/* Loop header copying on trees. Copyright (C) 2004-2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "tm_p.h" #include "basic-block.h" #include "tree-ssa-alias.h" #include "internal-fn.h" #include "gimple-expr.h" #include "is-a.h" #include "gimple.h" #include "gimple-iterator.h" #include "gimple-ssa.h" #include "tree-cfg.h" #include "tree-into-ssa.h" #include "tree-pass.h" #include "cfgloop.h" #include "tree-inline.h" #include "flags.h" #include "tree-ssa-threadedge.h" /* Duplicates headers of loops if they are small enough, so that the statements in the loop body are always executed when the loop is entered. This increases effectiveness of code motion optimizations, and reduces the need for loop preconditioning. */ /* Check whether we should duplicate HEADER of LOOP. At most *LIMIT instructions should be duplicated, limit is decreased by the actual amount. */ static bool should_duplicate_loop_header_p (basic_block header, struct loop *loop, int *limit) { gimple_stmt_iterator bsi; gimple last; /* Do not copy one block more than once (we do not really want to do loop peeling here). */ if (header->aux) return false; /* Loop header copying usually increases size of the code. This used not to be true, since quite often it is possible to verify that the condition is satisfied in the first iteration and therefore to eliminate it. Jump threading handles these cases now. */ if (optimize_loop_for_size_p (loop)) return false; gcc_assert (EDGE_COUNT (header->succs) > 0); if (single_succ_p (header)) return false; if (flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 0)->dest) && flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 1)->dest)) return false; /* If this is not the original loop header, we want it to have just one predecessor in order to match the && pattern. */ if (header != loop->header && !single_pred_p (header)) return false; last = last_stmt (header); if (gimple_code (last) != GIMPLE_COND) return false; /* Approximately copy the conditions that used to be used in jump.c -- at most 20 insns and no calls. */ for (bsi = gsi_start_bb (header); !gsi_end_p (bsi); gsi_next (&bsi)) { last = gsi_stmt (bsi); if (gimple_code (last) == GIMPLE_LABEL) continue; if (is_gimple_debug (last)) continue; if (is_gimple_call (last)) return false; *limit -= estimate_num_insns (last, &eni_size_weights); if (*limit < 0) return false; } return true; } /* Checks whether LOOP is a do-while style loop. */ static bool do_while_loop_p (struct loop *loop) { gimple stmt = last_stmt (loop->latch); /* If the latch of the loop is not empty, it is not a do-while loop. */ if (stmt && gimple_code (stmt) != GIMPLE_LABEL) return false; /* If the header contains just a condition, it is not a do-while loop. */ stmt = last_and_only_stmt (loop->header); if (stmt && gimple_code (stmt) == GIMPLE_COND) return false; return true; } /* For all loops, copy the condition at the end of the loop body in front of the loop. This is beneficial since it increases efficiency of code motion optimizations. It also saves one jump on entry to the loop. */ namespace { const pass_data pass_data_ch = { GIMPLE_PASS, /* type */ "ch", /* name */ OPTGROUP_LOOP, /* optinfo_flags */ true, /* has_execute */ TV_TREE_CH, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ ( TODO_cleanup_cfg | TODO_verify_ssa | TODO_verify_flow ), /* todo_flags_finish */ }; class pass_ch : public gimple_opt_pass { public: pass_ch (gcc::context *ctxt) : gimple_opt_pass (pass_data_ch, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_tree_ch != 0; } virtual unsigned int execute (function *); }; // class pass_ch unsigned int pass_ch::execute (function *fun) { struct loop *loop; basic_block header; edge exit, entry; basic_block *bbs, *copied_bbs; unsigned n_bbs; unsigned bbs_size; loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES); if (number_of_loops (fun) <= 1) { loop_optimizer_finalize (); return 0; } bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun)); copied_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun)); bbs_size = n_basic_blocks_for_fn (fun); FOR_EACH_LOOP (loop, 0) { /* Copy at most 20 insns. */ int limit = 20; header = loop->header; /* If the loop is already a do-while style one (either because it was written as such, or because jump threading transformed it into one), we might be in fact peeling the first iteration of the loop. This in general is not a good idea. */ if (do_while_loop_p (loop)) continue; /* Iterate the header copying up to limit; this takes care of the cases like while (a && b) {...}, where we want to have both of the conditions copied. TODO -- handle while (a || b) - like cases, by not requiring the header to have just a single successor and copying up to postdominator. */ exit = NULL; n_bbs = 0; while (should_duplicate_loop_header_p (header, loop, &limit)) { /* Find a successor of header that is inside a loop; i.e. the new header after the condition is copied. */ if (flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 0)->dest)) exit = EDGE_SUCC (header, 0); else exit = EDGE_SUCC (header, 1); bbs[n_bbs++] = header; gcc_assert (bbs_size > n_bbs); header = exit->dest; } if (!exit) continue; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Duplicating header of the loop %d up to edge %d->%d.\n", loop->num, exit->src->index, exit->dest->index); /* Ensure that the header will have just the latch as a predecessor inside the loop. */ if (!single_pred_p (exit->dest)) exit = single_pred_edge (split_edge (exit)); entry = loop_preheader_edge (loop); propagate_threaded_block_debug_into (exit->dest, entry->dest); if (!gimple_duplicate_sese_region (entry, exit, bbs, n_bbs, copied_bbs, true)) { fprintf (dump_file, "Duplication failed.\n"); continue; } /* If the loop has the form "for (i = j; i < j + 10; i++)" then this copying can introduce a case where we rely on undefined signed overflow to eliminate the preheader condition, because we assume that "j < j + 10" is true. We don't want to warn about that case for -Wstrict-overflow, because in general we don't warn about overflow involving loops. Prevent the warning by setting the no_warning flag in the condition. */ if (warn_strict_overflow > 0) { unsigned int i; for (i = 0; i < n_bbs; ++i) { gimple_stmt_iterator bsi; for (bsi = gsi_start_bb (copied_bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi)) { gimple stmt = gsi_stmt (bsi); if (gimple_code (stmt) == GIMPLE_COND) gimple_set_no_warning (stmt, true); else if (is_gimple_assign (stmt)) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); if (TREE_CODE_CLASS (rhs_code) == tcc_comparison) gimple_set_no_warning (stmt, true); } } } } /* Ensure that the latch and the preheader is simple (we know that they are not now, since there was the loop exit condition. */ split_edge (loop_preheader_edge (loop)); split_edge (loop_latch_edge (loop)); } update_ssa (TODO_update_ssa); free (bbs); free (copied_bbs); loop_optimizer_finalize (); return 0; } } // anon namespace gimple_opt_pass * make_pass_ch (gcc::context *ctxt) { return new pass_ch (ctxt); }