_address (lhs); if (lhs && DECL_P (lhs) && is_global_var (lhs)) { struct constraint_expr tmpc; tmpc.var = escaped_id; tmpc.offset = 0; tmpc.type = SCALAR; lhsc.safe_push (tmpc); } /* If the call returns an argument unmodified override the rhs constraints. */ if (flags & ERF_RETURNS_ARG && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt)) { tree arg; rhsc.create (0); arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK); get_constraint_for (arg, &rhsc); process_all_all_constraints (lhsc, rhsc); rhsc.release (); } else if (flags & ERF_NOALIAS) { varinfo_t vi; struct constraint_expr tmpc; rhsc.create (0); vi = make_heapvar ("HEAP"); /* We are marking allocated storage local, we deal with it becoming global by escaping and setting of vars_contains_escaped_heap. */ DECL_EXTERNAL (vi->decl) = 0; vi->is_global_var = 0; /* If this is not a real malloc call assume the memory was initialized and thus may point to global memory. All builtin functions with the malloc attribute behave in a sane way. */ if (!fndecl || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL) make_constraint_from (vi, nonlocal_id); tmpc.var = vi->id; tmpc.offset = 0; tmpc.type = ADDRESSOF; rhsc.safe_push (tmpc); process_all_all_constraints (lhsc, rhsc); rhsc.release (); } else process_all_all_constraints (lhsc, rhsc); } /* For non-IPA mode, generate constraints necessary for a call of a const function that returns a pointer in the statement STMT. */ static void handle_const_call (gcall *stmt, vec *results) { struct constraint_expr rhsc; unsigned int k; /* Treat nested const functions the same as pure functions as far as the static chain is concerned. */ if (gimple_call_chain (stmt)) { varinfo_t uses = get_call_use_vi (stmt); make_transitive_closure_constraints (uses); make_constraint_to (uses->id, gimple_call_chain (stmt)); rhsc.var = uses->id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* May return arguments. */ for (k = 0; k < gimple_call_num_args (stmt); ++k) { tree arg = gimple_call_arg (stmt, k); auto_vec argc; unsigned i; struct constraint_expr *argp; get_constraint_for_rhs (arg, &argc); FOR_EACH_VEC_ELT (argc, i, argp) results->safe_push (*argp); } /* May return addresses of globals. */ rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = ADDRESSOF; results->safe_push (rhsc); } /* For non-IPA mode, generate constraints necessary for a call to a pure function in statement STMT. */ static void handle_pure_call (gcall *stmt, vec *results) { struct constraint_expr rhsc; unsigned i; varinfo_t uses = NULL; /* Memory reached from pointer arguments is call-used. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree arg = gimple_call_arg (stmt, i); if (!uses) { uses = get_call_use_vi (stmt); make_transitive_closure_constraints (uses); } make_constraint_to (uses->id, arg); } /* The static chain is used as well. */ if (gimple_call_chain (stmt)) { if (!uses) { uses = get_call_use_vi (stmt); make_transitive_closure_constraints (uses); } make_constraint_to (uses->id, gimple_call_chain (stmt)); } /* Pure functions may return call-used and nonlocal memory. */ if (uses) { rhsc.var = uses->id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* Return the varinfo for the callee of CALL. */ static varinfo_t get_fi_for_callee (gcall *call) { tree decl, fn = gimple_call_fn (call); if (fn && TREE_CODE (fn) == OBJ_TYPE_REF) fn = OBJ_TYPE_REF_EXPR (fn); /* If we can directly resolve the function being called, do so. Otherwise, it must be some sort of indirect expression that we should still be able to handle. */ decl = gimple_call_addr_fndecl (fn); if (decl) return get_vi_for_tree (decl); /* If the function is anything other than a SSA name pointer we have no clue and should be getting ANYFN (well, ANYTHING for now). */ if (!fn || TREE_CODE (fn) != SSA_NAME) return get_varinfo (anything_id); if (SSA_NAME_IS_DEFAULT_DEF (fn) && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL)) fn = SSA_NAME_VAR (fn); return get_vi_for_tree (fn); } /* Create constraints for the builtin call T. Return true if the call was handled, otherwise false. */ static bool find_func_aliases_for_builtin_call (struct function *fn, gcall *t) { tree fndecl = gimple_call_fndecl (t); auto_vec lhsc; auto_vec rhsc; varinfo_t fi; if (gimple_call_builtin_p (t, BUILT_IN_NORMAL)) /* ??? All builtins that are handled here need to be handled in the alias-oracle query functions explicitly! */ switch (DECL_FUNCTION_CODE (fndecl)) { /* All the following functions return a pointer to the same object as their first argument points to. The functions do not add to the ESCAPED solution. The functions make the first argument pointed to memory point to what the second argument pointed to memory points to. */ case BUILT_IN_STRCPY: case BUILT_IN_STRNCPY: case BUILT_IN_BCOPY: case BUILT_IN_MEMCPY: case BUILT_IN_MEMMOVE: case BUILT_IN_MEMPCPY: case BUILT_IN_STPCPY: case BUILT_IN_STPNCPY: case BUILT_IN_STRCAT: case BUILT_IN_STRNCAT: case BUILT_IN_STRCPY_CHK: case BUILT_IN_STRNCPY_CHK: case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_STPCPY_CHK: case BUILT_IN_STPNCPY_CHK: case BUILT_IN_STRCAT_CHK: case BUILT_IN_STRNCAT_CHK: case BUILT_IN_TM_MEMCPY: case BUILT_IN_TM_MEMMOVE: { tree res = gimple_call_lhs (t); tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_BCOPY ? 1 : 0)); tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_BCOPY ? 0 : 1)); if (res != NULL_TREE) { get_constraint_for (res, &lhsc); if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK) get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc); else get_constraint_for (dest, &rhsc); process_all_all_constraints (lhsc, rhsc); lhsc.truncate (0); rhsc.truncate (0); } get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc); get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc); do_deref (&lhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); return true; } case BUILT_IN_MEMSET: case BUILT_IN_MEMSET_CHK: case BUILT_IN_TM_MEMSET: { tree res = gimple_call_lhs (t); tree dest = gimple_call_arg (t, 0); unsigned i; ce_s *lhsp; struct constraint_expr ac; if (res != NULL_TREE) { get_constraint_for (res, &lhsc); get_constraint_for (dest, &rhsc); process_all_all_constraints (lhsc, rhsc); lhsc.truncate (0); } get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc); do_deref (&lhsc); if (flag_delete_null_pointer_checks && integer_zerop (gimple_call_arg (t, 1))) { ac.type = ADDRESSOF; ac.var = nothing_id; } else { ac.type = SCALAR; ac.var = integer_id; } ac.offset = 0; FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (*lhsp, ac)); return true; } case BUILT_IN_POSIX_MEMALIGN: { tree ptrptr = gimple_call_arg (t, 0); get_constraint_for (ptrptr, &lhsc); do_deref (&lhsc); varinfo_t vi = make_heapvar ("HEAP"); /* We are marking allocated storage local, we deal with it becoming global by escaping and setting of vars_contains_escaped_heap. */ DECL_EXTERNAL (vi->decl) = 0; vi->is_global_var = 0; struct constraint_expr tmpc; tmpc.var = vi->id; tmpc.offset = 0; tmpc.type = ADDRESSOF; rhsc.safe_push (tmpc); process_all_all_constraints (lhsc, rhsc); return true; } case BUILT_IN_ASSUME_ALIGNED: { tree res = gimple_call_lhs (t); tree dest = gimple_call_arg (t, 0); if (res != NULL_TREE) { get_constraint_for (res, &lhsc); get_constraint_for (dest, &rhsc); process_all_all_constraints (lhsc, rhsc); } return true; } /* All the following functions do not return pointers, do not modify the points-to sets of memory reachable from their arguments and do not add to the ESCAPED solution. */ case BUILT_IN_SINCOS: case BUILT_IN_SINCOSF: case BUILT_IN_SINCOSL: case BUILT_IN_FREXP: case BUILT_IN_FREXPF: case BUILT_IN_FREXPL: case BUILT_IN_GAMMA_R: case BUILT_IN_GAMMAF_R: case BUILT_IN_GAMMAL_R: case BUILT_IN_LGAMMA_R: case BUILT_IN_LGAMMAF_R: case BUILT_IN_LGAMMAL_R: case BUILT_IN_MODF: case BUILT_IN_MODFF: case BUILT_IN_MODFL: case BUILT_IN_REMQUO: case BUILT_IN_REMQUOF: case BUILT_IN_REMQUOL: case BUILT_IN_FREE: return true; case BUILT_IN_STRDUP: case BUILT_IN_STRNDUP: case BUILT_IN_REALLOC: if (gimple_call_lhs (t)) { handle_lhs_call (t, gimple_call_lhs (t), gimple_call_return_flags (t) | ERF_NOALIAS, vNULL, fndecl); get_constraint_for_ptr_offset (gimple_call_lhs (t), NULL_TREE, &lhsc); get_constraint_for_ptr_offset (gimple_call_arg (t, 0), NULL_TREE, &rhsc); do_deref (&lhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); lhsc.truncate (0); rhsc.truncate (0); /* For realloc the resulting pointer can be equal to the argument as well. But only doing this wouldn't be correct because with ptr == 0 realloc behaves like malloc. */ if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_REALLOC) { get_constraint_for (gimple_call_lhs (t), &lhsc); get_constraint_for (gimple_call_arg (t, 0), &rhsc); process_all_all_constraints (lhsc, rhsc); } return true; } break; /* String / character search functions return a pointer into the source string or NULL. */ case BUILT_IN_INDEX: case BUILT_IN_STRCHR: case BUILT_IN_STRRCHR: case BUILT_IN_MEMCHR: case BUILT_IN_STRSTR: case BUILT_IN_STRPBRK: if (gimple_call_lhs (t)) { tree src = gimple_call_arg (t, 0); get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc); constraint_expr nul; nul.var = nothing_id; nul.offset = 0; nul.type = ADDRESSOF; rhsc.safe_push (nul); get_constraint_for (gimple_call_lhs (t), &lhsc); process_all_all_constraints (lhsc, rhsc); } return true; /* Trampolines are special - they set up passing the static frame. */ case BUILT_IN_INIT_TRAMPOLINE: { tree tramp = gimple_call_arg (t, 0); tree nfunc = gimple_call_arg (t, 1); tree frame = gimple_call_arg (t, 2); unsigned i; struct constraint_expr lhs, *rhsp; if (in_ipa_mode) { varinfo_t nfi = NULL; gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR); nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0)); if (nfi) { lhs = get_function_part_constraint (nfi, fi_static_chain); get_constraint_for (frame, &rhsc); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); rhsc.truncate (0); /* Make the frame point to the function for the trampoline adjustment call. */ get_constraint_for (tramp, &lhsc); do_deref (&lhsc); get_constraint_for (nfunc, &rhsc); process_all_all_constraints (lhsc, rhsc); return true; } } /* Else fallthru to generic handling which will let the frame escape. */ break; } case BUILT_IN_ADJUST_TRAMPOLINE: { tree tramp = gimple_call_arg (t, 0); tree res = gimple_call_lhs (t); if (in_ipa_mode && res) { get_constraint_for (res, &lhsc); get_constraint_for (tramp, &rhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); } return true; } CASE_BUILT_IN_TM_STORE (1): CASE_BUILT_IN_TM_STORE (2): CASE_BUILT_IN_TM_STORE (4): CASE_BUILT_IN_TM_STORE (8): CASE_BUILT_IN_TM_STORE (FLOAT): CASE_BUILT_IN_TM_STORE (DOUBLE): CASE_BUILT_IN_TM_STORE (LDOUBLE): CASE_BUILT_IN_TM_STORE (M64): CASE_BUILT_IN_TM_STORE (M128): CASE_BUILT_IN_TM_STORE (M256): { tree addr = gimple_call_arg (t, 0); tree src = gimple_call_arg (t, 1); get_constraint_for (addr, &lhsc); do_deref (&lhsc); get_constraint_for (src, &rhsc); process_all_all_constraints (lhsc, rhsc); return true; } CASE_BUILT_IN_TM_LOAD (1): CASE_BUILT_IN_TM_LOAD (2): CASE_BUILT_IN_TM_LOAD (4): CASE_BUILT_IN_TM_LOAD (8): CASE_BUILT_IN_TM_LOAD (FLOAT): CASE_BUILT_IN_TM_LOAD (DOUBLE): CASE_BUILT_IN_TM_LOAD (LDOUBLE): CASE_BUILT_IN_TM_LOAD (M64): CASE_BUILT_IN_TM_LOAD (M128): CASE_BUILT_IN_TM_LOAD (M256): { tree dest = gimple_call_lhs (t); tree addr = gimple_call_arg (t, 0); get_constraint_for (dest, &lhsc); get_constraint_for (addr, &rhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); return true; } /* Variadic argument handling needs to be handled in IPA mode as well. */ case BUILT_IN_VA_START: { tree valist = gimple_call_arg (t, 0); struct constraint_expr rhs, *lhsp; unsigned i; get_constraint_for (valist, &lhsc); do_deref (&lhsc); /* The va_list gets access to pointers in variadic arguments. Which we know in the case of IPA analysis and otherwise are just all nonlocal variables. */ if (in_ipa_mode) { fi = lookup_vi_for_tree (fn->decl); rhs = get_function_part_constraint (fi, ~0); rhs.type = ADDRESSOF; } else { rhs.var = nonlocal_id; rhs.type = ADDRESSOF; rhs.offset = 0; } FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (*lhsp, rhs)); /* va_list is clobbered. */ make_constraint_to (get_call_clobber_vi (t)->id, valist); return true; } /* va_end doesn't have any effect that matters. */ case BUILT_IN_VA_END: return true; /* Alternate return. Simply give up for now. */ case BUILT_IN_RETURN: { fi = NULL; if (!in_ipa_mode || !(fi = get_vi_for_tree (fn->decl))) make_constraint_from (get_varinfo (escaped_id), anything_id); else if (in_ipa_mode && fi != NULL) { struct constraint_expr lhs, rhs; lhs = get_function_part_constraint (fi, fi_result); rhs.var = anything_id; rhs.offset = 0; rhs.type = SCALAR; process_constraint (new_constraint (lhs, rhs)); } return true; } /* printf-style functions may have hooks to set pointers to point to somewhere into the generated string. Leave them for a later exercise... */ default: /* Fallthru to general call handling. */; } return false; } /* Create constraints for the call T. */ static void find_func_aliases_for_call (struct function *fn, gcall *t) { tree fndecl = gimple_call_fndecl (t); varinfo_t fi; if (fndecl != NULL_TREE && DECL_BUILT_IN (fndecl) && find_func_aliases_for_builtin_call (fn, t)) return; fi = get_fi_for_callee (t); if (!in_ipa_mode || (fndecl && !fi->is_fn_info)) { auto_vec rhsc; int flags = gimple_call_flags (t); /* Const functions can return their arguments and addresses of global memory but not of escaped memory. */ if (flags & (ECF_CONST|ECF_NOVOPS)) { if (gimple_call_lhs (t)) handle_const_call (t, &rhsc); } /* Pure functions can return addresses in and of memory reachable from their arguments, but they are not an escape point for reachable memory of their arguments. */ else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE)) handle_pure_call (t, &rhsc); else handle_rhs_call (t, &rhsc); if (gimple_call_lhs (t)) handle_lhs_call (t, gimple_call_lhs (t), gimple_call_return_flags (t), rhsc, fndecl); } else { auto_vec rhsc; tree lhsop; unsigned j; /* Assign all the passed arguments to the appropriate incoming parameters of the function. */ for (j = 0; j < gimple_call_num_args (t); j++) { struct constraint_expr lhs ; struct constraint_expr *rhsp; tree arg = gimple_call_arg (t, j); get_constraint_for_rhs (arg, &rhsc); lhs = get_function_part_constraint (fi, fi_parm_base + j); while (rhsc.length () != 0) { rhsp = &rhsc.last (); process_constraint (new_constraint (lhs, *rhsp)); rhsc.pop (); } } /* If we are returning a value, assign it to the result. */ lhsop = gimple_call_lhs (t); if (lhsop) { auto_vec lhsc; struct constraint_expr rhs; struct constraint_expr *lhsp; get_constraint_for (lhsop, &lhsc); rhs = get_function_part_constraint (fi, fi_result); if (fndecl && DECL_RESULT (fndecl) && DECL_BY_REFERENCE (DECL_RESULT (fndecl))) { auto_vec tem; tem.quick_push (rhs); do_deref (&tem); gcc_checking_assert (tem.length () == 1); rhs = tem[0]; } FOR_EACH_VEC_ELT (lhsc, j, lhsp) process_constraint (new_constraint (*lhsp, rhs)); } /* If we pass the result decl by reference, honor that. */ if (lhsop && fndecl && DECL_RESULT (fndecl) && DECL_BY_REFERENCE (DECL_RESULT (fndecl))) { struct constraint_expr lhs; struct constraint_expr *rhsp; get_constraint_for_address_of (lhsop, &rhsc); lhs = get_function_part_constraint (fi, fi_result); FOR_EACH_VEC_ELT (rhsc, j, rhsp) process_constraint (new_constraint (lhs, *rhsp)); rhsc.truncate (0); } /* If we use a static chain, pass it along. */ if (gimple_call_chain (t)) { struct constraint_expr lhs; struct constraint_expr *rhsp; get_constraint_for (gimple_call_chain (t), &rhsc); lhs = get_function_part_constraint (fi, fi_static_chain); FOR_EACH_VEC_ELT (rhsc, j, rhsp) process_constraint (new_constraint (lhs, *rhsp)); } } } /* Walk statement T setting up aliasing constraints according to the references found in T. This function is the main part of the constraint builder. AI points to auxiliary alias information used when building alias sets and computing alias grouping heuristics. */ static void find_func_aliases (struct function *fn, gimple *origt) { gimple *t = origt; auto_vec lhsc; auto_vec rhsc; struct constraint_expr *c; varinfo_t fi; /* Now build constraints expressions. */ if (gimple_code (t) == GIMPLE_PHI) { size_t i; unsigned int j; /* For a phi node, assign all the arguments to the result. */ get_constraint_for (gimple_phi_result (t), &lhsc); for (i = 0; i < gimple_phi_num_args (t); i++) { tree strippedrhs = PHI_ARG_DEF (t, i); STRIP_NOPS (strippedrhs); get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc); FOR_EACH_VEC_ELT (lhsc, j, c) { struct constraint_expr *c2; while (rhsc.length () > 0) { c2 = &rhsc.last (); process_constraint (new_constraint (*c, *c2)); rhsc.pop (); } } } } /* In IPA mode, we need to generate constraints to pass call arguments through their calls. There are two cases, either a GIMPLE_CALL returning a value, or just a plain GIMPLE_CALL when we are not. In non-ipa mode, we need to generate constraints for each pointer passed by address. */ else if (is_gimple_call (t)) find_func_aliases_for_call (fn, as_a (t)); /* Otherwise, just a regular assignment statement. Only care about operations with pointer result, others are dealt with as escape points if they have pointer operands. */ else if (is_gimple_assign (t)) { /* Otherwise, just a regular assignment statement. */ tree lhsop = gimple_assign_lhs (t); tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL; if (rhsop && TREE_CLOBBER_P (rhsop)) /* Ignore clobbers, they don't actually store anything into the LHS. */ ; else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop))) do_structure_copy (lhsop, rhsop); else { enum tree_code code = gimple_assign_rhs_code (t); get_constraint_for (lhsop, &lhsc); if (code == POINTER_PLUS_EXPR) get_constraint_for_ptr_offset (gimple_assign_rhs1 (t), gimple_assign_rhs2 (t), &rhsc); else if (code == BIT_AND_EXPR && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST) { /* Aligning a pointer via a BIT_AND_EXPR is offsetting the pointer. Handle it by offsetting it by UNKNOWN. */ get_constraint_for_ptr_offset (gimple_assign_rhs1 (t), NULL_TREE, &rhsc); } else if ((CONVERT_EXPR_CODE_P (code) && !(POINTER_TYPE_P (gimple_expr_type (t)) && !POINTER_TYPE_P (TREE_TYPE (rhsop)))) || gimple_assign_single_p (t)) get_constraint_for_rhs (rhsop, &rhsc); else if (code == COND_EXPR) { /* The result is a merge of both COND_EXPR arms. */ auto_vec tmp; struct constraint_expr *rhsp; unsigned i; get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc); get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp); FOR_EACH_VEC_ELT (tmp, i, rhsp) rhsc.safe_push (*rhsp); } else if (truth_value_p (code)) /* Truth value results are not pointer (parts). Or at least very unreasonable obfuscation of a part. */ ; else { /* All other operations are merges. */ auto_vec tmp; struct constraint_expr *rhsp; unsigned i, j; get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc); for (i = 2; i < gimple_num_ops (t); ++i) { get_constraint_for_rhs (gimple_op (t, i), &tmp); FOR_EACH_VEC_ELT (tmp, j, rhsp) rhsc.safe_push (*rhsp); tmp.truncate (0); } } process_all_all_constraints (lhsc, rhsc); } /* If there is a store to a global variable the rhs escapes. */ if ((lhsop = get_base_address (lhsop)) != NULL_TREE && DECL_P (lhsop) && is_global_var (lhsop) && (!in_ipa_mode || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop))) make_escape_constraint (rhsop); } /* Handle escapes through return. */ else if (gimple_code (t) == GIMPLE_RETURN && gimple_return_retval (as_a (t)) != NULL_TREE) { greturn *return_stmt = as_a (t); fi = NULL; if (!in_ipa_mode || !(fi = get_vi_for_tree (fn->decl))) make_escape_constraint (gimple_return_retval (return_stmt)); else if (in_ipa_mode && fi != NULL) { struct constraint_expr lhs ; struct constraint_expr *rhsp; unsigned i; lhs = get_function_part_constraint (fi, fi_result); get_constraint_for_rhs (gimple_return_retval (return_stmt), &rhsc); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); } } /* Handle asms conservatively by adding escape constraints to everything. */ else if (gasm *asm_stmt = dyn_cast (t)) { unsigned i, noutputs; const char **oconstraints; const char *constraint; bool allows_mem, allows_reg, is_inout; noutputs = gimple_asm_noutputs (asm_stmt); oconstraints = XALLOCAVEC (const char *, noutputs); for (i = 0; i < noutputs; ++i) { tree link = gimple_asm_output_op (asm_stmt, i); tree op = TREE_VALUE (link); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); oconstraints[i] = constraint; parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg, &is_inout); /* A memory constraint makes the address of the operand escape. */ if (!allows_reg && allows_mem) make_escape_constraint (build_fold_addr_expr (op)); /* The asm may read global memory, so outputs may point to any global memory. */ if (op) { auto_vec lhsc; struct constraint_expr rhsc, *lhsp; unsigned j; get_constraint_for (op, &lhsc); rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = SCALAR; FOR_EACH_VEC_ELT (lhsc, j, lhsp) process_constraint (new_constraint (*lhsp, rhsc)); } } for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i) { tree link = gimple_asm_input_op (asm_stmt, i); tree op = TREE_VALUE (link); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints, &allows_mem, &allows_reg); /* A memory constraint makes the address of the operand escape. */ if (!allows_reg && allows_mem) make_escape_constraint (build_fold_addr_expr (op)); /* Strictly we'd only need the constraint to ESCAPED if the asm clobbers memory, otherwise using something along the lines of per-call clobbers/uses would be enough. */ else if (op) make_escape_constraint (op); } } } /* Create a constraint adding to the clobber set of FI the memory pointed to by PTR. */ static void process_ipa_clobber (varinfo_t fi, tree ptr) { vec ptrc = vNULL; struct constraint_expr *c, lhs; unsigned i; get_constraint_for_rhs (ptr, &ptrc); lhs = get_function_part_constraint (fi, fi_clobbers); FOR_EACH_VEC_ELT (ptrc, i, c) process_constraint (new_constraint (lhs, *c)); ptrc.release (); } /* Walk statement T setting up clobber and use constraints according to the references found in T. This function is a main part of the IPA constraint builder. */ static void find_func_clobbers (struct function *fn, gimple *origt) { gimple *t = origt; auto_vec lhsc; auto_vec rhsc; varinfo_t fi; /* Add constraints for clobbered/used in IPA mode. We are not interested in what automatic variables are clobbered or used as we only use the information in the caller to which they do not escape. */ gcc_assert (in_ipa_mode); /* If the stmt refers to memory in any way it better had a VUSE. */ if (gimple_vuse (t) == NULL_TREE) return; /* We'd better have function information for the current function. */ fi = lookup_vi_for_tree (fn->decl); gcc_assert (fi != NULL); /* Account for stores in assignments and calls. */ if (gimple_vdef (t) != NULL_TREE && gimple_has_lhs (t)) { tree lhs = gimple_get_lhs (t); tree tem = lhs; while (handled_component_p (tem)) tem = TREE_OPERAND (tem, 0); if ((DECL_P (tem) && !auto_var_in_fn_p (tem, fn->decl)) || INDIRECT_REF_P (tem) || (TREE_CODE (tem) == MEM_REF && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR && auto_var_in_fn_p (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl)))) { struct constraint_expr lhsc, *rhsp; unsigned i; lhsc = get_function_part_constraint (fi, fi_clobbers); get_constraint_for_address_of (lhs, &rhsc); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhsc, *rhsp)); rhsc.truncate (0); } } /* Account for uses in assigments and returns. */ if (gimple_assign_single_p (t) || (gimple_code (t) == GIMPLE_RETURN && gimple_return_retval (as_a (t)) != NULL_TREE)) { tree rhs = (gimple_assign_single_p (t) ? gimple_assign_rhs1 (t) : gimple_return_retval (as_a (t))); tree tem = rhs; while (handled_component_p (tem)) tem = TREE_OPERAND (tem, 0); if ((DECL_P (tem) && !auto_var_in_fn_p (tem, fn->decl)) || INDIRECT_REF_P (tem) || (TREE_CODE (tem) == MEM_REF && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR && auto_var_in_fn_p (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl)))) { struct constraint_expr lhs, *rhsp; unsigned i; lhs = get_function_part_constraint (fi, fi_uses); get_constraint_for_address_of (rhs, &rhsc); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); rhsc.truncate (0); } } if (gcall *call_stmt = dyn_cast (t)) { varinfo_t cfi = NULL; tree decl = gimple_call_fndecl (t); struct constraint_expr lhs, rhs; unsigned i, j; /* For builtins we do not have separate function info. For those we do not generate escapes for we have to generate clobbers/uses. */ if (gimple_call_builtin_p (t, BUILT_IN_NORMAL)) switch (DECL_FUNCTION_CODE (decl)) { /* The following functions use and clobber memory pointed to by their arguments. */ case BUILT_IN_STRCPY: case BUILT_IN_STRNCPY: case BUILT_IN_BCOPY: case BUILT_IN_MEMCPY: case BUILT_IN_MEMMOVE: case BUILT_IN_MEMPCPY: case BUILT_IN_STPCPY: case BUILT_IN_STPNCPY: case BUILT_IN_STRCAT: case BUILT_IN_STRNCAT: case BUILT_IN_STRCPY_CHK: case BUILT_IN_STRNCPY_CHK: case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_STPCPY_CHK: case BUILT_IN_STPNCPY_CHK: case BUILT_IN_STRCAT_CHK: case BUILT_IN_STRNCAT_CHK: { tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl) == BUILT_IN_BCOPY ? 1 : 0)); tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl) == BUILT_IN_BCOPY ? 0 : 1)); unsigned i; struct constraint_expr *rhsp, *lhsp; get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc); lhs = get_function_part_constraint (fi, fi_clobbers); FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (lhs, *lhsp)); get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc); lhs = get_function_part_constraint (fi, fi_uses); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); return; } /* The following function clobbers memory pointed to by its argument. */ case BUILT_IN_MEMSET: case BUILT_IN_MEMSET_CHK: case BUILT_IN_POSIX_MEMALIGN: { tree dest = gimple_call_arg (t, 0); unsigned i; ce_s *lhsp; get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc); lhs = get_function_part_constraint (fi, fi_clobbers); FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (lhs, *lhsp)); return; } /* The following functions clobber their second and third arguments. */ case BUILT_IN_SINCOS: case BUILT_IN_SINCOSF: case BUILT_IN_SINCOSL: { process_ipa_clobber (fi, gimple_call_arg (t, 1)); process_ipa_clobber (fi, gimple_call_arg (t, 2)); return; } /* The following functions clobber their second argument. */ case BUILT_IN_FREXP: case BUILT_IN_FREXPF: case BUILT_IN_FREXPL: case BUILT_IN_LGAMMA_R: case BUILT_IN_LGAMMAF_R: case BUILT_IN_LGAMMAL_R: case BUILT_IN_GAMMA_R: case BUILT_IN_GAMMAF_R: case BUILT_IN_GAMMAL_R: case BUILT_IN_MODF: case BUILT_IN_MODFF: case BUILT_IN_MODFL: { process_ipa_clobber (fi, gimple_call_arg (t, 1)); return; } /* The following functions clobber their third argument. */ case BUILT_IN_REMQUO: case BUILT_IN_REMQUOF: case BUILT_IN_REMQUOL: { process_ipa_clobber (fi, gimple_call_arg (t, 2)); return; } /* The following functions neither read nor clobber memory. */ case BUILT_IN_ASSUME_ALIGNED: case BUILT_IN_FREE: return; /* Trampolines are of no interest to us. */ case BUILT_IN_INIT_TRAMPOLINE: case BUILT_IN_ADJUST_TRAMPOLINE: return; case BUILT_IN_VA_START: case BUILT_IN_VA_END: return; /* printf-style functions may have hooks to set pointers to point to somewhere into the generated string. Leave them for a later exercise... */ default: /* Fallthru to general call handling. */; } /* Parameters passed by value are used. */ lhs = get_function_part_constraint (fi, fi_uses); for (i = 0; i < gimple_call_num_args (t); i++) { struct constraint_expr *rhsp; tree arg = gimple_call_arg (t, i); if (TREE_CODE (arg) == SSA_NAME || is_gimple_min_invariant (arg)) continue; get_constraint_for_address_of (arg, &rhsc); FOR_EACH_VEC_ELT (rhsc, j, rhsp) process_constraint (new_constraint (lhs, *rhsp)); rhsc.truncate (0); } /* Build constraints for propagating clobbers/uses along the callgraph edges. */ cfi = get_fi_for_callee (call_stmt); if (cfi->id == anything_id) { if (gimple_vdef (t)) make_constraint_from (first_vi_for_offset (fi, fi_clobbers), anything_id); make_constraint_from (first_vi_for_offset (fi, fi_uses), anything_id); return; } /* For callees without function info (that's external functions), ESCAPED is clobbered and used. */ if (gimple_call_fndecl (t) && !cfi->is_fn_info) { varinfo_t vi; if (gimple_vdef (t)) make_copy_constraint (first_vi_for_offset (fi, fi_clobbers), escaped_id); make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id); /* Also honor the call statement use/clobber info. */ if ((vi = lookup_call_clobber_vi (call_stmt)) != NULL) make_copy_constraint (first_vi_for_offset (fi, fi_clobbers), vi->id); if ((vi = lookup_call_use_vi (call_stmt)) != NULL) make_copy_constraint (first_vi_for_offset (fi, fi_uses), vi->id); return; } /* Otherwise the caller clobbers and uses what the callee does. ??? This should use a new complex constraint that filters local variables of the callee. */ if (gimple_vdef (t)) { lhs = get_function_part_constraint (fi, fi_clobbers); rhs = get_function_part_constraint (cfi, fi_clobbers); process_constraint (new_constraint (lhs, rhs)); } lhs = get_function_part_constraint (fi, fi_uses); rhs = get_function_part_constraint (cfi, fi_uses); process_constraint (new_constraint (lhs, rhs)); } else if (gimple_code (t) == GIMPLE_ASM) { /* ??? Ick. We can do better. */ if (gimple_vdef (t)) make_constraint_from (first_vi_for_offset (fi, fi_clobbers), anything_id); make_constraint_from (first_vi_for_offset (fi, fi_uses), anything_id); } } /* Find the first varinfo in the same variable as START that overlaps with OFFSET. Return NULL if we can't find one. */ static varinfo_t first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset) { /* If the offset is outside of the variable, bail out. */ if (offset >= start->fullsize) return NULL; /* If we cannot reach offset from start, lookup the first field and start from there. */ if (start->offset > offset) start = get_varinfo (start->head); while (start) { /* We may not find a variable in the field list with the actual offset when we have glommed a structure to a variable. In that case, however, offset should still be within the size of the variable. */ if (offset >= start->offset && (offset - start->offset) < start->size) return start; start = vi_next (start); } return NULL; } /* Find the first varinfo in the same variable as START that overlaps with OFFSET. If there is no such varinfo the varinfo directly preceding OFFSET is returned. */ static varinfo_t first_or_preceding_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset) { /* If we cannot reach offset from start, lookup the first field and start from there. */ if (start->offset > offset) start = get_varinfo (start->head); /* We may not find a variable in the field list with the actual offset when we have glommed a structure to a variable. In that case, however, offset should still be within the size of the variable. If we got beyond the offset we look for return the field directly preceding offset which may be the last field. */ while (start->next && offset >= start->offset && !((offset - start->offset) < start->size)) start = vi_next (start); return start; } /* This structure is used during pushing fields onto the fieldstack to track the offset of the field, since bitpos_of_field gives it relative to its immediate containing type, and we want it relative to the ultimate containing object. */ struct fieldoff { /* Offset from the base of the base containing object to this field. */ HOST_WIDE_INT offset; /* Size, in bits, of the field. */ unsigned HOST_WIDE_INT size; unsigned has_unknown_size : 1; unsigned must_have_pointers : 1; unsigned may_have_pointers : 1; unsigned only_restrict_pointers : 1; }; typedef struct fieldoff fieldoff_s; /* qsort comparison function for two fieldoff's PA and PB */ static int fieldoff_compare (const void *pa, const void *pb) { const fieldoff_s *foa = (const fieldoff_s *)pa; const fieldoff_s *fob = (const fieldoff_s *)pb; unsigned HOST_WIDE_INT foasize, fobsize; if (foa->offset < fob->offset) return -1; else if (foa->offset > fob->offset) return 1; foasize = foa->size; fobsize = fob->size; if (foasize < fobsize) return -1; else if (foasize > fobsize) return 1; return 0; } /* Sort a fieldstack according to the field offset and sizes. */ static void sort_fieldstack (vec fieldstack) { fieldstack.qsort (fieldoff_compare); } /* Return true if T is a type that can have subvars. */ static inline bool type_can_have_subvars (const_tree t) { /* Aggregates without overlapping fields can have subvars. */ return TREE_CODE (t) == RECORD_TYPE; } /* Return true if V is a tree that we can have subvars for. Normally, this is any aggregate type. Also complex types which are not gimple registers can have subvars. */ static inline bool var_can_have_subvars (const_tree v) { /* Volatile variables should never have subvars. */ if (TREE_THIS_VOLATILE (v)) return false; /* Non decls or memory tags can never have subvars. */ if (!DECL_P (v)) return false; return type_can_have_subvars (TREE_TYPE (v)); } /* Return true if T is a type that does contain pointers. */ static bool type_must_have_pointers (tree type) { if (POINTER_TYPE_P (type)) return true; if (TREE_CODE (type) == ARRAY_TYPE) return type_must_have_pointers (TREE_TYPE (type)); /* A function or method can have pointers as arguments, so track those separately. */ if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) return true; return false; } static bool field_must_have_pointers (tree t) { return type_must_have_pointers (TREE_TYPE (t)); } /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields of TYPE onto fieldstack, recording their offsets along the way. OFFSET is used to keep track of the offset in this entire structure, rather than just the immediately containing structure. Returns false if the caller is supposed to handle the field we recursed for. */ static bool push_fields_onto_fieldstack (tree type, vec *fieldstack, HOST_WIDE_INT offset) { tree field; bool empty_p = true; if (TREE_CODE (type) != RECORD_TYPE) return false; /* If the vector of fields is growing too big, bail out early. Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make sure this fails. */ if (fieldstack->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE) return false; for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) if (TREE_CODE (field) == FIELD_DECL) { bool push = false; HOST_WIDE_INT foff = bitpos_of_field (field); if (!var_can_have_subvars (field) || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE) push = true; else if (!push_fields_onto_fieldstack (TREE_TYPE (field), fieldstack, offset + foff) && (DECL_SIZE (field) && !integer_zerop (DECL_SIZE (field)))) /* Empty structures may have actual size, like in C++. So see if we didn't push any subfields and the size is nonzero, push the field onto the stack. */ push = true; if (push) { fieldoff_s *pair = NULL; bool has_unknown_size = false; bool must_have_pointers_p; if (!fieldstack->is_empty ()) pair = &fieldstack->last (); /* If there isn't anything at offset zero, create sth. */ if (!pair && offset + foff != 0) { fieldoff_s e = {0, offset + foff, false, false, false, false}; pair = fieldstack->safe_push (e); } if (!DECL_SIZE (field) || !tree_fits_uhwi_p (DECL_SIZE (field))) has_unknown_size = true; /* If adjacent fields do not contain pointers merge them. */ must_have_pointers_p = field_must_have_pointers (field); if (pair && !has_unknown_size && !must_have_pointers_p && !pair->must_have_pointers && !pair->has_unknown_size && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff) { pair->size += tree_to_uhwi (DECL_SIZE (field)); } else { fieldoff_s e; e.offset = offset + foff; e.has_unknown_size = has_unknown_size; if (!has_unknown_size) e.size = tree_to_uhwi (DECL_SIZE (field)); else e.size = -1; e.must_have_pointers = must_have_pointers_p; e.may_have_pointers = true; e.only_restrict_pointers = (!has_unknown_size && POINTER_TYPE_P (TREE_TYPE (field)) && TYPE_RESTRICT (TREE_TYPE (field))); fieldstack->safe_push (e); } } empty_p = false; } return !empty_p; } /* Count the number of arguments DECL has, and set IS_VARARGS to true if it is a varargs function. */ static unsigned int count_num_arguments (tree decl, bool *is_varargs) { unsigned int num = 0; tree t; /* Capture named arguments for K&R functions. They do not have a prototype and thus no TYPE_ARG_TYPES. */ for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t)) ++num; /* Check if the function has variadic arguments. */ for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t)) if (TREE_VALUE (t) == void_type_node) break; if (!t) *is_varargs = true; return num; } /* Creation function node for DECL, using NAME, and return the index of the variable we've created for the function. */ static varinfo_t create_function_info_for (tree decl, const char *name) { struct function *fn = DECL_STRUCT_FUNCTION (decl); varinfo_t vi, prev_vi; tree arg; unsigned int i; bool is_varargs = false; unsigned int num_args = count_num_arguments (decl, &is_varargs); /* Create the variable info. */ vi = new_var_info (decl, name); vi->offset = 0; vi->size = 1; vi->fullsize = fi_parm_base + num_args; vi->is_fn_info = 1; vi->may_have_pointers = false; if (is_varargs) vi->fullsize = ~0; insert_vi_for_tree (vi->decl, vi); prev_vi = vi; /* Create a variable for things the function clobbers and one for things the function uses. */ { varinfo_t clobbervi, usevi; const char *newname; char *tempname; tempname = xasprintf ("%s.clobber", name); newname = ggc_strdup (tempname); free (tempname); clobbervi = new_var_info (NULL, newname); clobbervi->offset = fi_clobbers; clobbervi->size = 1; clobbervi->fullsize = vi->fullsize; clobbervi->is_full_var = true; clobbervi->is_global_var = false; gcc_assert (prev_vi->offset < clobbervi->offset); prev_vi->next = clobbervi->id; prev_vi = clobbervi; tempname = xasprintf ("%s.use", name); newname = ggc_strdup (tempname); free (tempname); usevi = new_var_info (NULL, newname); usevi->offset = fi_uses; usevi->size = 1; usevi->fullsize = vi->fullsize; usevi->is_full_var = true; usevi->is_global_var = false; gcc_assert (prev_vi->offset < usevi->offset); prev_vi->next = usevi->id; prev_vi = usevi; } /* And one for the static chain. */ if (fn->static_chain_decl != NULL_TREE) { varinfo_t chainvi; const char *newname; char *tempname; tempname = xasprintf ("%s.chain", name); newname = ggc_strdup (tempname); free (tempname); chainvi = new_var_info (fn->static_chain_decl, newname); chainvi->offset = fi_static_chain; chainvi->size = 1; chainvi->fullsize = vi->fullsize; chainvi->is_full_var = true; chainvi->is_global_var = false; gcc_assert (prev_vi->offset < chainvi->offset); prev_vi->next = chainvi->id; prev_vi = chainvi; insert_vi_for_tree (fn->static_chain_decl, chainvi); } /* Create a variable for the return var. */ if (DECL_RESULT (decl) != NULL || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl)))) { varinfo_t resultvi; const char *newname; char *tempname; tree resultdecl = decl; if (DECL_RESULT (decl)) resultdecl = DECL_RESULT (decl); tempname = xasprintf ("%s.result", name); newname = ggc_strdup (tempname); free (tempname); resultvi = new_var_info (resultdecl, newname); resultvi->offset = fi_result; resultvi->size = 1; resultvi->fullsize = vi->fullsize; resultvi->is_full_var = true; if (DECL_RESULT (decl)) resultvi->may_have_pointers = true; gcc_assert (prev_vi->offset < resultvi->offset); prev_vi->next = resultvi->id; prev_vi = resultvi; if (DECL_RESULT (decl)) insert_vi_for_tree (DECL_RESULT (decl), resultvi); } /* Set up variables for each argument. */ arg = DECL_ARGUMENTS (decl); for (i = 0; i < num_args; i++) { varinfo_t argvi; const char *newname; char *tempname; tree argdecl = decl; if (arg) argdecl = arg; tempname = xasprintf ("%s.arg%d", name, i); newname = ggc_strdup (tempname); free (tempname); argvi = new_var_info (argdecl, newname); argvi->offset = fi_parm_base + i; argvi->size = 1; argvi->is_full_var = true; argvi->fullsize = vi->fullsize; if (arg) argvi->may_have_pointers = true; gcc_assert (prev_vi->offset < argvi->offset); prev_vi->next = argvi->id; prev_vi = argvi; if (arg) { insert_vi_for_tree (arg, argvi); arg = DECL_CHAIN (arg); } } /* Add one representative for all further args. */ if (is_varargs) { varinfo_t argvi; const char *newname; char *tempname; tree decl; tempname = xasprintf ("%s.varargs", name); newname = ggc_strdup (tempname); free (tempname); /* We need sth that can be pointed to for va_start. */ decl = build_fake_var_decl (ptr_type_node); argvi = new_var_info (decl, newname); argvi->offset = fi_parm_base + num_args; argvi->size = ~0; argvi->is_full_var = true; argvi->is_heap_var = true; argvi->fullsize = vi->fullsize; gcc_assert (prev_vi->offset < argvi->offset); prev_vi->next = argvi->id; prev_vi = argvi; } return vi; } /* Return true if FIELDSTACK contains fields that overlap. FIELDSTACK is assumed to be sorted by offset. */ static bool check_for_overlaps (vec fieldstack) { fieldoff_s *fo = NULL; unsigned int i; HOST_WIDE_INT lastoffset = -1; FOR_EACH_VEC_ELT (fieldstack, i, fo) { if (fo->offset == lastoffset) return true; lastoffset = fo->offset; } return false; } /* Create a varinfo structure for NAME and DECL, and add it to VARMAP. This will also create any varinfo structures necessary for fields of DECL. */ static varinfo_t create_variable_info_for_1 (tree decl, const char *name) { varinfo_t vi, newvi; tree decl_type = TREE_TYPE (decl); tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type); auto_vec fieldstack; fieldoff_s *fo; unsigned int i; if (!declsize || !tree_fits_uhwi_p (declsize)) { vi = new_var_info (decl, name); vi->offset = 0; vi->size = ~0; vi->fullsize = ~0; vi->is_unknown_size_var = true; vi->is_full_var = true; vi->may_have_pointers = true; return vi; } /* Collect field information. */ if (use_field_sensitive && var_can_have_subvars (decl) /* ??? Force us to not use subfields for globals in IPA mode. Else we'd have to parse arbitrary initializers. */ && !(in_ipa_mode && is_global_var (decl))) { fieldoff_s *fo = NULL; bool notokay = false; unsigned int i; push_fields_onto_fieldstack (decl_type, &fieldstack, 0); for (i = 0; !notokay && fieldstack.iterate (i, &fo); i++) if (fo->has_unknown_size || fo->offset < 0) { notokay = true; break; } /* We can't sort them if we have a field with a variable sized type, which will make notokay = true. In that case, we are going to return without creating varinfos for the fields anyway, so sorting them is a waste to boot. */ if (!notokay) { sort_fieldstack (fieldstack); /* Due to some C++ FE issues, like PR 22488, we might end up what appear to be overlapping fields even though they, in reality, do not overlap. Until the C++ FE is fixed, we will simply disable field-sensitivity for these cases. */ notokay = check_for_overlaps (fieldstack); } if (notokay) fieldstack.release (); } /* If we didn't end up collecting sub-variables create a full variable for the decl. */ if (fieldstack.length () <= 1 || fieldstack.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE) { vi = new_var_info (decl, name); vi->offset = 0; vi->may_have_pointers = true; vi->fullsize = tree_to_uhwi (declsize); vi->size = vi->fullsize; vi->is_full_var = true; fieldstack.release (); return vi; } vi = new_var_info (decl, name); vi->fullsize = tree_to_uhwi (declsize); for (i = 0, newvi = vi; fieldstack.iterate (i, &fo); ++i, newvi = vi_next (newvi)) { const char *newname = "NULL"; char *tempname; if (dump_file) { tempname = xasprintf ("%s." HOST_WIDE_INT_PRINT_DEC "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size); newname = ggc_strdup (tempname); free (tempname); } newvi->name = newname; newvi->offset = fo->offset; newvi->size = fo->size; newvi->fullsize = vi->fullsize; newvi->may_have_pointers = fo->may_have_pointers; newvi->only_restrict_pointers = fo->only_restrict_pointers; if (i + 1 < fieldstack.length ()) { varinfo_t tem = new_var_info (decl, name); newvi->next = tem->id; tem->head = vi->id; } } return vi; } static unsigned int create_variable_info_for (tree decl, const char *name) { varinfo_t vi = create_variable_info_for_1 (decl, name); unsigned int id = vi->id; insert_vi_for_tree (decl, vi); if (TREE_CODE (decl) != VAR_DECL) return id; /* Create initial constraints for globals. */ for (; vi; vi = vi_next (vi)) { if (!vi->may_have_pointers || !vi->is_global_var) continue; /* Mark global restrict qualified pointers. */ if ((POINTER_TYPE_P (TREE_TYPE (decl)) && TYPE_RESTRICT (TREE_TYPE (decl))) || vi->only_restrict_pointers) { varinfo_t rvi = make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT"); /* ??? For now exclude reads from globals as restrict sources if those are not (indirectly) from incoming parameters. */ rvi->is_restrict_var = false; continue; } /* In non-IPA mode the initializer from nonlocal is all we need. */ if (!in_ipa_mode || DECL_HARD_REGISTER (decl)) make_copy_constraint (vi, nonlocal_id); /* In IPA mode parse the initializer and generate proper constraints for it. */ else { varpool_node *vnode = varpool_node::get (decl); /* For escaped variables initialize them from nonlocal. */ if (!vnode->all_refs_explicit_p ()) make_copy_constraint (vi, nonlocal_id); /* If this is a global variable with an initializer and we are in IPA mode generate constraints for it. */ ipa_ref *ref; for (unsigned idx = 0; vnode->iterate_reference (idx, ref); ++idx) { auto_vec rhsc; struct constraint_expr lhs, *rhsp; unsigned i; get_constraint_for_address_of (ref->referred->decl, &rhsc); lhs.var = vi->id; lhs.offset = 0; lhs.type = SCALAR; FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); /* If this is a variable that escapes from the unit the initializer escapes as well. */ if (!vnode->all_refs_explicit_p ()) { lhs.var = escaped_id; lhs.offset = 0; lhs.type = SCALAR; FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); } } } } return id; } /* Print out the points-to solution for VAR to FILE. */ static void dump_solution_for_var (FILE *file, unsigned int var) { varinfo_t vi = get_varinfo (var); unsigned int i; bitmap_iterator bi; /* Dump the solution for unified vars anyway, this avoids difficulties in scanning dumps in the testsuite. */ fprintf (file, "%s = { ", vi->name); vi = get_varinfo (find (var)); EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi) fprintf (file, "%s ", get_varinfo (i)->name); fprintf (file, "}"); /* But note when the variable was unified. */ if (vi->id != var) fprintf (file, " same as %s", vi->name); fprintf (file, "\n"); } /* Print the points-to solution for VAR to stderr. */ DEBUG_FUNCTION void debug_solution_for_var (unsigned int var) { dump_solution_for_var (stderr, var); } /* Create varinfo structures for all of the variables in the function for intraprocedural mode. */ static void intra_create_variable_infos (struct function *fn) { tree t; /* For each incoming pointer argument arg, create the constraint ARG = NONLOCAL or a dummy variable if it is a restrict qualified passed-by-reference argument. */ for (t = DECL_ARGUMENTS (fn->decl); t; t = DECL_CHAIN (t)) { varinfo_t p = get_vi_for_tree (t); /* For restrict qualified pointers to objects passed by reference build a real representative for the pointed-to object. Treat restrict qualified references the same. */ if (TYPE_RESTRICT (TREE_TYPE (t)) && ((DECL_BY_REFERENCE (t) && POINTER_TYPE_P (TREE_TYPE (t))) || TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE) && !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t)))) { struct constraint_expr lhsc, rhsc; varinfo_t vi; tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t))); DECL_EXTERNAL (heapvar) = 1; vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS"); vi->is_restrict_var = 1; insert_vi_for_tree (heapvar, vi); lhsc.var = p->id; lhsc.type = SCALAR; lhsc.offset = 0; rhsc.var = vi->id; rhsc.type = ADDRESSOF; rhsc.offset = 0; process_constraint (new_constraint (lhsc, rhsc)); for (; vi; vi = vi_next (vi)) if (vi->may_have_pointers) { if (vi->only_restrict_pointers) make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT"); else make_copy_constraint (vi, nonlocal_id); } continue; } if (POINTER_TYPE_P (TREE_TYPE (t)) && TYPE_RESTRICT (TREE_TYPE (t))) make_constraint_from_global_restrict (p, "PARM_RESTRICT"); else { for (; p; p = vi_next (p)) { if (p->only_restrict_pointers) make_constraint_from_global_restrict (p, "PARM_RESTRICT"); else if (p->may_have_pointers) make_constraint_from (p, nonlocal_id); } } } /* Add a constraint for a result decl that is passed by reference. */ if (DECL_RESULT (fn->decl) && DECL_BY_REFERENCE (DECL_RESULT (fn->decl))) { varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (fn->decl)); for (p = result_vi; p; p = vi_next (p)) make_constraint_from (p, nonlocal_id); } /* Add a constraint for the incoming static chain parameter. */ if (fn->static_chain_decl != NULL_TREE) { varinfo_t p, chain_vi = get_vi_for_tree (fn->static_chain_decl); for (p = chain_vi; p; p = vi_next (p)) make_constraint_from (p, nonlocal_id); } } /* Structure used to put solution bitmaps in a hashtable so they can be shared among variables with the same points-to set. */ typedef struct shared_bitmap_info { bitmap pt_vars; hashval_t hashcode; } *shared_bitmap_info_t; typedef const struct shared_bitmap_info *const_shared_bitmap_info_t; /* Shared_bitmap hashtable helpers. */ struct shared_bitmap_hasher : free_ptr_hash { static inline hashval_t hash (const shared_bitmap_info *); static inline bool equal (const shared_bitmap_info *, const shared_bitmap_info *); }; /* Hash function for a shared_bitmap_info_t */ inline hashval_t shared_bitmap_hasher::hash (const shared_bitmap_info *bi) { return bi->hashcode; } /* Equality function for two shared_bitmap_info_t's. */ inline bool shared_bitmap_hasher::equal (const shared_bitmap_info *sbi1, const shared_bitmap_info *sbi2) { return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars); } /* Shared_bitmap hashtable. */ static hash_table *shared_bitmap_table; /* Lookup a bitmap in the shared bitmap hashtable, and return an already existing instance if there is one, NULL otherwise. */ static bitmap shared_bitmap_lookup (bitmap pt_vars) { shared_bitmap_info **slot; struct shared_bitmap_info sbi; sbi.pt_vars = pt_vars; sbi.hashcode = bitmap_hash (pt_vars); slot = shared_bitmap_table->find_slot (&sbi, NO_INSERT); if (!slot) return NULL; else return (*slot)->pt_vars; } /* Add a bitmap to the shared bitmap hashtable. */ static void shared_bitmap_add (bitmap pt_vars) { shared_bitmap_info **slot; shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info); sbi->pt_vars = pt_vars; sbi->hashcode = bitmap_hash (pt_vars); slot = shared_bitmap_table->find_slot (sbi, INSERT); gcc_assert (!*slot); *slot = sbi; } /* Set bits in INTO corresponding to the variable uids in solution set FROM. */ static void set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt) { unsigned int i; bitmap_iterator bi; varinfo_t escaped_vi = get_varinfo (find (escaped_id)); bool everything_escaped = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id); EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi) { varinfo_t vi = get_varinfo (i); /* The only artificial variables that are allowed in a may-alias set are heap variables. */ if (vi->is_artificial_var && !vi->is_heap_var) continue; if (everything_escaped || (escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, i))) { pt->vars_contains_escaped = true; pt->vars_contains_escaped_heap = vi->is_heap_var; } if (TREE_CODE (vi->decl) == VAR_DECL || TREE_CODE (vi->decl) == PARM_DECL || TREE_CODE (vi->decl) == RESULT_DECL) { /* If we are in IPA mode we will not recompute points-to sets after inlining so make sure they stay valid. */ if (in_ipa_mode && !DECL_PT_UID_SET_P (vi->decl)) SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl)); /* Add the decl to the points-to set. Note that the points-to set contains global variables. */ bitmap_set_bit (into, DECL_PT_UID (vi->decl)); if (vi->is_global_var) pt->vars_contains_nonlocal = true; } } } /* Compute the points-to solution *PT for the variable VI. */ static struct pt_solution find_what_var_points_to (varinfo_t orig_vi) { unsigned int i; bitmap_iterator bi; bitmap finished_solution; bitmap result; varinfo_t vi; struct pt_solution *pt; /* This variable may have been collapsed, let's get the real variable. */ vi = get_varinfo (find (orig_vi->id)); /* See if we have already computed the solution and return it. */ pt_solution **slot = &final_solutions->get_or_insert (vi); if (*slot != NULL) return **slot; *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution); memset (pt, 0, sizeof (struct pt_solution)); /* Translate artificial variables into SSA_NAME_PTR_INFO attributes. */ EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi) { varinfo_t vi = get_varinfo (i); if (vi->is_artificial_var) { if (vi->id == nothing_id) pt->null = 1; else if (vi->id == escaped_id) { if (in_ipa_mode) pt->ipa_escaped = 1; else pt->escaped = 1; /* Expand some special vars of ESCAPED in-place here. */ varinfo_t evi = get_varinfo (find (escaped_id)); if (bitmap_bit_p (evi->solution, nonlocal_id)) pt->nonlocal = 1; } else if (vi->id == nonlocal_id) pt->nonlocal = 1; else if (vi->is_heap_var) /* We represent heapvars in the points-to set properly. */ ; else if (vi->id == string_id) /* Nobody cares - STRING_CSTs are read-only entities. */ ; else if (vi->id == anything_id || vi->id == integer_id) pt->anything = 1; } } /* Instead of doing extra work, simply do not create elaborate points-to information for pt_anything pointers. */ if (pt->anything) return *pt; /* Share the final set of variables when possible. */ finished_solution = BITMAP_GGC_ALLOC (); stats.points_to_sets_created++; set_uids_in_ptset (finished_solution, vi->solution, pt); result = shared_bitmap_lookup (finished_solution); if (!result) { shared_bitmap_add (finished_solution); pt->vars = finished_solution; } else { pt->vars = result; bitmap_clear (finished_solution); } return *pt; } /* Given a pointer variable P, fill in its points-to set. */ static void find_what_p_points_to (tree p) { struct ptr_info_def *pi; tree lookup_p = p; varinfo_t vi; /* For parameters, get at the points-to set for the actual parm decl. */ if (TREE_CODE (p) == SSA_NAME && SSA_NAME_IS_DEFAULT_DEF (p) && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)) lookup_p = SSA_NAME_VAR (p); vi = lookup_vi_for_tree (lookup_p); if (!vi) return; pi = get_ptr_info (p); pi->pt = find_what_var_points_to (vi); } /* Query statistics for points-to solutions. */ static struct { unsigned HOST_WIDE_INT pt_solution_includes_may_alias; unsigned HOST_WIDE_INT pt_solution_includes_no_alias; unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias; unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias; } pta_stats; void dump_pta_stats (FILE *s) { fprintf (s, "\nPTA query stats:\n"); fprintf (s, " pt_solution_includes: " HOST_WIDE_INT_PRINT_DEC" disambiguations, " HOST_WIDE_INT_PRINT_DEC" queries\n", pta_stats.pt_solution_includes_no_alias, pta_stats.pt_solution_includes_no_alias + pta_stats.pt_solution_includes_may_alias); fprintf (s, " pt_solutions_intersect: " HOST_WIDE_INT_PRINT_DEC" disambiguations, " HOST_WIDE_INT_PRINT_DEC" queries\n", pta_stats.pt_solutions_intersect_no_alias, pta_stats.pt_solutions_intersect_no_alias + pta_stats.pt_solutions_intersect_may_alias); } /* Reset the points-to solution *PT to a conservative default (point to anything). */ void pt_solution_reset (struct pt_solution *pt) { memset (pt, 0, sizeof (struct pt_solution)); pt->anything = true; } /* Set the points-to solution *PT to point only to the variables in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains global variables and VARS_CONTAINS_RESTRICT specifies whether it contains restrict tag variables. */ void pt_solution_set (struct pt_solution *pt, bitmap vars, bool vars_contains_nonlocal) { memset (pt, 0, sizeof (struct pt_solution)); pt->vars = vars; pt->vars_contains_nonlocal = vars_contains_nonlocal; pt->vars_contains_escaped = (cfun->gimple_df->escaped.anything || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars)); } /* Set the points-to solution *PT to point only to the variable VAR. */ void pt_solution_set_var (struct pt_solution *pt, tree var) { memset (pt, 0, sizeof (struct pt_solution)); pt->vars = BITMAP_GGC_ALLOC (); bitmap_set_bit (pt->vars, DECL_PT_UID (var)); pt->vars_contains_nonlocal = is_global_var (var); pt->vars_contains_escaped = (cfun->gimple_df->escaped.anything || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var))); } /* Computes the union of the points-to solutions *DEST and *SRC and stores the result in *DEST. This changes the points-to bitmap of *DEST and thus may not be used if that might be shared. The points-to bitmap of *SRC and *DEST will not be shared after this function if they were not before. */ static void pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src) { dest->anything |= src->anything; if (dest->anything) { pt_solution_reset (dest); return; } dest->nonlocal |= src->nonlocal; dest->escaped |= src->escaped; dest->ipa_escaped |= src->ipa_escaped; dest->null |= src->null; dest->vars_contains_nonlocal |= src->vars_contains_nonlocal; dest->vars_contains_escaped |= src->vars_contains_escaped; dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap; if (!src->vars) return; if (!dest->vars) dest->vars = BITMAP_GGC_ALLOC (); bitmap_ior_into (dest->vars, src->vars); } /* Return true if the points-to solution *PT is empty. */ bool pt_solution_empty_p (struct pt_solution *pt) { if (pt->anything || pt->nonlocal) return false; if (pt->vars && !bitmap_empty_p (pt->vars)) return false; /* If the solution includes ESCAPED, check if that is empty. */ if (pt->escaped && !pt_solution_empty_p (&cfun->gimple_df->escaped)) return false; /* If the solution includes ESCAPED, check if that is empty. */ if (pt->ipa_escaped && !pt_solution_empty_p (&ipa_escaped_pt)) return false; return true; } /* Return true if the points-to solution *PT only point to a single var, and return the var uid in *UID. */ bool pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid) { if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped || pt->null || pt->vars == NULL || !bitmap_single_bit_set_p (pt->vars)) return false; *uid = bitmap_first_set_bit (pt->vars); return true; } /* Return true if the points-to solution *PT includes global memory. */ bool pt_solution_includes_global (struct pt_solution *pt) { if (pt->anything || pt->nonlocal || pt->vars_contains_nonlocal /* The following is a hack to make the malloc escape hack work. In reality we'd need different sets for escaped-through-return and escaped-to-callees and passes would need to be updated. */ || pt->vars_contains_escaped_heap) return true; /* 'escaped' is also a placeholder so we have to look into it. */ if (pt->escaped) return pt_solution_includes_global (&cfun->gimple_df->escaped); if (pt->ipa_escaped) return pt_solution_includes_global (&ipa_escaped_pt); /* ??? This predicate is not correct for the IPA-PTA solution as we do not properly distinguish between unit escape points and global variables. */ if (cfun->gimple_df->ipa_pta) return true; return false; } /* Return true if the points-to solution *PT includes the variable declaration DECL. */ static bool pt_solution_includes_1 (struct pt_solution *pt, const_tree decl) { if (pt->anything) return true; if (pt->nonlocal && is_global_var (decl)) return true; if (pt->vars && bitmap_bit_p (pt->vars, DECL_PT_UID (decl))) return true; /* If the solution includes ESCAPED, check it. */ if (pt->escaped && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl)) return true; /* If the solution includes ESCAPED, check it. */ if (pt->ipa_escaped && pt_solution_includes_1 (&ipa_escaped_pt, decl)) return true; return false; } bool pt_solution_includes (struct pt_solution *pt, const_tree decl) { bool res = pt_solution_includes_1 (pt, decl); if (res) ++pta_stats.pt_solution_includes_may_alias; else ++pta_stats.pt_solution_includes_no_alias; return res; } /* Return true if both points-to solutions PT1 and PT2 have a non-empty intersection. */ static bool pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2) { if (pt1->anything || pt2->anything) return true; /* If either points to unknown global memory and the other points to any global memory they alias. */ if ((pt1->nonlocal && (pt2->nonlocal || pt2->vars_contains_nonlocal)) || (pt2->nonlocal && pt1->vars_contains_nonlocal)) return true; /* If either points to all escaped memory and the other points to any escaped memory they alias. */ if ((pt1->escaped && (pt2->escaped || pt2->vars_contains_escaped)) || (pt2->escaped && pt1->vars_contains_escaped)) return true; /* Check the escaped solution if required. ??? Do we need to check the local against the IPA escaped sets? */ if ((pt1->ipa_escaped || pt2->ipa_escaped) && !pt_solution_empty_p (&ipa_escaped_pt)) { /* If both point to escaped memory and that solution is not empty they alias. */ if (pt1->ipa_escaped && pt2->ipa_escaped) return true; /* If either points to escaped memory see if the escaped solution intersects with the other. */ if ((pt1->ipa_escaped && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2)) || (pt2->ipa_escaped && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1))) return true; } /* Now both pointers alias if their points-to solution intersects. */ return (pt1->vars && pt2->vars && bitmap_intersect_p (pt1->vars, pt2->vars)); } bool pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2) { bool res = pt_solutions_intersect_1 (pt1, pt2); if (res) ++pta_stats.pt_solutions_intersect_may_alias; else ++pta_stats.pt_solutions_intersect_no_alias; return res; } /* Dump points-to information to OUTFILE. */ static void dump_sa_points_to_info (FILE *outfile) { unsigned int i; fprintf (outfile, "\nPoints-to sets\n\n"); if (dump_flags & TDF_STATS) { fprintf (outfile, "Stats:\n"); fprintf (outfile, "Total vars: %d\n", stats.total_vars); fprintf (outfile, "Non-pointer vars: %d\n", stats.nonpointer_vars); fprintf (outfile, "Statically unified vars: %d\n", stats.unified_vars_static); fprintf (outfile, "Dynamically unified vars: %d\n", stats.unified_vars_dynamic); fprintf (outfile, "Iterations: %d\n", stats.iterations); fprintf (outfile, "Number of edges: %d\n", stats.num_edges); fprintf (outfile, "Number of implicit edges: %d\n", stats.num_implicit_edges); } for (i = 1; i < varmap.length (); i++) { varinfo_t vi = get_varinfo (i); if (!vi->may_have_pointers) continue; dump_solution_for_var (outfile, i); } } /* Debug points-to information to stderr. */ DEBUG_FUNCTION void debug_sa_points_to_info (void) { dump_sa_points_to_info (stderr); } /* Initialize the always-existing constraint variables for NULL ANYTHING, READONLY, and INTEGER */ static void init_base_vars (void) { struct constraint_expr lhs, rhs; varinfo_t var_anything; varinfo_t var_nothing; varinfo_t var_string; varinfo_t var_escaped; varinfo_t var_nonlocal; varinfo_t var_storedanything; varinfo_t var_integer; /* Variable ID zero is reserved and should be NULL. */ varmap.safe_push (NULL); /* Create the NULL variable, used to represent that a variable points to NULL. */ var_nothing = new_var_info (NULL_TREE, "NULL"); gcc_assert (var_nothing->id == nothing_id); var_nothing->is_artificial_var = 1; var_nothing->offset = 0; var_nothing->size = ~0; var_nothing->fullsize = ~0; var_nothing->is_special_var = 1; var_nothing->may_have_pointers = 0; var_nothing->is_global_var = 0; /* Create the ANYTHING variable, used to represent that a variable points to some unknown piece of memory. */ var_anything = new_var_info (NULL_TREE, "ANYTHING"); gcc_assert (var_anything->id == anything_id); var_anything->is_artificial_var = 1; var_anything->size = ~0; var_anything->offset = 0; var_anything->fullsize = ~0; var_anything->is_special_var = 1; /* Anything points to anything. This makes deref constraints just work in the presence of linked list and other p = *p type loops, by saying that *ANYTHING = ANYTHING. */ lhs.type = SCALAR; lhs.var = anything_id; lhs.offset = 0; rhs.type = ADDRESSOF; rhs.var = anything_id; rhs.offset = 0; /* This specifically does not use process_constraint because process_constraint ignores all anything = anything constraints, since all but this one are redundant. */ constraints.safe_push (new_constraint (lhs, rhs)); /* Create the STRING variable, used to represent that a variable points to a string literal. String literals don't contain pointers so STRING doesn't point to anything. */ var_string = new_var_info (NULL_TREE, "STRING"); gcc_assert (var_string->id == string_id); var_string->is_artificial_var = 1; var_string->offset = 0; var_string->size = ~0; var_string->fullsize = ~0; var_string->is_special_var = 1; var_string->may_have_pointers = 0; /* Create the ESCAPED variable, used to represent the set of escaped memory. */ var_escaped = new_var_info (NULL_TREE, "ESCAPED"); gcc_assert (var_escaped->id == escaped_id); var_escaped->is_artificial_var = 1; var_escaped->offset = 0; var_escaped->size = ~0; var_escaped->fullsize = ~0; var_escaped->is_special_var = 0; /* Create the NONLOCAL variable, used to represent the set of nonlocal memory. */ var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL"); gcc_assert (var_nonlocal->id == nonlocal_id); var_nonlocal->is_artificial_var = 1; var_nonlocal->offset = 0; var_nonlocal->size = ~0; var_nonlocal->fullsize = ~0; var_nonlocal->is_special_var = 1; /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */ lhs.type = SCALAR; lhs.var = escaped_id; lhs.offset = 0; rhs.type = DEREF; rhs.var = escaped_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the whole variable escapes. */ lhs.type = SCALAR; lhs.var = escaped_id; lhs.offset = 0; rhs.type = SCALAR; rhs.var = escaped_id; rhs.offset = UNKNOWN_OFFSET; process_constraint (new_constraint (lhs, rhs)); /* *ESCAPED = NONLOCAL. This is true because we have to assume everything pointed to by escaped points to what global memory can point to. */ lhs.type = DEREF; lhs.var = escaped_id; lhs.offset = 0; rhs.type = SCALAR; rhs.var = nonlocal_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because global memory may point to global memory and escaped memory. */ lhs.type = SCALAR; lhs.var = nonlocal_id; lhs.offset = 0; rhs.type = ADDRESSOF; rhs.var = nonlocal_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); rhs.type = ADDRESSOF; rhs.var = escaped_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); /* Create the STOREDANYTHING variable, used to represent the set of variables stored to *ANYTHING. */ var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING"); gcc_assert (var_storedanything->id == storedanything_id); var_storedanything->is_artificial_var = 1; var_storedanything->offset = 0; var_storedanything->size = ~0; var_storedanything->fullsize = ~0; var_storedanything->is_special_var = 0; /* Create the INTEGER variable, used to represent that a variable points to what an INTEGER "points to". */ var_integer = new_var_info (NULL_TREE, "INTEGER"); gcc_assert (var_integer->id == integer_id); var_integer->is_artificial_var = 1; var_integer->size = ~0; var_integer->fullsize = ~0; var_integer->offset = 0; var_integer->is_special_var = 1; /* INTEGER = ANYTHING, because we don't know where a dereference of a random integer will point to. */ lhs.type = SCALAR; lhs.var = integer_id; lhs.offset = 0; rhs.type = ADDRESSOF; rhs.var = anything_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); } /* Initialize things necessary to perform PTA */ static void init_alias_vars (void) { use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1); bitmap_obstack_initialize (&pta_obstack); bitmap_obstack_initialize (&oldpta_obstack); bitmap_obstack_initialize (&predbitmap_obstack); constraints.create (8); varmap.create (8); vi_for_tree = new hash_map; call_stmt_vars = new hash_map; memset (&stats, 0, sizeof (stats)); shared_bitmap_table = new hash_table (511); init_base_vars (); gcc_obstack_init (&fake_var_decl_obstack); final_solutions = new hash_map; gcc_obstack_init (&final_solutions_obstack); } /* Remove the REF and ADDRESS edges from GRAPH, as well as all the predecessor edges. */ static void remove_preds_and_fake_succs (constraint_graph_t graph) { unsigned int i; /* Clear the implicit ref and address nodes from the successor lists. */ for (i = 1; i < FIRST_REF_NODE; i++) { if (graph->succs[i]) bitmap_clear_range (graph->succs[i], FIRST_REF_NODE, FIRST_REF_NODE * 2); } /* Free the successor list for the non-ref nodes. */ for (i = FIRST_REF_NODE + 1; i < graph->size; i++) { if (graph->succs[i]) BITMAP_FREE (graph->succs[i]); } /* Now reallocate the size of the successor list as, and blow away the predecessor bitmaps. */ graph->size = varmap.length (); graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size); free (graph->implicit_preds); graph->implicit_preds = NULL; free (graph->preds); graph->preds = NULL; bitmap_obstack_release (&predbitmap_obstack); } /* Solve the constraint set. */ static void solve_constraints (void) { struct scc_info *si; if (dump_file) fprintf (dump_file, "\nCollapsing static cycles and doing variable " "substitution\n"); init_graph (varmap.length () * 2); if (dump_file) fprintf (dump_file, "Building predecessor graph\n"); build_pred_graph (); if (dump_file) fprintf (dump_file, "Detecting pointer and location " "equivalences\n"); si = perform_var_substitution (graph); if (dump_file) fprintf (dump_file, "Rewriting constraints and unifying " "variables\n"); rewrite_constraints (graph, si); build_succ_graph (); free_var_substitution_info (si); /* Attach complex constraints to graph nodes. */ move_complex_constraints (graph); if (dump_file) fprintf (dump_file, "Uniting pointer but not location equivalent " "variables\n"); unite_pointer_equivalences (graph); if (dump_file) fprintf (dump_file, "Finding indirect cycles\n"); find_indirect_cycles (graph); /* Implicit nodes and predecessors are no longer necessary at this point. */ remove_preds_and_fake_succs (graph); if (dump_file && (dump_flags & TDF_GRAPH)) { fprintf (dump_file, "\n\n// The constraint graph before solve-graph " "in dot format:\n"); dump_constraint_graph (dump_file); fprintf (dump_file, "\n\n"); } if (dump_file) fprintf (dump_file, "Solving graph\n"); solve_graph (graph); if (dump_file && (dump_flags & TDF_GRAPH)) { fprintf (dump_file, "\n\n// The constraint graph after solve-graph " "in dot format:\n"); dump_constraint_graph (dump_file); fprintf (dump_file, "\n\n"); } if (dump_file) dump_sa_points_to_info (dump_file); } /* Create points-to sets for the current function. See the comments at the start of the file for an algorithmic overview. */ static void compute_points_to_sets (void) { basic_block bb; unsigned i; varinfo_t vi; timevar_push (TV_TREE_PTA); init_alias_vars (); intra_create_variable_infos (cfun); /* Now walk all statements and build the constraint set. */ FOR_EACH_BB_FN (bb, cfun) { for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); if (! virtual_operand_p (gimple_phi_result (phi))) find_func_aliases (cfun, phi); } for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); find_func_aliases (cfun, stmt); } } if (dump_file) { fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n"); dump_constraints (dump_file, 0); } /* From the constraints compute the points-to sets. */ solve_constraints (); /* Compute the points-to set for ESCAPED used for call-clobber analysis. */ cfun->gimple_df->escaped = find_what_var_points_to (get_varinfo (escaped_id)); /* Make sure the ESCAPED solution (which is used as placeholder in other solutions) does not reference itself. This simplifies points-to solution queries. */ cfun->gimple_df->escaped.escaped = 0; /* Compute the points-to sets for pointer SSA_NAMEs. */ for (i = 0; i < num_ssa_names; ++i) { tree ptr = ssa_name (i); if (ptr && POINTER_TYPE_P (TREE_TYPE (ptr))) find_what_p_points_to (ptr); } /* Compute the call-used/clobbered sets. */ FOR_EACH_BB_FN (bb, cfun) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gcall *stmt; struct pt_solution *pt; stmt = dyn_cast (gsi_stmt (gsi)); if (!stmt) continue; pt = gimple_call_use_set (stmt); if (gimple_call_flags (stmt) & ECF_CONST) memset (pt, 0, sizeof (struct pt_solution)); else if ((vi = lookup_call_use_vi (stmt)) != NULL) { *pt = find_what_var_points_to (vi); /* Escaped (and thus nonlocal) variables are always implicitly used by calls. */ /* ??? ESCAPED can be empty even though NONLOCAL always escaped. */ pt->nonlocal = 1; pt->escaped = 1; } else { /* If there is nothing special about this call then we have made everything that is used also escape. */ *pt = cfun->gimple_df->escaped; pt->nonlocal = 1; } pt = gimple_call_clobber_set (stmt); if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS)) memset (pt, 0, sizeof (struct pt_solution)); else if ((vi = lookup_call_clobber_vi (stmt)) != NULL) { *pt = find_what_var_points_to (vi); /* Escaped (and thus nonlocal) variables are always implicitly clobbered by calls. */ /* ??? ESCAPED can be empty even though NONLOCAL always escaped. */ pt->nonlocal = 1; pt->escaped = 1; } else { /* If there is nothing special about this call then we have made everything that is used also escape. */ *pt = cfun->gimple_df->escaped; pt->nonlocal = 1; } } } timevar_pop (TV_TREE_PTA); } /* Delete created points-to sets. */ static void delete_points_to_sets (void) { unsigned int i; delete shared_bitmap_table; shared_bitmap_table = NULL; if (dump_file && (dump_flags & TDF_STATS)) fprintf (dump_file, "Points to sets created:%d\n", stats.points_to_sets_created); delete vi_for_tree; delete call_stmt_vars; bitmap_obstack_release (&pta_obstack); constraints.release (); for (i = 0; i < graph->size; i++) graph->complex[i].release (); free (graph->complex); free (graph->rep); free (graph->succs); free (graph->pe); free (graph->pe_rep); free (graph->indirect_cycles); free (graph); varmap.release (); variable_info_pool.release (); constraint_pool.release (); obstack_free (&fake_var_decl_obstack, NULL); delete final_solutions; obstack_free (&final_solutions_obstack, NULL); } /* Mark "other" loads and stores as belonging to CLIQUE and with base zero. */ static bool visit_loadstore (gimple *, tree base, tree ref, void *clique_) { unsigned short clique = (uintptr_t)clique_; if (TREE_CODE (base) == MEM_REF || TREE_CODE (base) == TARGET_MEM_REF) { tree ptr = TREE_OPERAND (base, 0); if (TREE_CODE (ptr) == SSA_NAME) { /* ??? We need to make sure 'ptr' doesn't include any of the restrict tags in its points-to set. */ return false; } /* For now let decls through. */ /* Do not overwrite existing cliques (that includes clique, base pairs we just set). */ if (MR_DEPENDENCE_CLIQUE (base) == 0) { MR_DEPENDENCE_CLIQUE (base) = clique; MR_DEPENDENCE_BASE (base) = 0; } } /* For plain decl accesses see whether they are accesses to globals and rewrite them to MEM_REFs with { clique, 0 }. */ if (TREE_CODE (base) == VAR_DECL && is_global_var (base) /* ??? We can't rewrite a plain decl with the walk_stmt_load_store ops callback. */ && base != ref) { tree *basep = &ref; while (handled_component_p (*basep)) basep = &TREE_OPERAND (*basep, 0); gcc_assert (TREE_CODE (*basep) == VAR_DECL); tree ptr = build_fold_addr_expr (*basep); tree zero = build_int_cst (TREE_TYPE (ptr), 0); *basep = build2 (MEM_REF, TREE_TYPE (*basep), ptr, zero); MR_DEPENDENCE_CLIQUE (*basep) = clique; MR_DEPENDENCE_BASE (*basep) = 0; } return false; } /* If REF is a MEM_REF then assign a clique, base pair to it, updating CLIQUE, *RESTRICT_VAR and LAST_RUID. Return whether dependence info was assigned to REF. */ static bool maybe_set_dependence_info (tree ref, tree ptr, unsigned short &clique, varinfo_t restrict_var, unsigned short &last_ruid) { while (handled_component_p (ref)) ref = TREE_OPERAND (ref, 0); if ((TREE_CODE (ref) == MEM_REF || TREE_CODE (ref) == TARGET_MEM_REF) && TREE_OPERAND (ref, 0) == ptr) { /* Do not overwrite existing cliques. This avoids overwriting dependence info inlined from a function with restrict parameters inlined into a function with restrict parameters. This usually means we prefer to be precise in innermost loops. */ if (MR_DEPENDENCE_CLIQUE (ref) == 0) { if (clique == 0) clique = ++cfun->last_clique; if (restrict_var->ruid == 0) restrict_var->ruid = ++last_ruid; MR_DEPENDENCE_CLIQUE (ref) = clique; MR_DEPENDENCE_BASE (ref) = restrict_var->ruid; return true; } } return false; } /* Compute the set of independend memory references based on restrict tags and their conservative propagation to the points-to sets. */ static void compute_dependence_clique (void) { unsigned short clique = 0; unsigned short last_ruid = 0; for (unsigned i = 0; i < num_ssa_names; ++i) { tree ptr = ssa_name (i); if (!ptr || !POINTER_TYPE_P (TREE_TYPE (ptr))) continue; /* Avoid all this when ptr is not dereferenced? */ tree p = ptr; if (SSA_NAME_IS_DEFAULT_DEF (ptr) && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL)) p = SSA_NAME_VAR (ptr); varinfo_t vi = lookup_vi_for_tree (p); if (!vi) continue; vi = get_varinfo (find (vi->id)); bitmap_iterator bi; unsigned j; varinfo_t restrict_var = NULL; EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi) { varinfo_t oi = get_varinfo (j); if (oi->is_restrict_var) { if (restrict_var) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "found restrict pointed-to " "for "); print_generic_expr (dump_file, ptr, 0); fprintf (dump_file, " but not exclusively\n"); } restrict_var = NULL; break; } restrict_var = oi; } /* NULL is the only other valid points-to entry. */ else if (oi->id != nothing_id) { restrict_var = NULL; break; } } /* Ok, found that ptr must(!) point to a single(!) restrict variable. */ /* ??? PTA isn't really a proper propagation engine to compute this property. ??? We could handle merging of two restricts by unifying them. */ if (restrict_var) { /* Now look at possible dereferences of ptr. */ imm_use_iterator ui; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, ui, ptr) { /* ??? Calls and asms. */ if (!gimple_assign_single_p (use_stmt)) continue; maybe_set_dependence_info (gimple_assign_lhs (use_stmt), ptr, clique, restrict_var, last_ruid); maybe_set_dependence_info (gimple_assign_rhs1 (use_stmt), ptr, clique, restrict_var, last_ruid); } } } if (clique == 0) return; /* Assign the BASE id zero to all accesses not based on a restrict pointer. That way they get disabiguated against restrict accesses but not against each other. */ /* ??? For restricts derived from globals (thus not incoming parameters) we can't restrict scoping properly thus the following is too aggressive there. For now we have excluded those globals from getting into the MR_DEPENDENCE machinery. */ basic_block bb; FOR_EACH_BB_FN (bb, cfun) for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); walk_stmt_load_store_ops (stmt, (void *)(uintptr_t)clique, visit_loadstore, visit_loadstore); } } /* Compute points-to information for every SSA_NAME pointer in the current function and compute the transitive closure of escaped variables to re-initialize the call-clobber states of local variables. */ unsigned int compute_may_aliases (void) { if (cfun->gimple_df->ipa_pta) { if (dump_file) { fprintf (dump_file, "\nNot re-computing points-to information " "because IPA points-to information is available.\n\n"); /* But still dump what we have remaining it. */ dump_alias_info (dump_file); } return 0; } /* For each pointer P_i, determine the sets of variables that P_i may point-to. Compute the reachability set of escaped and call-used variables. */ compute_points_to_sets (); /* Debugging dumps. */ if (dump_file) dump_alias_info (dump_file); /* Compute restrict-based memory disambiguations. */ compute_dependence_clique (); /* Deallocate memory used by aliasing data structures and the internal points-to solution. */ delete_points_to_sets (); gcc_assert (!need_ssa_update_p (cfun)); return 0; } /* A dummy pass to cause points-to information to be computed via TODO_rebuild_alias. */ namespace { const pass_data pass_data_build_alias = { GIMPLE_PASS, /* type */ "alias", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_rebuild_alias, /* todo_flags_finish */ }; class pass_build_alias : public gimple_opt_pass { public: pass_build_alias (gcc::context *ctxt) : gimple_opt_pass (pass_data_build_alias, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_tree_pta; } }; // class pass_build_alias } // anon namespace gimple_opt_pass * make_pass_build_alias (gcc::context *ctxt) { return new pass_build_alias (ctxt); } /* A dummy pass to cause points-to information to be computed via TODO_rebuild_alias. */ namespace { const pass_data pass_data_build_ealias = { GIMPLE_PASS, /* type */ "ealias", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_rebuild_alias, /* todo_flags_finish */ }; class pass_build_ealias : public gimple_opt_pass { public: pass_build_ealias (gcc::context *ctxt) : gimple_opt_pass (pass_data_build_ealias, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_tree_pta; } }; // class pass_build_ealias } // anon namespace gimple_opt_pass * make_pass_build_ealias (gcc::context *ctxt) { return new pass_build_ealias (ctxt); } /* IPA PTA solutions for ESCAPED. */ struct pt_solution ipa_escaped_pt = { true, false, false, false, false, false, false, false, NULL }; /* Associate node with varinfo DATA. Worker for cgraph_for_node_and_aliases. */ static bool associate_varinfo_to_alias (struct cgraph_node *node, void *data) { if ((node->alias || node->thunk.thunk_p) && node->analyzed) insert_vi_for_tree (node->decl, (varinfo_t)data); return false; } /* Execute the driver for IPA PTA. */ static unsigned int ipa_pta_execute (void) { struct cgraph_node *node; varpool_node *var; int from; in_ipa_mode = 1; init_alias_vars (); if (dump_file && (dump_flags & TDF_DETAILS)) { symtab_node::dump_table (dump_file); fprintf (dump_file, "\n"); } /* Build the constraints. */ FOR_EACH_DEFINED_FUNCTION (node) { varinfo_t vi; /* Nodes without a body are not interesting. Especially do not visit clones at this point for now - we get duplicate decls there for inline clones at least. */ if (!node->has_gimple_body_p () || node->global.inlined_to) continue; node->get_body (); gcc_assert (!node->clone_of); vi = create_function_info_for (node->decl, alias_get_name (node->decl)); node->call_for_symbol_thunks_and_aliases (associate_varinfo_to_alias, vi, true); } /* Create constraints for global variables and their initializers. */ FOR_EACH_VARIABLE (var) { if (var->alias && var->analyzed) continue; get_vi_for_tree (var->decl); } if (dump_file) { fprintf (dump_file, "Generating constraints for global initializers\n\n"); dump_constraints (dump_file, 0); fprintf (dump_file, "\n"); } from = constraints.length (); FOR_EACH_DEFINED_FUNCTION (node) { struct function *func; basic_block bb; /* Nodes without a body are not interesting. */ if (!node->has_gimple_body_p () || node->clone_of) continue; if (dump_file) { fprintf (dump_file, "Generating constraints for %s", node->name ()); if (DECL_ASSEMBLER_NAME_SET_P (node->decl)) fprintf (dump_file, " (%s)", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl))); fprintf (dump_file, "\n"); } func = DECL_STRUCT_FUNCTION (node->decl); gcc_assert (cfun == NULL); /* For externally visible or attribute used annotated functions use local constraints for their arguments. For local functions we see all callers and thus do not need initial constraints for parameters. */ if (node->used_from_other_partition || node->externally_visible || node->force_output || node->address_taken) { intra_create_variable_infos (func); /* We also need to make function return values escape. Nothing escapes by returning from main though. */ if (!MAIN_NAME_P (DECL_NAME (node->decl))) { varinfo_t fi, rvi; fi = lookup_vi_for_tree (node->decl); rvi = first_vi_for_offset (fi, fi_result); if (rvi && rvi->offset == fi_result) { struct constraint_expr includes; struct constraint_expr var; includes.var = escaped_id; includes.offset = 0; includes.type = SCALAR; var.var = rvi->id; var.offset = 0; var.type = SCALAR; process_constraint (new_constraint (includes, var)); } } } /* Build constriants for the function body. */ FOR_EACH_BB_FN (bb, func) { for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); if (! virtual_operand_p (gimple_phi_result (phi))) find_func_aliases (func, phi); } for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); find_func_aliases (func, stmt); find_func_clobbers (func, stmt); } } if (dump_file) { fprintf (dump_file, "\n"); dump_constraints (dump_file, from); fprintf (dump_file, "\n"); } from = constraints.length (); } /* From the constraints compute the points-to sets. */ solve_constraints (); /* Compute the global points-to sets for ESCAPED. ??? Note that the computed escape set is not correct for the whole unit as we fail to consider graph edges to externally visible functions. */ ipa_escaped_pt = find_what_var_points_to (get_varinfo (escaped_id)); /* Make sure the ESCAPED solution (which is used as placeholder in other solutions) does not reference itself. This simplifies points-to solution queries. */ ipa_escaped_pt.ipa_escaped = 0; /* Assign the points-to sets to the SSA names in the unit. */ FOR_EACH_DEFINED_FUNCTION (node) { tree ptr; struct function *fn; unsigned i; basic_block bb; /* Nodes without a body are not interesting. */ if (!node->has_gimple_body_p () || node->clone_of) continue; fn = DECL_STRUCT_FUNCTION (node->decl); /* Compute the points-to sets for pointer SSA_NAMEs. */ FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr) { if (ptr && POINTER_TYPE_P (TREE_TYPE (ptr))) find_what_p_points_to (ptr); } /* Compute the call-use and call-clobber sets for indirect calls and calls to external functions. */ FOR_EACH_BB_FN (bb, fn) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gcall *stmt; struct pt_solution *pt; varinfo_t vi, fi; tree decl; stmt = dyn_cast (gsi_stmt (gsi)); if (!stmt) continue; /* Handle direct calls to functions with body. */ decl = gimple_call_fndecl (stmt); if (decl && (fi = lookup_vi_for_tree (decl)) && fi->is_fn_info) { *gimple_call_clobber_set (stmt) = find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers)); *gimple_call_use_set (stmt) = find_what_var_points_to (first_vi_for_offset (fi, fi_uses)); } /* Handle direct calls to external functions. */ else if (decl) { pt = gimple_call_use_set (stmt); if (gimple_call_flags (stmt) & ECF_CONST) memset (pt, 0, sizeof (struct pt_solution)); else if ((vi = lookup_call_use_vi (stmt)) != NULL) { *pt = find_what_var_points_to (vi); /* Escaped (and thus nonlocal) variables are always implicitly used by calls. */ /* ??? ESCAPED can be empty even though NONLOCAL always escaped. */ pt->nonlocal = 1; pt->ipa_escaped = 1; } else { /* If there is nothing special about this call then we have made everything that is used also escape. */ *pt = ipa_escaped_pt; pt->nonlocal = 1; } pt = gimple_call_clobber_set (stmt); if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS)) memset (pt, 0, sizeof (struct pt_solution)); else if ((vi = lookup_call_clobber_vi (stmt)) != NULL) { *pt = find_what_var_points_to (vi); /* Escaped (and thus nonlocal) variables are always implicitly clobbered by calls. */ /* ??? ESCAPED can be empty even though NONLOCAL always escaped. */ pt->nonlocal = 1; pt->ipa_escaped = 1; } else { /* If there is nothing special about this call then we have made everything that is used also escape. */ *pt = ipa_escaped_pt; pt->nonlocal = 1; } } /* Handle indirect calls. */ else if (!decl && (fi = get_fi_for_callee (stmt))) { /* We need to accumulate all clobbers/uses of all possible callees. */ fi = get_varinfo (find (fi->id)); /* If we cannot constrain the set of functions we'll end up calling we end up using/clobbering everything. */ if (bitmap_bit_p (fi->solution, anything_id) || bitmap_bit_p (fi->solution, nonlocal_id) || bitmap_bit_p (fi->solution, escaped_id)) { pt_solution_reset (gimple_call_clobber_set (stmt)); pt_solution_reset (gimple_call_use_set (stmt)); } else { bitmap_iterator bi; unsigned i; struct pt_solution *uses, *clobbers; uses = gimple_call_use_set (stmt); clobbers = gimple_call_clobber_set (stmt); memset (uses, 0, sizeof (struct pt_solution)); memset (clobbers, 0, sizeof (struct pt_solution)); EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi) { struct pt_solution sol; vi = get_varinfo (i); if (!vi->is_fn_info) { /* ??? We could be more precise here? */ uses->nonlocal = 1; uses->ipa_escaped = 1; clobbers->nonlocal = 1; clobbers->ipa_escaped = 1; continue; } if (!uses->anything) { sol = find_what_var_points_to (first_vi_for_offset (vi, fi_uses)); pt_solution_ior_into (uses, &sol); } if (!clobbers->anything) { sol = find_what_var_points_to (first_vi_for_offset (vi, fi_clobbers)); pt_solution_ior_into (clobbers, &sol); } } } } } } fn->gimple_df->ipa_pta = true; } delete_points_to_sets (); in_ipa_mode = 0; return 0; } namespace { const pass_data pass_data_ipa_pta = { SIMPLE_IPA_PASS, /* type */ "pta", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_IPA_PTA, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_ipa_pta : public simple_ipa_opt_pass { public: pass_ipa_pta (gcc::context *ctxt) : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return (optimize && flag_ipa_pta /* Don't bother doing anything if the program has errors. */ && !seen_error ()); } virtual unsigned int execute (function *) { return ipa_pta_execute (); } }; // class pass_ipa_pta } // anon namespace simple_ipa_opt_pass * make_pass_ipa_pta (gcc::context *ctxt) { return new pass_ipa_pta (ctxt); }