/* Tree inlining. Copyright (C) 2001-2016 Free Software Foundation, Inc. Contributed by Alexandre Oliva This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "cgraph.h" #include "tree-pretty-print.h" #include "diagnostic-core.h" #include "gimple-predict.h" #include "fold-const.h" #include "stor-layout.h" #include "calls.h" #include "tree-inline.h" #include "langhooks.h" #include "cfganal.h" #include "tree-iterator.h" #include "intl.h" #include "gimple-fold.h" #include "tree-eh.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "gimple-walk.h" #include "tree-cfg.h" #include "tree-into-ssa.h" #include "tree-dfa.h" #include "tree-ssa.h" #include "except.h" #include "debug.h" #include "value-prof.h" #include "cfgloop.h" #include "builtins.h" #include "tree-chkp.h" /* I'm not real happy about this, but we need to handle gimple and non-gimple trees. */ /* Inlining, Cloning, Versioning, Parallelization Inlining: a function body is duplicated, but the PARM_DECLs are remapped into VAR_DECLs, and non-void RETURN_EXPRs become MODIFY_EXPRs that store to a dedicated returned-value variable. The duplicated eh_region info of the copy will later be appended to the info for the caller; the eh_region info in copied throwing statements and RESX statements are adjusted accordingly. Cloning: (only in C++) We have one body for a con/de/structor, and multiple function decls, each with a unique parameter list. Duplicate the body, using the given splay tree; some parameters will become constants (like 0 or 1). Versioning: a function body is duplicated and the result is a new function rather than into blocks of an existing function as with inlining. Some parameters will become constants. Parallelization: a region of a function is duplicated resulting in a new function. Variables may be replaced with complex expressions to enable shared variable semantics. All of these will simultaneously lookup any callgraph edges. If we're going to inline the duplicated function body, and the given function has some cloned callgraph nodes (one for each place this function will be inlined) those callgraph edges will be duplicated. If we're cloning the body, those callgraph edges will be updated to point into the new body. (Note that the original callgraph node and edge list will not be altered.) See the CALL_EXPR handling case in copy_tree_body_r (). */ /* To Do: o In order to make inlining-on-trees work, we pessimized function-local static constants. In particular, they are now always output, even when not addressed. Fix this by treating function-local static constants just like global static constants; the back-end already knows not to output them if they are not needed. o Provide heuristics to clamp inlining of recursive template calls? */ /* Weights that estimate_num_insns uses to estimate the size of the produced code. */ eni_weights eni_size_weights; /* Weights that estimate_num_insns uses to estimate the time necessary to execute the produced code. */ eni_weights eni_time_weights; /* Prototypes. */ static tree declare_return_variable (copy_body_data *, tree, tree, tree, basic_block); static void remap_block (tree *, copy_body_data *); static void copy_bind_expr (tree *, int *, copy_body_data *); static void declare_inline_vars (tree, tree); static void remap_save_expr (tree *, hash_map *, int *); static void prepend_lexical_block (tree current_block, tree new_block); static tree copy_decl_to_var (tree, copy_body_data *); static tree copy_result_decl_to_var (tree, copy_body_data *); static tree copy_decl_maybe_to_var (tree, copy_body_data *); static gimple_seq remap_gimple_stmt (gimple *, copy_body_data *); static bool delete_unreachable_blocks_update_callgraph (copy_body_data *id); static void insert_init_stmt (copy_body_data *, basic_block, gimple *); /* Insert a tree->tree mapping for ID. Despite the name suggests that the trees should be variables, it is used for more than that. */ void insert_decl_map (copy_body_data *id, tree key, tree value) { id->decl_map->put (key, value); /* Always insert an identity map as well. If we see this same new node again, we won't want to duplicate it a second time. */ if (key != value) id->decl_map->put (value, value); } /* Insert a tree->tree mapping for ID. This is only used for variables. */ static void insert_debug_decl_map (copy_body_data *id, tree key, tree value) { if (!gimple_in_ssa_p (id->src_cfun)) return; if (!opt_for_fn (id->dst_fn, flag_var_tracking_assignments)) return; if (!target_for_debug_bind (key)) return; gcc_assert (TREE_CODE (key) == PARM_DECL); gcc_assert (VAR_P (value)); if (!id->debug_map) id->debug_map = new hash_map; id->debug_map->put (key, value); } /* If nonzero, we're remapping the contents of inlined debug statements. If negative, an error has occurred, such as a reference to a variable that isn't available in the inlined context. */ static int processing_debug_stmt = 0; /* Construct new SSA name for old NAME. ID is the inline context. */ static tree remap_ssa_name (tree name, copy_body_data *id) { tree new_tree, var; tree *n; gcc_assert (TREE_CODE (name) == SSA_NAME); n = id->decl_map->get (name); if (n) return unshare_expr (*n); if (processing_debug_stmt) { if (SSA_NAME_IS_DEFAULT_DEF (name) && TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL && id->entry_bb == NULL && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))) { tree vexpr = make_node (DEBUG_EXPR_DECL); gimple *def_temp; gimple_stmt_iterator gsi; tree val = SSA_NAME_VAR (name); n = id->decl_map->get (val); if (n != NULL) val = *n; if (TREE_CODE (val) != PARM_DECL) { processing_debug_stmt = -1; return name; } def_temp = gimple_build_debug_source_bind (vexpr, val, NULL); DECL_ARTIFICIAL (vexpr) = 1; TREE_TYPE (vexpr) = TREE_TYPE (name); SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (name))); gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT); return vexpr; } processing_debug_stmt = -1; return name; } /* Remap anonymous SSA names or SSA names of anonymous decls. */ var = SSA_NAME_VAR (name); if (!var || (!SSA_NAME_IS_DEFAULT_DEF (name) && VAR_P (var) && !VAR_DECL_IS_VIRTUAL_OPERAND (var) && DECL_ARTIFICIAL (var) && DECL_IGNORED_P (var) && !DECL_NAME (var))) { struct ptr_info_def *pi; new_tree = make_ssa_name (remap_type (TREE_TYPE (name), id)); if (!var && SSA_NAME_IDENTIFIER (name)) SET_SSA_NAME_VAR_OR_IDENTIFIER (new_tree, SSA_NAME_IDENTIFIER (name)); insert_decl_map (id, name, new_tree); SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name); /* At least IPA points-to info can be directly transferred. */ if (id->src_cfun->gimple_df && id->src_cfun->gimple_df->ipa_pta && POINTER_TYPE_P (TREE_TYPE (name)) && (pi = SSA_NAME_PTR_INFO (name)) && !pi->pt.anything) { struct ptr_info_def *new_pi = get_ptr_info (new_tree); new_pi->pt = pi->pt; } return new_tree; } /* Do not set DEF_STMT yet as statement is not copied yet. We do that in copy_bb. */ new_tree = remap_decl (var, id); /* We might've substituted constant or another SSA_NAME for the variable. Replace the SSA name representing RESULT_DECL by variable during inlining: this saves us from need to introduce PHI node in a case return value is just partly initialized. */ if ((VAR_P (new_tree) || TREE_CODE (new_tree) == PARM_DECL) && (!SSA_NAME_VAR (name) || TREE_CODE (SSA_NAME_VAR (name)) != RESULT_DECL || !id->transform_return_to_modify)) { struct ptr_info_def *pi; new_tree = make_ssa_name (new_tree); insert_decl_map (id, name, new_tree); SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name); /* At least IPA points-to info can be directly transferred. */ if (id->src_cfun->gimple_df && id->src_cfun->gimple_df->ipa_pta && POINTER_TYPE_P (TREE_TYPE (name)) && (pi = SSA_NAME_PTR_INFO (name)) && !pi->pt.anything) { struct ptr_info_def *new_pi = get_ptr_info (new_tree); new_pi->pt = pi->pt; } if (SSA_NAME_IS_DEFAULT_DEF (name)) { /* By inlining function having uninitialized variable, we might extend the lifetime (variable might get reused). This cause ICE in the case we end up extending lifetime of SSA name across abnormal edge, but also increase register pressure. We simply initialize all uninitialized vars by 0 except for case we are inlining to very first BB. We can avoid this for all BBs that are not inside strongly connected regions of the CFG, but this is expensive to test. */ if (id->entry_bb && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name) && (!SSA_NAME_VAR (name) || TREE_CODE (SSA_NAME_VAR (name)) != PARM_DECL) && (id->entry_bb != EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest || EDGE_COUNT (id->entry_bb->preds) != 1)) { gimple_stmt_iterator gsi = gsi_last_bb (id->entry_bb); gimple *init_stmt; tree zero = build_zero_cst (TREE_TYPE (new_tree)); init_stmt = gimple_build_assign (new_tree, zero); gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT); SSA_NAME_IS_DEFAULT_DEF (new_tree) = 0; } else { SSA_NAME_DEF_STMT (new_tree) = gimple_build_nop (); set_ssa_default_def (cfun, SSA_NAME_VAR (new_tree), new_tree); } } } else insert_decl_map (id, name, new_tree); return new_tree; } /* Remap DECL during the copying of the BLOCK tree for the function. */ tree remap_decl (tree decl, copy_body_data *id) { tree *n; /* We only remap local variables in the current function. */ /* See if we have remapped this declaration. */ n = id->decl_map->get (decl); if (!n && processing_debug_stmt) { processing_debug_stmt = -1; return decl; } /* When remapping a type within copy_gimple_seq_and_replace_locals, all necessary DECLs have already been remapped and we do not want to duplicate a decl coming from outside of the sequence we are copying. */ if (!n && id->prevent_decl_creation_for_types && id->remapping_type_depth > 0 && (VAR_P (decl) || TREE_CODE (decl) == PARM_DECL)) return decl; /* If we didn't already have an equivalent for this declaration, create one now. */ if (!n) { /* Make a copy of the variable or label. */ tree t = id->copy_decl (decl, id); /* Remember it, so that if we encounter this local entity again we can reuse this copy. Do this early because remap_type may need this decl for TYPE_STUB_DECL. */ insert_decl_map (id, decl, t); if (!DECL_P (t)) return t; /* Remap types, if necessary. */ TREE_TYPE (t) = remap_type (TREE_TYPE (t), id); if (TREE_CODE (t) == TYPE_DECL) { DECL_ORIGINAL_TYPE (t) = remap_type (DECL_ORIGINAL_TYPE (t), id); /* Preserve the invariant that DECL_ORIGINAL_TYPE != TREE_TYPE, which is enforced in gen_typedef_die when DECL_ABSTRACT_ORIGIN is not set on the TYPE_DECL, for example in LTO mode. */ if (DECL_ORIGINAL_TYPE (t) == TREE_TYPE (t)) { tree x = build_variant_type_copy (TREE_TYPE (t)); TYPE_STUB_DECL (x) = TYPE_STUB_DECL (TREE_TYPE (t)); TYPE_NAME (x) = TYPE_NAME (TREE_TYPE (t)); DECL_ORIGINAL_TYPE (t) = x; } } /* Remap sizes as necessary. */ walk_tree (&DECL_SIZE (t), copy_tree_body_r, id, NULL); walk_tree (&DECL_SIZE_UNIT (t), copy_tree_body_r, id, NULL); /* If fields, do likewise for offset and qualifier. */ if (TREE_CODE (t) == FIELD_DECL) { walk_tree (&DECL_FIELD_OFFSET (t), copy_tree_body_r, id, NULL); if (TREE_CODE (DECL_CONTEXT (t)) == QUAL_UNION_TYPE) walk_tree (&DECL_QUALIFIER (t), copy_tree_body_r, id, NULL); } return t; } if (id->do_not_unshare) return *n; else return unshare_expr (*n); } static tree remap_type_1 (tree type, copy_body_data *id) { tree new_tree, t; /* We do need a copy. build and register it now. If this is a pointer or reference type, remap the designated type and make a new pointer or reference type. */ if (TREE_CODE (type) == POINTER_TYPE) { new_tree = build_pointer_type_for_mode (remap_type (TREE_TYPE (type), id), TYPE_MODE (type), TYPE_REF_CAN_ALIAS_ALL (type)); if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type)) new_tree = build_type_attribute_qual_variant (new_tree, TYPE_ATTRIBUTES (type), TYPE_QUALS (type)); insert_decl_map (id, type, new_tree); return new_tree; } else if (TREE_CODE (type) == REFERENCE_TYPE) { new_tree = build_reference_type_for_mode (remap_type (TREE_TYPE (type), id), TYPE_MODE (type), TYPE_REF_CAN_ALIAS_ALL (type)); if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type)) new_tree = build_type_attribute_qual_variant (new_tree, TYPE_ATTRIBUTES (type), TYPE_QUALS (type)); insert_decl_map (id, type, new_tree); return new_tree; } else new_tree = copy_node (type); insert_decl_map (id, type, new_tree); /* This is a new type, not a copy of an old type. Need to reassociate variants. We can handle everything except the main variant lazily. */ t = TYPE_MAIN_VARIANT (type); if (type != t) { t = remap_type (t, id); TYPE_MAIN_VARIANT (new_tree) = t; TYPE_NEXT_VARIANT (new_tree) = TYPE_NEXT_VARIANT (t); TYPE_NEXT_VARIANT (t) = new_tree; } else { TYPE_MAIN_VARIANT (new_tree) = new_tree; TYPE_NEXT_VARIANT (new_tree) = NULL; } if (TYPE_STUB_DECL (type)) TYPE_STUB_DECL (new_tree) = remap_decl (TYPE_STUB_DECL (type), id); /* Lazily create pointer and reference types. */ TYPE_POINTER_TO (new_tree) = NULL; TYPE_REFERENCE_TO (new_tree) = NULL; /* Copy all types that may contain references to local variables; be sure to preserve sharing in between type and its main variant when possible. */ switch (TREE_CODE (new_tree)) { case INTEGER_TYPE: case REAL_TYPE: case FIXED_POINT_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: if (TYPE_MAIN_VARIANT (new_tree) != new_tree) { gcc_checking_assert (TYPE_MIN_VALUE (type) == TYPE_MIN_VALUE (TYPE_MAIN_VARIANT (type))); gcc_checking_assert (TYPE_MAX_VALUE (type) == TYPE_MAX_VALUE (TYPE_MAIN_VARIANT (type))); TYPE_MIN_VALUE (new_tree) = TYPE_MIN_VALUE (TYPE_MAIN_VARIANT (new_tree)); TYPE_MAX_VALUE (new_tree) = TYPE_MAX_VALUE (TYPE_MAIN_VARIANT (new_tree)); } else { t = TYPE_MIN_VALUE (new_tree); if (t && TREE_CODE (t) != INTEGER_CST) walk_tree (&TYPE_MIN_VALUE (new_tree), copy_tree_body_r, id, NULL); t = TYPE_MAX_VALUE (new_tree); if (t && TREE_CODE (t) != INTEGER_CST) walk_tree (&TYPE_MAX_VALUE (new_tree), copy_tree_body_r, id, NULL); } return new_tree; case FUNCTION_TYPE: if (TYPE_MAIN_VARIANT (new_tree) != new_tree && TREE_TYPE (type) == TREE_TYPE (TYPE_MAIN_VARIANT (type))) TREE_TYPE (new_tree) = TREE_TYPE (TYPE_MAIN_VARIANT (new_tree)); else TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id); if (TYPE_MAIN_VARIANT (new_tree) != new_tree && TYPE_ARG_TYPES (type) == TYPE_ARG_TYPES (TYPE_MAIN_VARIANT (type))) TYPE_ARG_TYPES (new_tree) = TYPE_ARG_TYPES (TYPE_MAIN_VARIANT (new_tree)); else walk_tree (&TYPE_ARG_TYPES (new_tree), copy_tree_body_r, id, NULL); return new_tree; case ARRAY_TYPE: if (TYPE_MAIN_VARIANT (new_tree) != new_tree && TREE_TYPE (type) == TREE_TYPE (TYPE_MAIN_VARIANT (type))) TREE_TYPE (new_tree) = TREE_TYPE (TYPE_MAIN_VARIANT (new_tree)); else TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id); if (TYPE_MAIN_VARIANT (new_tree) != new_tree) { gcc_checking_assert (TYPE_DOMAIN (type) == TYPE_DOMAIN (TYPE_MAIN_VARIANT (type))); TYPE_DOMAIN (new_tree) = TYPE_DOMAIN (TYPE_MAIN_VARIANT (new_tree)); } else TYPE_DOMAIN (new_tree) = remap_type (TYPE_DOMAIN (new_tree), id); break; case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: if (TYPE_MAIN_VARIANT (type) != type && TYPE_FIELDS (type) == TYPE_FIELDS (TYPE_MAIN_VARIANT (type))) TYPE_FIELDS (new_tree) = TYPE_FIELDS (TYPE_MAIN_VARIANT (new_tree)); else { tree f, nf = NULL; for (f = TYPE_FIELDS (new_tree); f ; f = DECL_CHAIN (f)) { t = remap_decl (f, id); DECL_CONTEXT (t) = new_tree; DECL_CHAIN (t) = nf; nf = t; } TYPE_FIELDS (new_tree) = nreverse (nf); } break; case OFFSET_TYPE: default: /* Shouldn't have been thought variable sized. */ gcc_unreachable (); } /* All variants of type share the same size, so use the already remaped data. */ if (TYPE_MAIN_VARIANT (new_tree) != new_tree) { gcc_checking_assert (TYPE_SIZE (type) == TYPE_SIZE (TYPE_MAIN_VARIANT (type))); gcc_checking_assert (TYPE_SIZE_UNIT (type) == TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type))); TYPE_SIZE (new_tree) = TYPE_SIZE (TYPE_MAIN_VARIANT (new_tree)); TYPE_SIZE_UNIT (new_tree) = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (new_tree)); } else { walk_tree (&TYPE_SIZE (new_tree), copy_tree_body_r, id, NULL); walk_tree (&TYPE_SIZE_UNIT (new_tree), copy_tree_body_r, id, NULL); } return new_tree; } tree remap_type (tree type, copy_body_data *id) { tree *node; tree tmp; if (type == NULL) return type; /* See if we have remapped this type. */ node = id->decl_map->get (type); if (node) return *node; /* The type only needs remapping if it's variably modified. */ if (! variably_modified_type_p (type, id->src_fn)) { insert_decl_map (id, type, type); return type; } id->remapping_type_depth++; tmp = remap_type_1 (type, id); id->remapping_type_depth--; return tmp; } /* Decide if DECL can be put into BLOCK_NONLOCAL_VARs. */ static bool can_be_nonlocal (tree decl, copy_body_data *id) { /* We can not duplicate function decls. */ if (TREE_CODE (decl) == FUNCTION_DECL) return true; /* Local static vars must be non-local or we get multiple declaration problems. */ if (VAR_P (decl) && !auto_var_in_fn_p (decl, id->src_fn)) return true; return false; } static tree remap_decls (tree decls, vec **nonlocalized_list, copy_body_data *id) { tree old_var; tree new_decls = NULL_TREE; /* Remap its variables. */ for (old_var = decls; old_var; old_var = DECL_CHAIN (old_var)) { tree new_var; if (can_be_nonlocal (old_var, id)) { /* We need to add this variable to the local decls as otherwise nothing else will do so. */ if (VAR_P (old_var) && ! DECL_EXTERNAL (old_var) && cfun) add_local_decl (cfun, old_var); if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE) && !DECL_IGNORED_P (old_var) && nonlocalized_list) vec_safe_push (*nonlocalized_list, old_var); continue; } /* Remap the variable. */ new_var = remap_decl (old_var, id); /* If we didn't remap this variable, we can't mess with its TREE_CHAIN. If we remapped this variable to the return slot, it's already declared somewhere else, so don't declare it here. */ if (new_var == id->retvar) ; else if (!new_var) { if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE) && !DECL_IGNORED_P (old_var) && nonlocalized_list) vec_safe_push (*nonlocalized_list, old_var); } else { gcc_assert (DECL_P (new_var)); DECL_CHAIN (new_var) = new_decls; new_decls = new_var; /* Also copy value-expressions. */ if (VAR_P (new_var) && DECL_HAS_VALUE_EXPR_P (new_var)) { tree tem = DECL_VALUE_EXPR (new_var); bool old_regimplify = id->regimplify; id->remapping_type_depth++; walk_tree (&tem, copy_tree_body_r, id, NULL); id->remapping_type_depth--; id->regimplify = old_regimplify; SET_DECL_VALUE_EXPR (new_var, tem); } } } return nreverse (new_decls); } /* Copy the BLOCK to contain remapped versions of the variables therein. And hook the new block into the block-tree. */ static void remap_block (tree *block, copy_body_data *id) { tree old_block; tree new_block; /* Make the new block. */ old_block = *block; new_block = make_node (BLOCK); TREE_USED (new_block) = TREE_USED (old_block); BLOCK_ABSTRACT_ORIGIN (new_block) = old_block; BLOCK_SOURCE_LOCATION (new_block) = BLOCK_SOURCE_LOCATION (old_block); BLOCK_NONLOCALIZED_VARS (new_block) = vec_safe_copy (BLOCK_NONLOCALIZED_VARS (old_block)); *block = new_block; /* Remap its variables. */ BLOCK_VARS (new_block) = remap_decls (BLOCK_VARS (old_block), &BLOCK_NONLOCALIZED_VARS (new_block), id); if (id->transform_lang_insert_block) id->transform_lang_insert_block (new_block); /* Remember the remapped block. */ insert_decl_map (id, old_block, new_block); } /* Copy the whole block tree and root it in id->block. */ static tree remap_blocks (tree block, copy_body_data *id) { tree t; tree new_tree = block; if (!block) return NULL; remap_block (&new_tree, id); gcc_assert (new_tree != block); for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t)) prepend_lexical_block (new_tree, remap_blocks (t, id)); /* Blocks are in arbitrary order, but make things slightly prettier and do not swap order when producing a copy. */ BLOCK_SUBBLOCKS (new_tree) = blocks_nreverse (BLOCK_SUBBLOCKS (new_tree)); return new_tree; } /* Remap the block tree rooted at BLOCK to nothing. */ static void remap_blocks_to_null (tree block, copy_body_data *id) { tree t; insert_decl_map (id, block, NULL_TREE); for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t)) remap_blocks_to_null (t, id); } static void copy_statement_list (tree *tp) { tree_stmt_iterator oi, ni; tree new_tree; new_tree = alloc_stmt_list (); ni = tsi_start (new_tree); oi = tsi_start (*tp); TREE_TYPE (new_tree) = TREE_TYPE (*tp); *tp = new_tree; for (; !tsi_end_p (oi); tsi_next (&oi)) { tree stmt = tsi_stmt (oi); if (TREE_CODE (stmt) == STATEMENT_LIST) /* This copy is not redundant; tsi_link_after will smash this STATEMENT_LIST into the end of the one we're building, and we don't want to do that with the original. */ copy_statement_list (&stmt); tsi_link_after (&ni, stmt, TSI_CONTINUE_LINKING); } } static void copy_bind_expr (tree *tp, int *walk_subtrees, copy_body_data *id) { tree block = BIND_EXPR_BLOCK (*tp); /* Copy (and replace) the statement. */ copy_tree_r (tp, walk_subtrees, NULL); if (block) { remap_block (&block, id); BIND_EXPR_BLOCK (*tp) = block; } if (BIND_EXPR_VARS (*tp)) /* This will remap a lot of the same decls again, but this should be harmless. */ BIND_EXPR_VARS (*tp) = remap_decls (BIND_EXPR_VARS (*tp), NULL, id); } /* Create a new gimple_seq by remapping all the statements in BODY using the inlining information in ID. */ static gimple_seq remap_gimple_seq (gimple_seq body, copy_body_data *id) { gimple_stmt_iterator si; gimple_seq new_body = NULL; for (si = gsi_start (body); !gsi_end_p (si); gsi_next (&si)) { gimple_seq new_stmts = remap_gimple_stmt (gsi_stmt (si), id); gimple_seq_add_seq (&new_body, new_stmts); } return new_body; } /* Copy a GIMPLE_BIND statement STMT, remapping all the symbols in its block using the mapping information in ID. */ static gimple * copy_gimple_bind (gbind *stmt, copy_body_data *id) { gimple *new_bind; tree new_block, new_vars; gimple_seq body, new_body; /* Copy the statement. Note that we purposely don't use copy_stmt here because we need to remap statements as we copy. */ body = gimple_bind_body (stmt); new_body = remap_gimple_seq (body, id); new_block = gimple_bind_block (stmt); if (new_block) remap_block (&new_block, id); /* This will remap a lot of the same decls again, but this should be harmless. */ new_vars = gimple_bind_vars (stmt); if (new_vars) new_vars = remap_decls (new_vars, NULL, id); new_bind = gimple_build_bind (new_vars, new_body, new_block); return new_bind; } /* Return true if DECL is a parameter or a SSA_NAME for a parameter. */ static bool is_parm (tree decl) { if (TREE_CODE (decl) == SSA_NAME) { decl = SSA_NAME_VAR (decl); if (!decl) return false; } return (TREE_CODE (decl) == PARM_DECL); } /* Remap the dependence CLIQUE from the source to the destination function as specified in ID. */ static unsigned short remap_dependence_clique (copy_body_data *id, unsigned short clique) { if (clique == 0 || processing_debug_stmt) return 0; if (!id->dependence_map) id->dependence_map = new hash_map; bool existed; unsigned short &newc = id->dependence_map->get_or_insert (clique, &existed); if (!existed) newc = ++cfun->last_clique; return newc; } /* Remap the GIMPLE operand pointed to by *TP. DATA is really a 'struct walk_stmt_info *'. DATA->INFO is a 'copy_body_data *'. WALK_SUBTREES is used to indicate walk_gimple_op whether to keep recursing into the children nodes of *TP. */ static tree remap_gimple_op_r (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data; copy_body_data *id = (copy_body_data *) wi_p->info; tree fn = id->src_fn; /* For recursive invocations this is no longer the LHS itself. */ bool is_lhs = wi_p->is_lhs; wi_p->is_lhs = false; if (TREE_CODE (*tp) == SSA_NAME) { *tp = remap_ssa_name (*tp, id); *walk_subtrees = 0; if (is_lhs) SSA_NAME_DEF_STMT (*tp) = wi_p->stmt; return NULL; } else if (auto_var_in_fn_p (*tp, fn)) { /* Local variables and labels need to be replaced by equivalent variables. We don't want to copy static variables; there's only one of those, no matter how many times we inline the containing function. Similarly for globals from an outer function. */ tree new_decl; /* Remap the declaration. */ new_decl = remap_decl (*tp, id); gcc_assert (new_decl); /* Replace this variable with the copy. */ STRIP_TYPE_NOPS (new_decl); /* ??? The C++ frontend uses void * pointer zero to initialize any other type. This confuses the middle-end type verification. As cloned bodies do not go through gimplification again the fixup there doesn't trigger. */ if (TREE_CODE (new_decl) == INTEGER_CST && !useless_type_conversion_p (TREE_TYPE (*tp), TREE_TYPE (new_decl))) new_decl = fold_convert (TREE_TYPE (*tp), new_decl); *tp = new_decl; *walk_subtrees = 0; } else if (TREE_CODE (*tp) == STATEMENT_LIST) gcc_unreachable (); else if (TREE_CODE (*tp) == SAVE_EXPR) gcc_unreachable (); else if (TREE_CODE (*tp) == LABEL_DECL && (!DECL_CONTEXT (*tp) || decl_function_context (*tp) == id->src_fn)) /* These may need to be remapped for EH handling. */ *tp = remap_decl (*tp, id); else if (TREE_CODE (*tp) == FIELD_DECL) { /* If the enclosing record type is variably_modified_type_p, the field has already been remapped. Otherwise, it need not be. */ tree *n = id->decl_map->get (*tp); if (n) *tp = *n; *walk_subtrees = 0; } else if (TYPE_P (*tp)) /* Types may need remapping as well. */ *tp = remap_type (*tp, id); else if (CONSTANT_CLASS_P (*tp)) { /* If this is a constant, we have to copy the node iff the type will be remapped. copy_tree_r will not copy a constant. */ tree new_type = remap_type (TREE_TYPE (*tp), id); if (new_type == TREE_TYPE (*tp)) *walk_subtrees = 0; else if (TREE_CODE (*tp) == INTEGER_CST) *tp = wide_int_to_tree (new_type, *tp); else { *tp = copy_node (*tp); TREE_TYPE (*tp) = new_type; } } else { /* Otherwise, just copy the node. Note that copy_tree_r already knows not to copy VAR_DECLs, etc., so this is safe. */ if (TREE_CODE (*tp) == MEM_REF) { /* We need to re-canonicalize MEM_REFs from inline substitutions that can happen when a pointer argument is an ADDR_EXPR. Recurse here manually to allow that. */ tree ptr = TREE_OPERAND (*tp, 0); tree type = remap_type (TREE_TYPE (*tp), id); tree old = *tp; walk_tree (&ptr, remap_gimple_op_r, data, NULL); *tp = fold_build2 (MEM_REF, type, ptr, TREE_OPERAND (*tp, 1)); TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old); TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old); TREE_NO_WARNING (*tp) = TREE_NO_WARNING (old); if (MR_DEPENDENCE_CLIQUE (old) != 0) { MR_DEPENDENCE_CLIQUE (*tp) = remap_dependence_clique (id, MR_DEPENDENCE_CLIQUE (old)); MR_DEPENDENCE_BASE (*tp) = MR_DEPENDENCE_BASE (old); } /* We cannot propagate the TREE_THIS_NOTRAP flag if we have remapped a parameter as the property might be valid only for the parameter itself. */ if (TREE_THIS_NOTRAP (old) && (!is_parm (TREE_OPERAND (old, 0)) || (!id->transform_parameter && is_parm (ptr)))) TREE_THIS_NOTRAP (*tp) = 1; REF_REVERSE_STORAGE_ORDER (*tp) = REF_REVERSE_STORAGE_ORDER (old); *walk_subtrees = 0; return NULL; } /* Here is the "usual case". Copy this tree node, and then tweak some special cases. */ copy_tree_r (tp, walk_subtrees, NULL); if (TREE_CODE (*tp) != OMP_CLAUSE) TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id); if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3)) { /* The copied TARGET_EXPR has never been expanded, even if the original node was expanded already. */ TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3); TREE_OPERAND (*tp, 3) = NULL_TREE; } else if (TREE_CODE (*tp) == ADDR_EXPR) { /* Variable substitution need not be simple. In particular, the MEM_REF substitution above. Make sure that TREE_CONSTANT and friends are up-to-date. */ int invariant = is_gimple_min_invariant (*tp); walk_tree (&TREE_OPERAND (*tp, 0), remap_gimple_op_r, data, NULL); recompute_tree_invariant_for_addr_expr (*tp); /* If this used to be invariant, but is not any longer, then regimplification is probably needed. */ if (invariant && !is_gimple_min_invariant (*tp)) id->regimplify = true; *walk_subtrees = 0; } } /* Update the TREE_BLOCK for the cloned expr. */ if (EXPR_P (*tp)) { tree new_block = id->remapping_type_depth == 0 ? id->block : NULL; tree old_block = TREE_BLOCK (*tp); if (old_block) { tree *n; n = id->decl_map->get (TREE_BLOCK (*tp)); if (n) new_block = *n; } TREE_SET_BLOCK (*tp, new_block); } /* Keep iterating. */ return NULL_TREE; } /* Called from copy_body_id via walk_tree. DATA is really a `copy_body_data *'. */ tree copy_tree_body_r (tree *tp, int *walk_subtrees, void *data) { copy_body_data *id = (copy_body_data *) data; tree fn = id->src_fn; tree new_block; bool copied = false; /* Begin by recognizing trees that we'll completely rewrite for the inlining context. Our output for these trees is completely different from out input (e.g. RETURN_EXPR is deleted, and morphs into an edge). Further down, we'll handle trees that get duplicated and/or tweaked. */ /* When requested, RETURN_EXPRs should be transformed to just the contained MODIFY_EXPR. The branch semantics of the return will be handled elsewhere by manipulating the CFG rather than a statement. */ if (TREE_CODE (*tp) == RETURN_EXPR && id->transform_return_to_modify) { tree assignment = TREE_OPERAND (*tp, 0); /* If we're returning something, just turn that into an assignment into the equivalent of the original RESULT_DECL. If the "assignment" is just the result decl, the result decl has already been set (e.g. a recent "foo (&result_decl, ...)"); just toss the entire RETURN_EXPR. */ if (assignment && TREE_CODE (assignment) == MODIFY_EXPR) { /* Replace the RETURN_EXPR with (a copy of) the MODIFY_EXPR hanging underneath. */ *tp = copy_node (assignment); } else /* Else the RETURN_EXPR returns no value. */ { *tp = NULL; return (tree) (void *)1; } } else if (TREE_CODE (*tp) == SSA_NAME) { *tp = remap_ssa_name (*tp, id); *walk_subtrees = 0; return NULL; } /* Local variables and labels need to be replaced by equivalent variables. We don't want to copy static variables; there's only one of those, no matter how many times we inline the containing function. Similarly for globals from an outer function. */ else if (auto_var_in_fn_p (*tp, fn)) { tree new_decl; /* Remap the declaration. */ new_decl = remap_decl (*tp, id); gcc_assert (new_decl); /* Replace this variable with the copy. */ STRIP_TYPE_NOPS (new_decl); *tp = new_decl; *walk_subtrees = 0; } else if (TREE_CODE (*tp) == STATEMENT_LIST) copy_statement_list (tp); else if (TREE_CODE (*tp) == SAVE_EXPR || TREE_CODE (*tp) == TARGET_EXPR) remap_save_expr (tp, id->decl_map, walk_subtrees); else if (TREE_CODE (*tp) == LABEL_DECL && (! DECL_CONTEXT (*tp) || decl_function_context (*tp) == id->src_fn)) /* These may need to be remapped for EH handling. */ *tp = remap_decl (*tp, id); else if (TREE_CODE (*tp) == BIND_EXPR) copy_bind_expr (tp, walk_subtrees, id); /* Types may need remapping as well. */ else if (TYPE_P (*tp)) *tp = remap_type (*tp, id); /* If this is a constant, we have to copy the node iff the type will be remapped. copy_tree_r will not copy a constant. */ else if (CONSTANT_CLASS_P (*tp)) { tree new_type = remap_type (TREE_TYPE (*tp), id); if (new_type == TREE_TYPE (*tp)) *walk_subtrees = 0; else if (TREE_CODE (*tp) == INTEGER_CST) *tp = wide_int_to_tree (new_type, *tp); else { *tp = copy_node (*tp); TREE_TYPE (*tp) = new_type; } } /* Otherwise, just copy the node. Note that copy_tree_r already knows not to copy VAR_DECLs, etc., so this is safe. */ else { /* Here we handle trees that are not completely rewritten. First we detect some inlining-induced bogosities for discarding. */ if (TREE_CODE (*tp) == MODIFY_EXPR && TREE_OPERAND (*tp, 0) == TREE_OPERAND (*tp, 1) && (auto_var_in_fn_p (TREE_OPERAND (*tp, 0), fn))) { /* Some assignments VAR = VAR; don't generate any rtl code and thus don't count as variable modification. Avoid keeping bogosities like 0 = 0. */ tree decl = TREE_OPERAND (*tp, 0), value; tree *n; n = id->decl_map->get (decl); if (n) { value = *n; STRIP_TYPE_NOPS (value); if (TREE_CONSTANT (value) || TREE_READONLY (value)) { *tp = build_empty_stmt (EXPR_LOCATION (*tp)); return copy_tree_body_r (tp, walk_subtrees, data); } } } else if (TREE_CODE (*tp) == INDIRECT_REF) { /* Get rid of *& from inline substitutions that can happen when a pointer argument is an ADDR_EXPR. */ tree decl = TREE_OPERAND (*tp, 0); tree *n = id->decl_map->get (decl); if (n) { /* If we happen to get an ADDR_EXPR in n->value, strip it manually here as we'll eventually get ADDR_EXPRs which lie about their types pointed to. In this case build_fold_indirect_ref wouldn't strip the INDIRECT_REF, but we absolutely rely on that. As fold_indirect_ref does other useful transformations, try that first, though. */ tree type = TREE_TYPE (*tp); tree ptr = id->do_not_unshare ? *n : unshare_expr (*n); tree old = *tp; *tp = gimple_fold_indirect_ref (ptr); if (! *tp) { if (TREE_CODE (ptr) == ADDR_EXPR) { *tp = fold_indirect_ref_1 (EXPR_LOCATION (ptr), type, ptr); /* ??? We should either assert here or build a VIEW_CONVERT_EXPR instead of blindly leaking incompatible types to our IL. */ if (! *tp) *tp = TREE_OPERAND (ptr, 0); } else { *tp = build1 (INDIRECT_REF, type, ptr); TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old); TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old); TREE_READONLY (*tp) = TREE_READONLY (old); /* We cannot propagate the TREE_THIS_NOTRAP flag if we have remapped a parameter as the property might be valid only for the parameter itself. */ if (TREE_THIS_NOTRAP (old) && (!is_parm (TREE_OPERAND (old, 0)) || (!id->transform_parameter && is_parm (ptr)))) TREE_THIS_NOTRAP (*tp) = 1; } } *walk_subtrees = 0; return NULL; } } else if (TREE_CODE (*tp) == MEM_REF) { /* We need to re-canonicalize MEM_REFs from inline substitutions that can happen when a pointer argument is an ADDR_EXPR. Recurse here manually to allow that. */ tree ptr = TREE_OPERAND (*tp, 0); tree type = remap_type (TREE_TYPE (*tp), id); tree old = *tp; walk_tree (&ptr, copy_tree_body_r, data, NULL); *tp = fold_build2 (MEM_REF, type, ptr, TREE_OPERAND (*tp, 1)); TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old); TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old); TREE_NO_WARNING (*tp) = TREE_NO_WARNING (old); if (MR_DEPENDENCE_CLIQUE (old) != 0) { MR_DEPENDENCE_CLIQUE (*tp) = remap_dependence_clique (id, MR_DEPENDENCE_CLIQUE (old)); MR_DEPENDENCE_BASE (*tp) = MR_DEPENDENCE_BASE (old); } /* We cannot propagate the TREE_THIS_NOTRAP flag if we have remapped a parameter as the property might be valid only for the parameter itself. */ if (TREE_THIS_NOTRAP (old) && (!is_parm (TREE_OPERAND (old, 0)) || (!id->transform_parameter && is_parm (ptr)))) TREE_THIS_NOTRAP (*tp) = 1; REF_REVERSE_STORAGE_ORDER (*tp) = REF_REVERSE_STORAGE_ORDER (old); *walk_subtrees = 0; return NULL; } else if (TREE_CODE (*tp) == COND_EXPR) { tree cond = TREE_OPERAND (*tp, 0); walk_tree (&cond, copy_tree_body_r, data, NULL); tree folded = fold (cond); if (TREE_CODE (folded) == INTEGER_CST) { /* Only copy the taken branch; for a C++ base constructor clone inherited from a virtual base, copying the other branch leads to references to parameters that were optimized away. */ tree branch = (integer_nonzerop (folded) ? TREE_OPERAND (*tp, 1) : TREE_OPERAND (*tp, 2)); tree type = TREE_TYPE (*tp); if (VOID_TYPE_P (type) || type == TREE_TYPE (branch)) { *tp = branch; return copy_tree_body_r (tp, walk_subtrees, data); } } /* Avoid copying the condition twice. */ copy_tree_r (tp, walk_subtrees, NULL); TREE_OPERAND (*tp, 0) = cond; walk_tree (&TREE_OPERAND (*tp, 1), copy_tree_body_r, data, NULL); walk_tree (&TREE_OPERAND (*tp, 2), copy_tree_body_r, data, NULL); *walk_subtrees = 0; copied = true; } /* Here is the "usual case". Copy this tree node, and then tweak some special cases. */ if (!copied) copy_tree_r (tp, walk_subtrees, NULL); /* If EXPR has block defined, map it to newly constructed block. When inlining we want EXPRs without block appear in the block of function call if we are not remapping a type. */ if (EXPR_P (*tp)) { new_block = id->remapping_type_depth == 0 ? id->block : NULL; if (TREE_BLOCK (*tp)) { tree *n; n = id->decl_map->get (TREE_BLOCK (*tp)); if (n) new_block = *n; } TREE_SET_BLOCK (*tp, new_block); } if (TREE_CODE (*tp) != OMP_CLAUSE) TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id); /* The copied TARGET_EXPR has never been expanded, even if the original node was expanded already. */ if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3)) { TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3); TREE_OPERAND (*tp, 3) = NULL_TREE; } /* Variable substitution need not be simple. In particular, the INDIRECT_REF substitution above. Make sure that TREE_CONSTANT and friends are up-to-date. */ else if (TREE_CODE (*tp) == ADDR_EXPR) { int invariant = is_gimple_min_invariant (*tp); walk_tree (&TREE_OPERAND (*tp, 0), copy_tree_body_r, id, NULL); /* Handle the case where we substituted an INDIRECT_REF into the operand of the ADDR_EXPR. */ if (TREE_CODE (TREE_OPERAND (*tp, 0)) == INDIRECT_REF) { tree t = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0); if (TREE_TYPE (t) != TREE_TYPE (*tp)) t = fold_convert (remap_type (TREE_TYPE (*tp), id), t); *tp = t; } else recompute_tree_invariant_for_addr_expr (*tp); /* If this used to be invariant, but is not any longer, then regimplification is probably needed. */ if (invariant && !is_gimple_min_invariant (*tp)) id->regimplify = true; *walk_subtrees = 0; } } /* Keep iterating. */ return NULL_TREE; } /* Helper for remap_gimple_stmt. Given an EH region number for the source function, map that to the duplicate EH region number in the destination function. */ static int remap_eh_region_nr (int old_nr, copy_body_data *id) { eh_region old_r, new_r; old_r = get_eh_region_from_number_fn (id->src_cfun, old_nr); new_r = static_cast (*id->eh_map->get (old_r)); return new_r->index; } /* Similar, but operate on INTEGER_CSTs. */ static tree remap_eh_region_tree_nr (tree old_t_nr, copy_body_data *id) { int old_nr, new_nr; old_nr = tree_to_shwi (old_t_nr); new_nr = remap_eh_region_nr (old_nr, id); return build_int_cst (integer_type_node, new_nr); } /* Helper for copy_bb. Remap statement STMT using the inlining information in ID. Return the new statement copy. */ static gimple_seq remap_gimple_stmt (gimple *stmt, copy_body_data *id) { gimple *copy = NULL; struct walk_stmt_info wi; bool skip_first = false; gimple_seq stmts = NULL; if (is_gimple_debug (stmt) && !opt_for_fn (id->dst_fn, flag_var_tracking_assignments)) return stmts; /* Begin by recognizing trees that we'll completely rewrite for the inlining context. Our output for these trees is completely different from out input (e.g. RETURN_EXPR is deleted, and morphs into an edge). Further down, we'll handle trees that get duplicated and/or tweaked. */ /* When requested, GIMPLE_RETURNs should be transformed to just the contained GIMPLE_ASSIGN. The branch semantics of the return will be handled elsewhere by manipulating the CFG rather than the statement. */ if (gimple_code (stmt) == GIMPLE_RETURN && id->transform_return_to_modify) { tree retval = gimple_return_retval (as_a (stmt)); tree retbnd = gimple_return_retbnd (stmt); tree bndslot = id->retbnd; if (retbnd && bndslot) { gimple *bndcopy = gimple_build_assign (bndslot, retbnd); memset (&wi, 0, sizeof (wi)); wi.info = id; walk_gimple_op (bndcopy, remap_gimple_op_r, &wi); gimple_seq_add_stmt (&stmts, bndcopy); } /* If we're returning something, just turn that into an assignment into the equivalent of the original RESULT_DECL. If RETVAL is just the result decl, the result decl has already been set (e.g. a recent "foo (&result_decl, ...)"); just toss the entire GIMPLE_RETURN. */ if (retval && (TREE_CODE (retval) != RESULT_DECL && (TREE_CODE (retval) != SSA_NAME || ! SSA_NAME_VAR (retval) || TREE_CODE (SSA_NAME_VAR (retval)) != RESULT_DECL))) { copy = gimple_build_assign (id->do_not_unshare ? id->retvar : unshare_expr (id->retvar), retval); /* id->retvar is already substituted. Skip it on later remapping. */ skip_first = true; /* We need to copy bounds if return structure with pointers into instrumented function. */ if (chkp_function_instrumented_p (id->dst_fn) && !bndslot && !BOUNDED_P (id->retvar) && chkp_type_has_pointer (TREE_TYPE (id->retvar))) id->assign_stmts.safe_push (copy); } else return stmts; } else if (gimple_has_substatements (stmt)) { gimple_seq s1, s2; /* When cloning bodies from the C++ front end, we will be handed bodies in High GIMPLE form. Handle here all the High GIMPLE statements that have embedded statements. */ switch (gimple_code (stmt)) { case GIMPLE_BIND: copy = copy_gimple_bind (as_a (stmt), id); break; case GIMPLE_CATCH: { gcatch *catch_stmt = as_a (stmt); s1 = remap_gimple_seq (gimple_catch_handler (catch_stmt), id); copy = gimple_build_catch (gimple_catch_types (catch_stmt), s1); } break; case GIMPLE_EH_FILTER: s1 = remap_gimple_seq (gimple_eh_filter_failure (stmt), id); copy = gimple_build_eh_filter (gimple_eh_filter_types (stmt), s1); break; case GIMPLE_TRY: s1 = remap_gimple_seq (gimple_try_eval (stmt), id); s2 = remap_gimple_seq (gimple_try_cleanup (stmt), id); copy = gimple_build_try (s1, s2, gimple_try_kind (stmt)); break; case GIMPLE_WITH_CLEANUP_EXPR: s1 = remap_gimple_seq (gimple_wce_cleanup (stmt), id); copy = gimple_build_wce (s1); break; case GIMPLE_OMP_PARALLEL: { gomp_parallel *omp_par_stmt = as_a (stmt); s1 = remap_gimple_seq (gimple_omp_body (omp_par_stmt), id); copy = gimple_build_omp_parallel (s1, gimple_omp_parallel_clauses (omp_par_stmt), gimple_omp_parallel_child_fn (omp_par_stmt), gimple_omp_parallel_data_arg (omp_par_stmt)); } break; case GIMPLE_OMP_TASK: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_task (s1, gimple_omp_task_clauses (stmt), gimple_omp_task_child_fn (stmt), gimple_omp_task_data_arg (stmt), gimple_omp_task_copy_fn (stmt), gimple_omp_task_arg_size (stmt), gimple_omp_task_arg_align (stmt)); break; case GIMPLE_OMP_FOR: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); s2 = remap_gimple_seq (gimple_omp_for_pre_body (stmt), id); copy = gimple_build_omp_for (s1, gimple_omp_for_kind (stmt), gimple_omp_for_clauses (stmt), gimple_omp_for_collapse (stmt), s2); { size_t i; for (i = 0; i < gimple_omp_for_collapse (stmt); i++) { gimple_omp_for_set_index (copy, i, gimple_omp_for_index (stmt, i)); gimple_omp_for_set_initial (copy, i, gimple_omp_for_initial (stmt, i)); gimple_omp_for_set_final (copy, i, gimple_omp_for_final (stmt, i)); gimple_omp_for_set_incr (copy, i, gimple_omp_for_incr (stmt, i)); gimple_omp_for_set_cond (copy, i, gimple_omp_for_cond (stmt, i)); } } break; case GIMPLE_OMP_MASTER: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_master (s1); break; case GIMPLE_OMP_TASKGROUP: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_taskgroup (s1); break; case GIMPLE_OMP_ORDERED: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_ordered (s1, gimple_omp_ordered_clauses (as_a (stmt))); break; case GIMPLE_OMP_SECTION: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_section (s1); break; case GIMPLE_OMP_SECTIONS: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_sections (s1, gimple_omp_sections_clauses (stmt)); break; case GIMPLE_OMP_SINGLE: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_single (s1, gimple_omp_single_clauses (stmt)); break; case GIMPLE_OMP_TARGET: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_target (s1, gimple_omp_target_kind (stmt), gimple_omp_target_clauses (stmt)); break; case GIMPLE_OMP_TEAMS: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_teams (s1, gimple_omp_teams_clauses (stmt)); break; case GIMPLE_OMP_CRITICAL: s1 = remap_gimple_seq (gimple_omp_body (stmt), id); copy = gimple_build_omp_critical (s1, gimple_omp_critical_name (as_a (stmt)), gimple_omp_critical_clauses (as_a (stmt))); break; case GIMPLE_TRANSACTION: { gtransaction *old_trans_stmt = as_a (stmt); gtransaction *new_trans_stmt; s1 = remap_gimple_seq (gimple_transaction_body (old_trans_stmt), id); copy = new_trans_stmt = gimple_build_transaction (s1); gimple_transaction_set_subcode (new_trans_stmt, gimple_transaction_subcode (old_trans_stmt)); gimple_transaction_set_label_norm (new_trans_stmt, gimple_transaction_label_norm (old_trans_stmt)); gimple_transaction_set_label_uninst (new_trans_stmt, gimple_transaction_label_uninst (old_trans_stmt)); gimple_transaction_set_label_over (new_trans_stmt, gimple_transaction_label_over (old_trans_stmt)); } break; default: gcc_unreachable (); } } else { if (gimple_assign_copy_p (stmt) && gimple_assign_lhs (stmt) == gimple_assign_rhs1 (stmt) && auto_var_in_fn_p (gimple_assign_lhs (stmt), id->src_fn)) { /* Here we handle statements that are not completely rewritten. First we detect some inlining-induced bogosities for discarding. */ /* Some assignments VAR = VAR; don't generate any rtl code and thus don't count as variable modification. Avoid keeping bogosities like 0 = 0. */ tree decl = gimple_assign_lhs (stmt), value; tree *n; n = id->decl_map->get (decl); if (n) { value = *n; STRIP_TYPE_NOPS (value); if (TREE_CONSTANT (value) || TREE_READONLY (value)) return NULL; } } /* For *ptr_N ={v} {CLOBBER}, if ptr_N is SSA_NAME defined in a block that we aren't copying during tree_function_versioning, just drop the clobber stmt. */ if (id->blocks_to_copy && gimple_clobber_p (stmt)) { tree lhs = gimple_assign_lhs (stmt); if (TREE_CODE (lhs) == MEM_REF && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME) { gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)); if (gimple_bb (def_stmt) && !bitmap_bit_p (id->blocks_to_copy, gimple_bb (def_stmt)->index)) return NULL; } } if (gimple_debug_bind_p (stmt)) { gdebug *copy = gimple_build_debug_bind (gimple_debug_bind_get_var (stmt), gimple_debug_bind_get_value (stmt), stmt); id->debug_stmts.safe_push (copy); gimple_seq_add_stmt (&stmts, copy); return stmts; } if (gimple_debug_source_bind_p (stmt)) { gdebug *copy = gimple_build_debug_source_bind (gimple_debug_source_bind_get_var (stmt), gimple_debug_source_bind_get_value (stmt), stmt); id->debug_stmts.safe_push (copy); gimple_seq_add_stmt (&stmts, copy); return stmts; } /* Create a new deep copy of the statement. */ copy = gimple_copy (stmt); /* Clear flags that need revisiting. */ if (gcall *call_stmt = dyn_cast (copy)) { if (gimple_call_tail_p (call_stmt)) gimple_call_set_tail (call_stmt, false); if (gimple_call_from_thunk_p (call_stmt)) gimple_call_set_from_thunk (call_stmt, false); if (gimple_call_internal_p (call_stmt)) switch (gimple_call_internal_fn (call_stmt)) { case IFN_GOMP_SIMD_LANE: case IFN_GOMP_SIMD_VF: case IFN_GOMP_SIMD_LAST_LANE: case IFN_GOMP_SIMD_ORDERED_START: case IFN_GOMP_SIMD_ORDERED_END: DECL_STRUCT_FUNCTION (id->dst_fn)->has_simduid_loops = true; break; default: break; } } /* Remap the region numbers for __builtin_eh_{pointer,filter}, RESX and EH_DISPATCH. */ if (id->eh_map) switch (gimple_code (copy)) { case GIMPLE_CALL: { tree r, fndecl = gimple_call_fndecl (copy); if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_EH_COPY_VALUES: r = gimple_call_arg (copy, 1); r = remap_eh_region_tree_nr (r, id); gimple_call_set_arg (copy, 1, r); /* FALLTHRU */ case BUILT_IN_EH_POINTER: case BUILT_IN_EH_FILTER: r = gimple_call_arg (copy, 0); r = remap_eh_region_tree_nr (r, id); gimple_call_set_arg (copy, 0, r); break; default: break; } /* Reset alias info if we didn't apply measures to keep it valid over inlining by setting DECL_PT_UID. */ if (!id->src_cfun->gimple_df || !id->src_cfun->gimple_df->ipa_pta) gimple_call_reset_alias_info (as_a (copy)); } break; case GIMPLE_RESX: { gresx *resx_stmt = as_a (copy); int r = gimple_resx_region (resx_stmt); r = remap_eh_region_nr (r, id); gimple_resx_set_region (resx_stmt, r); } break; case GIMPLE_EH_DISPATCH: { geh_dispatch *eh_dispatch = as_a (copy); int r = gimple_eh_dispatch_region (eh_dispatch); r = remap_eh_region_nr (r, id); gimple_eh_dispatch_set_region (eh_dispatch, r); } break; default: break; } } /* If STMT has a block defined, map it to the newly constructed block. */ if (gimple_block (copy)) { tree *n; n = id->decl_map->get (gimple_block (copy)); gcc_assert (n); gimple_set_block (copy, *n); } if (gimple_debug_bind_p (copy) || gimple_debug_source_bind_p (copy)) { gimple_seq_add_stmt (&stmts, copy); return stmts; } /* Remap all the operands in COPY. */ memset (&wi, 0, sizeof (wi)); wi.info = id; if (skip_first) walk_tree (gimple_op_ptr (copy, 1), remap_gimple_op_r, &wi, NULL); else walk_gimple_op (copy, remap_gimple_op_r, &wi); /* Clear the copied virtual operands. We are not remapping them here but are going to recreate them from scratch. */ if (gimple_has_mem_ops (copy)) { gimple_set_vdef (copy, NULL_TREE); gimple_set_vuse (copy, NULL_TREE); } gimple_seq_add_stmt (&stmts, copy); return stmts; } /* Copy basic block, scale profile accordingly. Edges will be taken care of later */ static basic_block copy_bb (copy_body_data *id, basic_block bb, int frequency_scale, gcov_type count_scale) { gimple_stmt_iterator gsi, copy_gsi, seq_gsi; basic_block copy_basic_block; tree decl; gcov_type freq; basic_block prev; /* Search for previous copied basic block. */ prev = bb->prev_bb; while (!prev->aux) prev = prev->prev_bb; /* create_basic_block() will append every new block to basic_block_info automatically. */ copy_basic_block = create_basic_block (NULL, (basic_block) prev->aux); copy_basic_block->count = apply_scale (bb->count, count_scale); /* We are going to rebuild frequencies from scratch. These values have just small importance to drive canonicalize_loop_headers. */ freq = apply_scale ((gcov_type)bb->frequency, frequency_scale); /* We recompute frequencies after inlining, so this is quite safe. */ if (freq > BB_FREQ_MAX) freq = BB_FREQ_MAX; copy_basic_block->frequency = freq; copy_gsi = gsi_start_bb (copy_basic_block); for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple_seq stmts; gimple *stmt = gsi_stmt (gsi); gimple *orig_stmt = stmt; gimple_stmt_iterator stmts_gsi; bool stmt_added = false; id->regimplify = false; stmts = remap_gimple_stmt (stmt, id); if (gimple_seq_empty_p (stmts)) continue; seq_gsi = copy_gsi; for (stmts_gsi = gsi_start (stmts); !gsi_end_p (stmts_gsi); ) { stmt = gsi_stmt (stmts_gsi); /* Advance iterator now before stmt is moved to seq_gsi. */ gsi_next (&stmts_gsi); if (gimple_nop_p (stmt)) continue; gimple_duplicate_stmt_histograms (cfun, stmt, id->src_cfun, orig_stmt); /* With return slot optimization we can end up with non-gimple (foo *)&this->m, fix that here. */ if (is_gimple_assign (stmt) && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)) && !is_gimple_val (gimple_assign_rhs1 (stmt))) { tree new_rhs; new_rhs = force_gimple_operand_gsi (&seq_gsi, gimple_assign_rhs1 (stmt), true, NULL, false, GSI_CONTINUE_LINKING); gimple_assign_set_rhs1 (stmt, new_rhs); id->regimplify = false; } gsi_insert_after (&seq_gsi, stmt, GSI_NEW_STMT); if (id->regimplify) gimple_regimplify_operands (stmt, &seq_gsi); stmt_added = true; } if (!stmt_added) continue; /* If copy_basic_block has been empty at the start of this iteration, call gsi_start_bb again to get at the newly added statements. */ if (gsi_end_p (copy_gsi)) copy_gsi = gsi_start_bb (copy_basic_block); else gsi_next (©_gsi); /* Process the new statement. The call to gimple_regimplify_operands possibly turned the statement into multiple statements, we need to process all of them. */ do { tree fn; gcall *call_stmt; stmt = gsi_stmt (copy_gsi); call_stmt = dyn_cast (stmt); if (call_stmt && gimple_call_va_arg_pack_p (call_stmt) && id->call_stmt) { /* __builtin_va_arg_pack () should be replaced by all arguments corresponding to ... in the caller. */ tree p; gcall *new_call; vec argarray; size_t nargs = gimple_call_num_args (id->call_stmt); size_t n, i, nargs_to_copy; bool remove_bounds = false; for (p = DECL_ARGUMENTS (id->src_fn); p; p = DECL_CHAIN (p)) nargs--; /* Bounds should be removed from arg pack in case we handle not instrumented call in instrumented function. */ nargs_to_copy = nargs; if (gimple_call_with_bounds_p (id->call_stmt) && !gimple_call_with_bounds_p (stmt)) { for (i = gimple_call_num_args (id->call_stmt) - nargs; i < gimple_call_num_args (id->call_stmt); i++) if (POINTER_BOUNDS_P (gimple_call_arg (id->call_stmt, i))) nargs_to_copy--; remove_bounds = true; } /* Create the new array of arguments. */ n = nargs_to_copy + gimple_call_num_args (call_stmt); argarray.create (n); argarray.safe_grow_cleared (n); /* Copy all the arguments before '...' */ memcpy (argarray.address (), gimple_call_arg_ptr (call_stmt, 0), gimple_call_num_args (call_stmt) * sizeof (tree)); if (remove_bounds) { /* Append the rest of arguments removing bounds. */ unsigned cur = gimple_call_num_args (call_stmt); i = gimple_call_num_args (id->call_stmt) - nargs; for (i = gimple_call_num_args (id->call_stmt) - nargs; i < gimple_call_num_args (id->call_stmt); i++) if (!POINTER_BOUNDS_P (gimple_call_arg (id->call_stmt, i))) argarray[cur++] = gimple_call_arg (id->call_stmt, i); gcc_assert (cur == n); } else { /* Append the arguments passed in '...' */ memcpy (argarray.address () + gimple_call_num_args (call_stmt), gimple_call_arg_ptr (id->call_stmt, 0) + (gimple_call_num_args (id->call_stmt) - nargs), nargs * sizeof (tree)); } new_call = gimple_build_call_vec (gimple_call_fn (call_stmt), argarray); argarray.release (); /* Copy all GIMPLE_CALL flags, location and block, except GF_CALL_VA_ARG_PACK. */ gimple_call_copy_flags (new_call, call_stmt); gimple_call_set_va_arg_pack (new_call, false); gimple_set_location (new_call, gimple_location (stmt)); gimple_set_block (new_call, gimple_block (stmt)); gimple_call_set_lhs (new_call, gimple_call_lhs (call_stmt)); gsi_replace (©_gsi, new_call, false); stmt = new_call; } else if (call_stmt && id->call_stmt && (decl = gimple_call_fndecl (stmt)) && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL && DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_ARG_PACK_LEN) { /* __builtin_va_arg_pack_len () should be replaced by the number of anonymous arguments. */ size_t nargs = gimple_call_num_args (id->call_stmt), i; tree count, p; gimple *new_stmt; for (p = DECL_ARGUMENTS (id->src_fn); p; p = DECL_CHAIN (p)) nargs--; /* For instrumented calls we should ignore bounds. */ for (i = gimple_call_num_args (id->call_stmt) - nargs; i < gimple_call_num_args (id->call_stmt); i++) if (POINTER_BOUNDS_P (gimple_call_arg (id->call_stmt, i))) nargs--; count = build_int_cst (integer_type_node, nargs); new_stmt = gimple_build_assign (gimple_call_lhs (stmt), count); gsi_replace (©_gsi, new_stmt, false); stmt = new_stmt; } else if (call_stmt && id->call_stmt && gimple_call_internal_p (stmt) && gimple_call_internal_fn (stmt) == IFN_TSAN_FUNC_EXIT) { /* Drop TSAN_FUNC_EXIT () internal calls during inlining. */ gsi_remove (©_gsi, false); continue; } /* Statements produced by inlining can be unfolded, especially when we constant propagated some operands. We can't fold them right now for two reasons: 1) folding require SSA_NAME_DEF_STMTs to be correct 2) we can't change function calls to builtins. So we just mark statement for later folding. We mark all new statements, instead just statements that has changed by some nontrivial substitution so even statements made foldable indirectly are updated. If this turns out to be expensive, copy_body can be told to watch for nontrivial changes. */ if (id->statements_to_fold) id->statements_to_fold->add (stmt); /* We're duplicating a CALL_EXPR. Find any corresponding callgraph edges and update or duplicate them. */ if (gcall *call_stmt = dyn_cast (stmt)) { struct cgraph_edge *edge; switch (id->transform_call_graph_edges) { case CB_CGE_DUPLICATE: edge = id->src_node->get_edge (orig_stmt); if (edge) { int edge_freq = edge->frequency; int new_freq; struct cgraph_edge *old_edge = edge; edge = edge->clone (id->dst_node, call_stmt, gimple_uid (stmt), REG_BR_PROB_BASE, CGRAPH_FREQ_BASE, true); /* We could also just rescale the frequency, but doing so would introduce roundoff errors and make verifier unhappy. */ new_freq = compute_call_stmt_bb_frequency (id->dst_node->decl, copy_basic_block); /* Speculative calls consist of two edges - direct and indirect. Duplicate the whole thing and distribute frequencies accordingly. */ if (edge->speculative) { struct cgraph_edge *direct, *indirect; struct ipa_ref *ref; gcc_assert (!edge->indirect_unknown_callee); old_edge->speculative_call_info (direct, indirect, ref); indirect = indirect->clone (id->dst_node, call_stmt, gimple_uid (stmt), REG_BR_PROB_BASE, CGRAPH_FREQ_BASE, true); if (old_edge->frequency + indirect->frequency) { edge->frequency = MIN (RDIV ((gcov_type)new_freq * old_edge->frequency, (old_edge->frequency + indirect->frequency)), CGRAPH_FREQ_MAX); indirect->frequency = MIN (RDIV ((gcov_type)new_freq * indirect->frequency, (old_edge->frequency + indirect->frequency)), CGRAPH_FREQ_MAX); } id->dst_node->clone_reference (ref, stmt); } else { edge->frequency = new_freq; if (dump_file && profile_status_for_fn (cfun) != PROFILE_ABSENT && (edge_freq > edge->frequency + 10 || edge_freq < edge->frequency - 10)) { fprintf (dump_file, "Edge frequency estimated by " "cgraph %i diverge from inliner's estimate %i\n", edge_freq, edge->frequency); fprintf (dump_file, "Orig bb: %i, orig bb freq %i, new bb freq %i\n", bb->index, bb->frequency, copy_basic_block->frequency); } } } break; case CB_CGE_MOVE_CLONES: id->dst_node->set_call_stmt_including_clones (orig_stmt, call_stmt); edge = id->dst_node->get_edge (stmt); break; case CB_CGE_MOVE: edge = id->dst_node->get_edge (orig_stmt); if (edge) edge->set_call_stmt (call_stmt); break; default: gcc_unreachable (); } /* Constant propagation on argument done during inlining may create new direct call. Produce an edge for it. */ if ((!edge || (edge->indirect_inlining_edge && id->transform_call_graph_edges == CB_CGE_MOVE_CLONES)) && id->dst_node->definition && (fn = gimple_call_fndecl (stmt)) != NULL) { struct cgraph_node *dest = cgraph_node::get_create (fn); /* We have missing edge in the callgraph. This can happen when previous inlining turned an indirect call into a direct call by constant propagating arguments or we are producing dead clone (for further cloning). In all other cases we hit a bug (incorrect node sharing is the most common reason for missing edges). */ gcc_assert (!dest->definition || dest->address_taken || !id->src_node->definition || !id->dst_node->definition); if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES) id->dst_node->create_edge_including_clones (dest, orig_stmt, call_stmt, bb->count, compute_call_stmt_bb_frequency (id->dst_node->decl, copy_basic_block), CIF_ORIGINALLY_INDIRECT_CALL); else id->dst_node->create_edge (dest, call_stmt, bb->count, compute_call_stmt_bb_frequency (id->dst_node->decl, copy_basic_block))->inline_failed = CIF_ORIGINALLY_INDIRECT_CALL; if (dump_file) { fprintf (dump_file, "Created new direct edge to %s\n", dest->name ()); } } notice_special_calls (as_a (stmt)); } maybe_duplicate_eh_stmt_fn (cfun, stmt, id->src_cfun, orig_stmt, id->eh_map, id->eh_lp_nr); gsi_next (©_gsi); } while (!gsi_end_p (copy_gsi)); copy_gsi = gsi_last_bb (copy_basic_block); } return copy_basic_block; } /* Inserting Single Entry Multiple Exit region in SSA form into code in SSA form is quite easy, since dominator relationship for old basic blocks does not change. There is however exception where inlining might change dominator relation across EH edges from basic block within inlined functions destinating to landing pads in function we inline into. The function fills in PHI_RESULTs of such PHI nodes if they refer to gimple regs. Otherwise, the function mark PHI_RESULT of such PHI nodes for renaming. For non-gimple regs, renaming is safe: the EH edges are abnormal and SSA_NAME_OCCURS_IN_ABNORMAL_PHI must be set, and this means that there will be no overlapping live ranges for the underlying symbol. This might change in future if we allow redirecting of EH edges and we might want to change way build CFG pre-inlining to include all the possible edges then. */ static void update_ssa_across_abnormal_edges (basic_block bb, basic_block ret_bb, bool can_throw, bool nonlocal_goto) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) if (!e->dest->aux || ((basic_block)e->dest->aux)->index == ENTRY_BLOCK) { gphi *phi; gphi_iterator si; if (!nonlocal_goto) gcc_assert (e->flags & EDGE_EH); if (!can_throw) gcc_assert (!(e->flags & EDGE_EH)); for (si = gsi_start_phis (e->dest); !gsi_end_p (si); gsi_next (&si)) { edge re; phi = si.phi (); /* For abnormal goto/call edges the receiver can be the ENTRY_BLOCK. Do not assert this cannot happen. */ gcc_assert ((e->flags & EDGE_EH) || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi))); re = find_edge (ret_bb, e->dest); gcc_checking_assert (re); gcc_assert ((re->flags & (EDGE_EH | EDGE_ABNORMAL)) == (e->flags & (EDGE_EH | EDGE_ABNORMAL))); SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e), USE_FROM_PTR (PHI_ARG_DEF_PTR_FROM_EDGE (phi, re))); } } } /* Copy edges from BB into its copy constructed earlier, scale profile accordingly. Edges will be taken care of later. Assume aux pointers to point to the copies of each BB. Return true if any debug stmts are left after a statement that must end the basic block. */ static bool copy_edges_for_bb (basic_block bb, gcov_type count_scale, basic_block ret_bb, basic_block abnormal_goto_dest) { basic_block new_bb = (basic_block) bb->aux; edge_iterator ei; edge old_edge; gimple_stmt_iterator si; int flags; bool need_debug_cleanup = false; /* Use the indices from the original blocks to create edges for the new ones. */ FOR_EACH_EDGE (old_edge, ei, bb->succs) if (!(old_edge->flags & EDGE_EH)) { edge new_edge; flags = old_edge->flags; /* Return edges do get a FALLTHRU flag when the get inlined. */ if (old_edge->dest->index == EXIT_BLOCK && !(old_edge->flags & (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE|EDGE_FAKE)) && old_edge->dest->aux != EXIT_BLOCK_PTR_FOR_FN (cfun)) flags |= EDGE_FALLTHRU; new_edge = make_edge (new_bb, (basic_block) old_edge->dest->aux, flags); new_edge->count = apply_scale (old_edge->count, count_scale); new_edge->probability = old_edge->probability; } if (bb->index == ENTRY_BLOCK || bb->index == EXIT_BLOCK) return false; for (si = gsi_start_bb (new_bb); !gsi_end_p (si);) { gimple *copy_stmt; bool can_throw, nonlocal_goto; copy_stmt = gsi_stmt (si); if (!is_gimple_debug (copy_stmt)) update_stmt (copy_stmt); /* Do this before the possible split_block. */ gsi_next (&si); /* If this tree could throw an exception, there are two cases where we need to add abnormal edge(s): the tree wasn't in a region and there is a "current region" in the caller; or the original tree had EH edges. In both cases split the block after the tree, and add abnormal edge(s) as needed; we need both those from the callee and the caller. We check whether the copy can throw, because the const propagation can change an INDIRECT_REF which throws into a COMPONENT_REF which doesn't. If the copy can throw, the original could also throw. */ can_throw = stmt_can_throw_internal (copy_stmt); nonlocal_goto = (stmt_can_make_abnormal_goto (copy_stmt) && !computed_goto_p (copy_stmt)); if (can_throw || nonlocal_goto) { if (!gsi_end_p (si)) { while (!gsi_end_p (si) && is_gimple_debug (gsi_stmt (si))) gsi_next (&si); if (gsi_end_p (si)) need_debug_cleanup = true; } if (!gsi_end_p (si)) /* Note that bb's predecessor edges aren't necessarily right at this point; split_block doesn't care. */ { edge e = split_block (new_bb, copy_stmt); new_bb = e->dest; new_bb->aux = e->src->aux; si = gsi_start_bb (new_bb); } } if (gimple_code (copy_stmt) == GIMPLE_EH_DISPATCH) make_eh_dispatch_edges (as_a (copy_stmt)); else if (can_throw) make_eh_edges (copy_stmt); /* If the call we inline cannot make abnormal goto do not add additional abnormal edges but only retain those already present in the original function body. */ if (abnormal_goto_dest == NULL) nonlocal_goto = false; if (nonlocal_goto) { basic_block copy_stmt_bb = gimple_bb (copy_stmt); if (get_abnormal_succ_dispatcher (copy_stmt_bb)) nonlocal_goto = false; /* ABNORMAL_DISPATCHER (1) is for longjmp/setjmp or nonlocal gotos in OpenMP regions which aren't allowed to be left abnormally. So, no need to add abnormal edge in that case. */ else if (is_gimple_call (copy_stmt) && gimple_call_internal_p (copy_stmt) && (gimple_call_internal_fn (copy_stmt) == IFN_ABNORMAL_DISPATCHER) && gimple_call_arg (copy_stmt, 0) == boolean_true_node) nonlocal_goto = false; else make_edge (copy_stmt_bb, abnormal_goto_dest, EDGE_ABNORMAL); } if ((can_throw || nonlocal_goto) && gimple_in_ssa_p (cfun)) update_ssa_across_abnormal_edges (gimple_bb (copy_stmt), ret_bb, can_throw, nonlocal_goto); } return need_debug_cleanup; } /* Copy the PHIs. All blocks and edges are copied, some blocks was possibly split and new outgoing EH edges inserted. BB points to the block of original function and AUX pointers links the original and newly copied blocks. */ static void copy_phis_for_bb (basic_block bb, copy_body_data *id) { basic_block const new_bb = (basic_block) bb->aux; edge_iterator ei; gphi *phi; gphi_iterator si; edge new_edge; bool inserted = false; for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) { tree res, new_res; gphi *new_phi; phi = si.phi (); res = PHI_RESULT (phi); new_res = res; if (!virtual_operand_p (res)) { walk_tree (&new_res, copy_tree_body_r, id, NULL); new_phi = create_phi_node (new_res, new_bb); FOR_EACH_EDGE (new_edge, ei, new_bb->preds) { edge old_edge = find_edge ((basic_block) new_edge->src->aux, bb); tree arg; tree new_arg; edge_iterator ei2; location_t locus; /* When doing partial cloning, we allow PHIs on the entry block as long as all the arguments are the same. Find any input edge to see argument to copy. */ if (!old_edge) FOR_EACH_EDGE (old_edge, ei2, bb->preds) if (!old_edge->src->aux) break; arg = PHI_ARG_DEF_FROM_EDGE (phi, old_edge); new_arg = arg; walk_tree (&new_arg, copy_tree_body_r, id, NULL); gcc_assert (new_arg); /* With return slot optimization we can end up with non-gimple (foo *)&this->m, fix that here. */ if (TREE_CODE (new_arg) != SSA_NAME && TREE_CODE (new_arg) != FUNCTION_DECL && !is_gimple_val (new_arg)) { gimple_seq stmts = NULL; new_arg = force_gimple_operand (new_arg, &stmts, true, NULL); gsi_insert_seq_on_edge (new_edge, stmts); inserted = true; } locus = gimple_phi_arg_location_from_edge (phi, old_edge); if (LOCATION_BLOCK (locus)) { tree *n; n = id->decl_map->get (LOCATION_BLOCK (locus)); gcc_assert (n); locus = set_block (locus, *n); } else locus = LOCATION_LOCUS (locus); add_phi_arg (new_phi, new_arg, new_edge, locus); } } } /* Commit the delayed edge insertions. */ if (inserted) FOR_EACH_EDGE (new_edge, ei, new_bb->preds) gsi_commit_one_edge_insert (new_edge, NULL); } /* Wrapper for remap_decl so it can be used as a callback. */ static tree remap_decl_1 (tree decl, void *data) { return remap_decl (decl, (copy_body_data *) data); } /* Build struct function and associated datastructures for the new clone NEW_FNDECL to be build. CALLEE_FNDECL is the original. Function changes the cfun to the function of new_fndecl (and current_function_decl too). */ static void initialize_cfun (tree new_fndecl, tree callee_fndecl, gcov_type count) { struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl); gcov_type count_scale; if (!DECL_ARGUMENTS (new_fndecl)) DECL_ARGUMENTS (new_fndecl) = DECL_ARGUMENTS (callee_fndecl); if (!DECL_RESULT (new_fndecl)) DECL_RESULT (new_fndecl) = DECL_RESULT (callee_fndecl); if (ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count) count_scale = GCOV_COMPUTE_SCALE (count, ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count); else count_scale = REG_BR_PROB_BASE; /* Register specific tree functions. */ gimple_register_cfg_hooks (); /* Get clean struct function. */ push_struct_function (new_fndecl); /* We will rebuild these, so just sanity check that they are empty. */ gcc_assert (VALUE_HISTOGRAMS (cfun) == NULL); gcc_assert (cfun->local_decls == NULL); gcc_assert (cfun->cfg == NULL); gcc_assert (cfun->decl == new_fndecl); /* Copy items we preserve during cloning. */ cfun->static_chain_decl = src_cfun->static_chain_decl; cfun->nonlocal_goto_save_area = src_cfun->nonlocal_goto_save_area; cfun->function_end_locus = src_cfun->function_end_locus; cfun->curr_properties = src_cfun->curr_properties; cfun->last_verified = src_cfun->last_verified; cfun->va_list_gpr_size = src_cfun->va_list_gpr_size; cfun->va_list_fpr_size = src_cfun->va_list_fpr_size; cfun->has_nonlocal_label = src_cfun->has_nonlocal_label; cfun->stdarg = src_cfun->stdarg; cfun->after_inlining = src_cfun->after_inlining; cfun->can_throw_non_call_exceptions = src_cfun->can_throw_non_call_exceptions; cfun->can_delete_dead_exceptions = src_cfun->can_delete_dead_exceptions; cfun->returns_struct = src_cfun->returns_struct; cfun->returns_pcc_struct = src_cfun->returns_pcc_struct; init_empty_tree_cfg (); profile_status_for_fn (cfun) = profile_status_for_fn (src_cfun); ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = (ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count * count_scale / REG_BR_PROB_BASE); ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency = ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->frequency; EXIT_BLOCK_PTR_FOR_FN (cfun)->count = (EXIT_BLOCK_PTR_FOR_FN (src_cfun)->count * count_scale / REG_BR_PROB_BASE); EXIT_BLOCK_PTR_FOR_FN (cfun)->frequency = EXIT_BLOCK_PTR_FOR_FN (src_cfun)->frequency; if (src_cfun->eh) init_eh_for_function (); if (src_cfun->gimple_df) { init_tree_ssa (cfun); cfun->gimple_df->in_ssa_p = src_cfun->gimple_df->in_ssa_p; if (cfun->gimple_df->in_ssa_p) init_ssa_operands (cfun); } } /* Helper function for copy_cfg_body. Move debug stmts from the end of NEW_BB to the beginning of successor basic blocks when needed. If the successor has multiple predecessors, reset them, otherwise keep their value. */ static void maybe_move_debug_stmts_to_successors (copy_body_data *id, basic_block new_bb) { edge e; edge_iterator ei; gimple_stmt_iterator si = gsi_last_nondebug_bb (new_bb); if (gsi_end_p (si) || gsi_one_before_end_p (si) || !(stmt_can_throw_internal (gsi_stmt (si)) || stmt_can_make_abnormal_goto (gsi_stmt (si)))) return; FOR_EACH_EDGE (e, ei, new_bb->succs) { gimple_stmt_iterator ssi = gsi_last_bb (new_bb); gimple_stmt_iterator dsi = gsi_after_labels (e->dest); while (is_gimple_debug (gsi_stmt (ssi))) { gimple *stmt = gsi_stmt (ssi); gdebug *new_stmt; tree var; tree value; /* For the last edge move the debug stmts instead of copying them. */ if (ei_one_before_end_p (ei)) { si = ssi; gsi_prev (&ssi); if (!single_pred_p (e->dest) && gimple_debug_bind_p (stmt)) gimple_debug_bind_reset_value (stmt); gsi_remove (&si, false); gsi_insert_before (&dsi, stmt, GSI_SAME_STMT); continue; } if (gimple_debug_bind_p (stmt)) { var = gimple_debug_bind_get_var (stmt); if (single_pred_p (e->dest)) { value = gimple_debug_bind_get_value (stmt); value = unshare_expr (value); } else value = NULL_TREE; new_stmt = gimple_build_debug_bind (var, value, stmt); } else if (gimple_debug_source_bind_p (stmt)) { var = gimple_debug_source_bind_get_var (stmt); value = gimple_debug_source_bind_get_value (stmt); new_stmt = gimple_build_debug_source_bind (var, value, stmt); } else gcc_unreachable (); gsi_insert_before (&dsi, new_stmt, GSI_SAME_STMT); id->debug_stmts.safe_push (new_stmt); gsi_prev (&ssi); } } } /* Make a copy of the sub-loops of SRC_PARENT and place them as siblings of DEST_PARENT. */ static void copy_loops (copy_body_data *id, struct loop *dest_parent, struct loop *src_parent) { struct loop *src_loop = src_parent->inner; while (src_loop) { if (!id->blocks_to_copy || bitmap_bit_p (id->blocks_to_copy, src_loop->header->index)) { struct loop *dest_loop = alloc_loop (); /* Assign the new loop its header and latch and associate those with the new loop. */ dest_loop->header = (basic_block)src_loop->header->aux; dest_loop->header->loop_father = dest_loop; if (src_loop->latch != NULL) { dest_loop->latch = (basic_block)src_loop->latch->aux; dest_loop->latch->loop_father = dest_loop; } /* Copy loop meta-data. */ copy_loop_info (src_loop, dest_loop); /* Finally place it into the loop array and the loop tree. */ place_new_loop (cfun, dest_loop); flow_loop_tree_node_add (dest_parent, dest_loop); dest_loop->safelen = src_loop->safelen; dest_loop->dont_vectorize = src_loop->dont_vectorize; if (src_loop->force_vectorize) { dest_loop->force_vectorize = true; cfun->has_force_vectorize_loops = true; } if (src_loop->simduid) { dest_loop->simduid = remap_decl (src_loop->simduid, id); cfun->has_simduid_loops = true; } /* Recurse. */ copy_loops (id, dest_loop, src_loop); } src_loop = src_loop->next; } } /* Call cgraph_redirect_edge_call_stmt_to_callee on all calls in BB */ void redirect_all_calls (copy_body_data * id, basic_block bb) { gimple_stmt_iterator si; gimple *last = last_stmt (bb); for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) { gimple *stmt = gsi_stmt (si); if (is_gimple_call (stmt)) { struct cgraph_edge *edge = id->dst_node->get_edge (stmt); if (edge) { edge->redirect_call_stmt_to_callee (); if (stmt == last && id->call_stmt && maybe_clean_eh_stmt (stmt)) gimple_purge_dead_eh_edges (bb); } } } } /* Convert estimated frequencies into counts for NODE, scaling COUNT with each bb's frequency. Used when NODE has a 0-weight entry but we are about to inline it into a non-zero count call bb. See the comments for handle_missing_profiles() in predict.c for when this can happen for COMDATs. */ void freqs_to_counts (struct cgraph_node *node, gcov_type count) { basic_block bb; edge_iterator ei; edge e; struct function *fn = DECL_STRUCT_FUNCTION (node->decl); FOR_ALL_BB_FN(bb, fn) { bb->count = apply_scale (count, GCOV_COMPUTE_SCALE (bb->frequency, BB_FREQ_MAX)); FOR_EACH_EDGE (e, ei, bb->succs) e->count = apply_probability (e->src->count, e->probability); } } /* Make a copy of the body of FN so that it can be inserted inline in another function. Walks FN via CFG, returns new fndecl. */ static tree copy_cfg_body (copy_body_data * id, gcov_type count, int frequency_scale, basic_block entry_block_map, basic_block exit_block_map, basic_block new_entry) { tree callee_fndecl = id->src_fn; /* Original cfun for the callee, doesn't change. */ struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl); struct function *cfun_to_copy; basic_block bb; tree new_fndecl = NULL; bool need_debug_cleanup = false; gcov_type count_scale; int last; int incoming_frequency = 0; gcov_type incoming_count = 0; /* This can happen for COMDAT routines that end up with 0 counts despite being called (see the comments for handle_missing_profiles() in predict.c as to why). Apply counts to the blocks in the callee before inlining, using the guessed edge frequencies, so that we don't end up with a 0-count inline body which can confuse downstream optimizations such as function splitting. */ if (!ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count && count) { /* Apply the larger of the call bb count and the total incoming call edge count to the callee. */ gcov_type in_count = 0; struct cgraph_edge *in_edge; for (in_edge = id->src_node->callers; in_edge; in_edge = in_edge->next_caller) in_count += in_edge->count; freqs_to_counts (id->src_node, count > in_count ? count : in_count); } if (ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count) count_scale = GCOV_COMPUTE_SCALE (count, ENTRY_BLOCK_PTR_FOR_FN (src_cfun)->count); else count_scale = REG_BR_PROB_BASE; /* Register specific tree functions. */ gimple_register_cfg_hooks (); /* If we are inlining just region of the function, make sure to connect new entry to ENTRY_BLOCK_PTR_FOR_FN (cfun). Since new entry can be part of loop, we must compute frequency and probability of ENTRY_BLOCK_PTR_FOR_FN (cfun) based on the frequencies and probabilities of edges incoming from nonduplicated region. */ if (new_entry) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, new_entry->preds) if (!e->src->aux) { incoming_frequency += EDGE_FREQUENCY (e); incoming_count += e->count; } incoming_count = apply_scale (incoming_count, count_scale); incoming_frequency = apply_scale ((gcov_type)incoming_frequency, frequency_scale); ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = incoming_count; ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency = incoming_frequency; } /* Must have a CFG here at this point. */ gcc_assert (ENTRY_BLOCK_PTR_FOR_FN (DECL_STRUCT_FUNCTION (callee_fndecl))); cfun_to_copy = id->src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl); ENTRY_BLOCK_PTR_FOR_FN (cfun_to_copy)->aux = entry_block_map; EXIT_BLOCK_PTR_FOR_FN (cfun_to_copy)->aux = exit_block_map; entry_block_map->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun_to_copy); exit_block_map->aux = EXIT_BLOCK_PTR_FOR_FN (cfun_to_copy); /* Duplicate any exception-handling regions. */ if (cfun->eh) id->eh_map = duplicate_eh_regions (cfun_to_copy, NULL, id->eh_lp_nr, remap_decl_1, id); /* Use aux pointers to map the original blocks to copy. */ FOR_EACH_BB_FN (bb, cfun_to_copy) if (!id->blocks_to_copy || bitmap_bit_p (id->blocks_to_copy, bb->index)) { basic_block new_bb = copy_bb (id, bb, frequency_scale, count_scale); bb->aux = new_bb; new_bb->aux = bb; new_bb->loop_father = entry_block_map->loop_father; } last = last_basic_block_for_fn (cfun); /* Now that we've duplicated the blocks, duplicate their edges. */ basic_block abnormal_goto_dest = NULL; if (id->call_stmt && stmt_can_make_abnormal_goto (id->call_stmt)) { gimple_stmt_iterator gsi = gsi_for_stmt (id->call_stmt); bb = gimple_bb (id->call_stmt); gsi_next (&gsi); if (gsi_end_p (gsi)) abnormal_goto_dest = get_abnormal_succ_dispatcher (bb); } FOR_ALL_BB_FN (bb, cfun_to_copy) if (!id->blocks_to_copy || (bb->index > 0 && bitmap_bit_p (id->blocks_to_copy, bb->index))) need_debug_cleanup |= copy_edges_for_bb (bb, count_scale, exit_block_map, abnormal_goto_dest); if (new_entry) { edge e = make_edge (entry_block_map, (basic_block)new_entry->aux, EDGE_FALLTHRU); e->probability = REG_BR_PROB_BASE; e->count = incoming_count; } /* Duplicate the loop tree, if available and wanted. */ if (loops_for_fn (src_cfun) != NULL && current_loops != NULL) { copy_loops (id, entry_block_map->loop_father, get_loop (src_cfun, 0)); /* Defer to cfgcleanup to update loop-father fields of basic-blocks. */ loops_state_set (LOOPS_NEED_FIXUP); } /* If the loop tree in the source function needed fixup, mark the destination loop tree for fixup, too. */ if (loops_for_fn (src_cfun)->state & LOOPS_NEED_FIXUP) loops_state_set (LOOPS_NEED_FIXUP); if (gimple_in_ssa_p (cfun)) FOR_ALL_BB_FN (bb, cfun_to_copy) if (!id->blocks_to_copy || (bb->index > 0 && bitmap_bit_p (id->blocks_to_copy, bb->index))) copy_phis_for_bb (bb, id); FOR_ALL_BB_FN (bb, cfun_to_copy) if (bb->aux) { if (need_debug_cleanup && bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK) maybe_move_debug_stmts_to_successors (id, (basic_block) bb->aux); /* Update call edge destinations. This can not be done before loop info is updated, because we may split basic blocks. */ if (id->transform_call_graph_edges == CB_CGE_DUPLICATE && bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK) redirect_all_calls (id, (basic_block)bb->aux); ((basic_block)bb->aux)->aux = NULL; bb->aux = NULL; } /* Zero out AUX fields of newly created block during EH edge insertion. */ for (; last < last_basic_block_for_fn (cfun); last++) { if (need_debug_cleanup) maybe_move_debug_stmts_to_successors (id, BASIC_BLOCK_FOR_FN (cfun, last)); BASIC_BLOCK_FOR_FN (cfun, last)->aux = NULL; /* Update call edge destinations. This can not be done before loop info is updated, because we may split basic blocks. */ if (id->transform_call_graph_edges == CB_CGE_DUPLICATE) redirect_all_calls (id, BASIC_BLOCK_FOR_FN (cfun, last)); } entry_block_map->aux = NULL; exit_block_map->aux = NULL; if (id->eh_map) { delete id->eh_map; id->eh_map = NULL; } if (id->dependence_map) { delete id->dependence_map; id->dependence_map = NULL; } return new_fndecl; } /* Copy the debug STMT using ID. We deal with these statements in a special way: if any variable in their VALUE expression wasn't remapped yet, we won't remap it, because that would get decl uids out of sync, causing codegen differences between -g and -g0. If this arises, we drop the VALUE expression altogether. */ static void copy_debug_stmt (gdebug *stmt, copy_body_data *id) { tree t, *n; struct walk_stmt_info wi; if (gimple_block (stmt)) { n = id->decl_map->get (gimple_block (stmt)); gimple_set_block (stmt, n ? *n : id->block); } /* Remap all the operands in COPY. */ memset (&wi, 0, sizeof (wi)); wi.info = id; processing_debug_stmt = 1; if (gimple_debug_source_bind_p (stmt)) t = gimple_debug_source_bind_get_var (stmt); else t = gimple_debug_bind_get_var (stmt); if (TREE_CODE (t) == PARM_DECL && id->debug_map && (n = id->debug_map->get (t))) { gcc_assert (VAR_P (*n)); t = *n; } else if (VAR_P (t) && !is_global_var (t) && !id->decl_map->get (t)) /* T is a non-localized variable. */; else walk_tree (&t, remap_gimple_op_r, &wi, NULL); if (gimple_debug_bind_p (stmt)) { gimple_debug_bind_set_var (stmt, t); if (gimple_debug_bind_has_value_p (stmt)) walk_tree (gimple_debug_bind_get_value_ptr (stmt), remap_gimple_op_r, &wi, NULL); /* Punt if any decl couldn't be remapped. */ if (processing_debug_stmt < 0) gimple_debug_bind_reset_value (stmt); } else if (gimple_debug_source_bind_p (stmt)) { gimple_debug_source_bind_set_var (stmt, t); /* When inlining and source bind refers to one of the optimized away parameters, change the source bind into normal debug bind referring to the corresponding DEBUG_EXPR_DECL that should have been bound before the call stmt. */ t = gimple_debug_source_bind_get_value (stmt); if (t != NULL_TREE && TREE_CODE (t) == PARM_DECL && id->call_stmt) { vec **debug_args = decl_debug_args_lookup (id->src_fn); unsigned int i; if (debug_args != NULL) { for (i = 0; i < vec_safe_length (*debug_args); i += 2) if ((**debug_args)[i] == DECL_ORIGIN (t) && TREE_CODE ((**debug_args)[i + 1]) == DEBUG_EXPR_DECL) { t = (**debug_args)[i + 1]; stmt->subcode = GIMPLE_DEBUG_BIND; gimple_debug_bind_set_value (stmt, t); break; } } } if (gimple_debug_source_bind_p (stmt)) walk_tree (gimple_debug_source_bind_get_value_ptr (stmt), remap_gimple_op_r, &wi, NULL); } processing_debug_stmt = 0; update_stmt (stmt); } /* Process deferred debug stmts. In order to give values better odds of being successfully remapped, we delay the processing of debug stmts until all other stmts that might require remapping are processed. */ static void copy_debug_stmts (copy_body_data *id) { size_t i; gdebug *stmt; if (!id->debug_stmts.exists ()) return; FOR_EACH_VEC_ELT (id->debug_stmts, i, stmt) copy_debug_stmt (stmt, id); id->debug_stmts.release (); } /* Make a copy of the body of SRC_FN so that it can be inserted inline in another function. */ static tree copy_tree_body (copy_body_data *id) { tree fndecl = id->src_fn; tree body = DECL_SAVED_TREE (fndecl); walk_tree (&body, copy_tree_body_r, id, NULL); return body; } /* Make a copy of the body of FN so that it can be inserted inline in another function. */ static tree copy_body (copy_body_data *id, gcov_type count, int frequency_scale, basic_block entry_block_map, basic_block exit_block_map, basic_block new_entry) { tree fndecl = id->src_fn; tree body; /* If this body has a CFG, walk CFG and copy. */ gcc_assert (ENTRY_BLOCK_PTR_FOR_FN (DECL_STRUCT_FUNCTION (fndecl))); body = copy_cfg_body (id, count, frequency_scale, entry_block_map, exit_block_map, new_entry); copy_debug_stmts (id); return body; } /* Return true if VALUE is an ADDR_EXPR of an automatic variable defined in function FN, or of a data member thereof. */ static bool self_inlining_addr_expr (tree value, tree fn) { tree var; if (TREE_CODE (value) != ADDR_EXPR) return false; var = get_base_address (TREE_OPERAND (value, 0)); return var && auto_var_in_fn_p (var, fn); } /* Append to BB a debug annotation that binds VAR to VALUE, inheriting lexical block and line number information from base_stmt, if given, or from the last stmt of the block otherwise. */ static gimple * insert_init_debug_bind (copy_body_data *id, basic_block bb, tree var, tree value, gimple *base_stmt) { gimple *note; gimple_stmt_iterator gsi; tree tracked_var; if (!gimple_in_ssa_p (id->src_cfun)) return NULL; if (!opt_for_fn (id->dst_fn, flag_var_tracking_assignments)) return NULL; tracked_var = target_for_debug_bind (var); if (!tracked_var) return NULL; if (bb) { gsi = gsi_last_bb (bb); if (!base_stmt && !gsi_end_p (gsi)) base_stmt = gsi_stmt (gsi); } note = gimple_build_debug_bind (tracked_var, unshare_expr (value), base_stmt); if (bb) { if (!gsi_end_p (gsi)) gsi_insert_after (&gsi, note, GSI_SAME_STMT); else gsi_insert_before (&gsi, note, GSI_SAME_STMT); } return note; } static void insert_init_stmt (copy_body_data *id, basic_block bb, gimple *init_stmt) { /* If VAR represents a zero-sized variable, it's possible that the assignment statement may result in no gimple statements. */ if (init_stmt) { gimple_stmt_iterator si = gsi_last_bb (bb); /* We can end up with init statements that store to a non-register from a rhs with a conversion. Handle that here by forcing the rhs into a temporary. gimple_regimplify_operands is not prepared to do this for us. */ if (!is_gimple_debug (init_stmt) && !is_gimple_reg (gimple_assign_lhs (init_stmt)) && is_gimple_reg_type (TREE_TYPE (gimple_assign_lhs (init_stmt))) && gimple_assign_rhs_class (init_stmt) == GIMPLE_UNARY_RHS) { tree rhs = build1 (gimple_assign_rhs_code (init_stmt), gimple_expr_type (init_stmt), gimple_assign_rhs1 (init_stmt)); rhs = force_gimple_operand_gsi (&si, rhs, true, NULL_TREE, false, GSI_NEW_STMT); gimple_assign_set_rhs_code (init_stmt, TREE_CODE (rhs)); gimple_assign_set_rhs1 (init_stmt, rhs); } gsi_insert_after (&si, init_stmt, GSI_NEW_STMT); gimple_regimplify_operands (init_stmt, &si); if (!is_gimple_debug (init_stmt)) { tree def = gimple_assign_lhs (init_stmt); insert_init_debug_bind (id, bb, def, def, init_stmt); } } } /* Initialize parameter P with VALUE. If needed, produce init statement at the end of BB. When BB is NULL, we return init statement to be output later. */ static gimple * setup_one_parameter (copy_body_data *id, tree p, tree value, tree fn, basic_block bb, tree *vars) { gimple *init_stmt = NULL; tree var; tree rhs = value; tree def = (gimple_in_ssa_p (cfun) ? ssa_default_def (id->src_cfun, p) : NULL); if (value && value != error_mark_node && !useless_type_conversion_p (TREE_TYPE (p), TREE_TYPE (value))) { /* If we can match up types by promotion/demotion do so. */ if (fold_convertible_p (TREE_TYPE (p), value)) rhs = fold_convert (TREE_TYPE (p), value); else { /* ??? For valid programs we should not end up here. Still if we end up with truly mismatched types here, fall back to using a VIEW_CONVERT_EXPR or a literal zero to not leak invalid GIMPLE to the following passes. */ if (!is_gimple_reg_type (TREE_TYPE (value)) || TYPE_SIZE (TREE_TYPE (p)) == TYPE_SIZE (TREE_TYPE (value))) rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (p), value); else rhs = build_zero_cst (TREE_TYPE (p)); } } /* Make an equivalent VAR_DECL. Note that we must NOT remap the type here since the type of this decl must be visible to the calling function. */ var = copy_decl_to_var (p, id); /* Declare this new variable. */ DECL_CHAIN (var) = *vars; *vars = var; /* Make gimplifier happy about this variable. */ DECL_SEEN_IN_BIND_EXPR_P (var) = 1; /* If the parameter is never assigned to, has no SSA_NAMEs created, we would not need to create a new variable here at all, if it weren't for debug info. Still, we can just use the argument value. */ if (TREE_READONLY (p) && !TREE_ADDRESSABLE (p) && value && !TREE_SIDE_EFFECTS (value) && !def) { /* We may produce non-gimple trees by adding NOPs or introduce invalid sharing when operand is not really constant. It is not big deal to prohibit constant propagation here as we will constant propagate in DOM1 pass anyway. */ if (is_gimple_min_invariant (value) && useless_type_conversion_p (TREE_TYPE (p), TREE_TYPE (value)) /* We have to be very careful about ADDR_EXPR. Make sure the base variable isn't a local variable of the inlined function, e.g., when doing recursive inlining, direct or mutually-recursive or whatever, which is why we don't just test whether fn == current_function_decl. */ && ! self_inlining_addr_expr (value, fn)) { insert_decl_map (id, p, value); insert_debug_decl_map (id, p, var); return insert_init_debug_bind (id, bb, var, value, NULL); } } /* Register the VAR_DECL as the equivalent for the PARM_DECL; that way, when the PARM_DECL is encountered, it will be automatically replaced by the VAR_DECL. */ insert_decl_map (id, p, var); /* Even if P was TREE_READONLY, the new VAR should not be. In the original code, we would have constructed a temporary, and then the function body would have never changed the value of P. However, now, we will be constructing VAR directly. The constructor body may change its value multiple times as it is being constructed. Therefore, it must not be TREE_READONLY; the back-end assumes that TREE_READONLY variable is assigned to only once. */ if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (p))) TREE_READONLY (var) = 0; /* If there is no setup required and we are in SSA, take the easy route replacing all SSA names representing the function parameter by the SSA name passed to function. We need to construct map for the variable anyway as it might be used in different SSA names when parameter is set in function. Do replacement at -O0 for const arguments replaced by constant. This is important for builtin_constant_p and other construct requiring constant argument to be visible in inlined function body. */ if (gimple_in_ssa_p (cfun) && rhs && def && is_gimple_reg (p) && (optimize || (TREE_READONLY (p) && is_gimple_min_invariant (rhs))) && (TREE_CODE (rhs) == SSA_NAME || is_gimple_min_invariant (rhs)) && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) { insert_decl_map (id, def, rhs); return insert_init_debug_bind (id, bb, var, rhs, NULL); } /* If the value of argument is never used, don't care about initializing it. */ if (optimize && gimple_in_ssa_p (cfun) && !def && is_gimple_reg (p)) { gcc_assert (!value || !TREE_SIDE_EFFECTS (value)); return insert_init_debug_bind (id, bb, var, rhs, NULL); } /* Initialize this VAR_DECL from the equivalent argument. Convert the argument to the proper type in case it was promoted. */ if (value) { if (rhs == error_mark_node) { insert_decl_map (id, p, var); return insert_init_debug_bind (id, bb, var, rhs, NULL); } STRIP_USELESS_TYPE_CONVERSION (rhs); /* If we are in SSA form properly remap the default definition or assign to a dummy SSA name if the parameter is unused and we are not optimizing. */ if (gimple_in_ssa_p (cfun) && is_gimple_reg (p)) { if (def) { def = remap_ssa_name (def, id); init_stmt = gimple_build_assign (def, rhs); SSA_NAME_IS_DEFAULT_DEF (def) = 0; set_ssa_default_def (cfun, var, NULL); } else if (!optimize) { def = make_ssa_name (var); init_stmt = gimple_build_assign (def, rhs); } } else init_stmt = gimple_build_assign (var, rhs); if (bb && init_stmt) insert_init_stmt (id, bb, init_stmt); } return init_stmt; } /* Generate code to initialize the parameters of the function at the top of the stack in ID from the GIMPLE_CALL STMT. */ static void initialize_inlined_parameters (copy_body_data *id, gimple *stmt, tree fn, basic_block bb) { tree parms; size_t i; tree p; tree vars = NULL_TREE; tree static_chain = gimple_call_chain (stmt); /* Figure out what the parameters are. */ parms = DECL_ARGUMENTS (fn); /* Loop through the parameter declarations, replacing each with an equivalent VAR_DECL, appropriately initialized. */ for (p = parms, i = 0; p; p = DECL_CHAIN (p), i++) { tree val; val = i < gimple_call_num_args (stmt) ? gimple_call_arg (stmt, i) : NULL; setup_one_parameter (id, p, val, fn, bb, &vars); } /* After remapping parameters remap their types. This has to be done in a second loop over all parameters to appropriately remap variable sized arrays when the size is specified in a parameter following the array. */ for (p = parms, i = 0; p; p = DECL_CHAIN (p), i++) { tree *varp = id->decl_map->get (p); if (varp && VAR_P (*varp)) { tree def = (gimple_in_ssa_p (cfun) && is_gimple_reg (p) ? ssa_default_def (id->src_cfun, p) : NULL); tree var = *varp; TREE_TYPE (var) = remap_type (TREE_TYPE (var), id); /* Also remap the default definition if it was remapped to the default definition of the parameter replacement by the parameter setup. */ if (def) { tree *defp = id->decl_map->get (def); if (defp && TREE_CODE (*defp) == SSA_NAME && SSA_NAME_VAR (*defp) == var) TREE_TYPE (*defp) = TREE_TYPE (var); } } } /* Initialize the static chain. */ p = DECL_STRUCT_FUNCTION (fn)->static_chain_decl; gcc_assert (fn != current_function_decl); if (p) { /* No static chain? Seems like a bug in tree-nested.c. */ gcc_assert (static_chain); setup_one_parameter (id, p, static_chain, fn, bb, &vars); } declare_inline_vars (id->block, vars); } /* Declare a return variable to replace the RESULT_DECL for the function we are calling. An appropriate DECL_STMT is returned. The USE_STMT is filled to contain a use of the declaration to indicate the return value of the function. RETURN_SLOT, if non-null is place where to store the result. It is set only for CALL_EXPR_RETURN_SLOT_OPT. MODIFY_DEST, if non-null, was the LHS of the MODIFY_EXPR to which this call is the RHS. RETURN_BOUNDS holds a destination for returned bounds. The return value is a (possibly null) value that holds the result as seen by the caller. */ static tree declare_return_variable (copy_body_data *id, tree return_slot, tree modify_dest, tree return_bounds, basic_block entry_bb) { tree callee = id->src_fn; tree result = DECL_RESULT (callee); tree callee_type = TREE_TYPE (result); tree caller_type; tree var, use; /* Handle type-mismatches in the function declaration return type vs. the call expression. */ if (modify_dest) caller_type = TREE_TYPE (modify_dest); else caller_type = TREE_TYPE (TREE_TYPE (callee)); /* We don't need to do anything for functions that don't return anything. */ if (VOID_TYPE_P (callee_type)) return NULL_TREE; /* If there was a return slot, then the return value is the dereferenced address of that object. */ if (return_slot) { /* The front end shouldn't have used both return_slot and a modify expression. */ gcc_assert (!modify_dest); if (DECL_BY_REFERENCE (result)) { tree return_slot_addr = build_fold_addr_expr (return_slot); STRIP_USELESS_TYPE_CONVERSION (return_slot_addr); /* We are going to construct *&return_slot and we can't do that for variables believed to be not addressable. FIXME: This check possibly can match, because values returned via return slot optimization are not believed to have address taken by alias analysis. */ gcc_assert (TREE_CODE (return_slot) != SSA_NAME); var = return_slot_addr; } else { var = return_slot; gcc_assert (TREE_CODE (var) != SSA_NAME); if (TREE_ADDRESSABLE (result)) mark_addressable (var); } if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE) && !DECL_GIMPLE_REG_P (result) && DECL_P (var)) DECL_GIMPLE_REG_P (var) = 0; use = NULL; goto done; } /* All types requiring non-trivial constructors should have been handled. */ gcc_assert (!TREE_ADDRESSABLE (callee_type)); /* Attempt to avoid creating a new temporary variable. */ if (modify_dest && TREE_CODE (modify_dest) != SSA_NAME) { bool use_it = false; /* We can't use MODIFY_DEST if there's type promotion involved. */ if (!useless_type_conversion_p (callee_type, caller_type)) use_it = false; /* ??? If we're assigning to a variable sized type, then we must reuse the destination variable, because we've no good way to create variable sized temporaries at this point. */ else if (TREE_CODE (TYPE_SIZE_UNIT (caller_type)) != INTEGER_CST) use_it = true; /* If the callee cannot possibly modify MODIFY_DEST, then we can reuse it as the result of the call directly. Don't do this if it would promote MODIFY_DEST to addressable. */ else if (TREE_ADDRESSABLE (result)) use_it = false; else { tree base_m = get_base_address (modify_dest); /* If the base isn't a decl, then it's a pointer, and we don't know where that's going to go. */ if (!DECL_P (base_m)) use_it = false; else if (is_global_var (base_m)) use_it = false; else if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE) && !DECL_GIMPLE_REG_P (result) && DECL_GIMPLE_REG_P (base_m)) use_it = false; else if (!TREE_ADDRESSABLE (base_m)) use_it = true; } if (use_it) { var = modify_dest; use = NULL; goto done; } } gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (callee_type)) == INTEGER_CST); var = copy_result_decl_to_var (result, id); DECL_SEEN_IN_BIND_EXPR_P (var) = 1; /* Do not have the rest of GCC warn about this variable as it should not be visible to the user. */ TREE_NO_WARNING (var) = 1; declare_inline_vars (id->block, var); /* Build the use expr. If the return type of the function was promoted, convert it back to the expected type. */ use = var; if (!useless_type_conversion_p (caller_type, TREE_TYPE (var))) { /* If we can match up types by promotion/demotion do so. */ if (fold_convertible_p (caller_type, var)) use = fold_convert (caller_type, var); else { /* ??? For valid programs we should not end up here. Still if we end up with truly mismatched types here, fall back to using a MEM_REF to not leak invalid GIMPLE to the following passes. */ /* Prevent var from being written into SSA form. */ if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE || TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE) DECL_GIMPLE_REG_P (var) = false; else if (is_gimple_reg_type (TREE_TYPE (var))) TREE_ADDRESSABLE (var) = true; use = fold_build2 (MEM_REF, caller_type, build_fold_addr_expr (var), build_int_cst (ptr_type_node, 0)); } } STRIP_USELESS_TYPE_CONVERSION (use); if (DECL_BY_REFERENCE (result)) { TREE_ADDRESSABLE (var) = 1; var = build_fold_addr_expr (var); } done: /* Register the VAR_DECL as the equivalent for the RESULT_DECL; that way, when the RESULT_DECL is encountered, it will be automatically replaced by the VAR_DECL. When returning by reference, ensure that RESULT_DECL remaps to gimple_val. */ if (DECL_BY_REFERENCE (result) && !is_gimple_val (var)) { tree temp = create_tmp_var (TREE_TYPE (result), "retvalptr"); insert_decl_map (id, result, temp); /* When RESULT_DECL is in SSA form, we need to remap and initialize it's default_def SSA_NAME. */ if (gimple_in_ssa_p (id->src_cfun) && is_gimple_reg (result)) { temp = make_ssa_name (temp); insert_decl_map (id, ssa_default_def (id->src_cfun, result), temp); } insert_init_stmt (id, entry_bb, gimple_build_assign (temp, var)); } else insert_decl_map (id, result, var); /* Remember this so we can ignore it in remap_decls. */ id->retvar = var; /* If returned bounds are used, then make var for them. */ if (return_bounds) { tree bndtemp = create_tmp_var (pointer_bounds_type_node, "retbnd"); DECL_SEEN_IN_BIND_EXPR_P (bndtemp) = 1; TREE_NO_WARNING (bndtemp) = 1; declare_inline_vars (id->block, bndtemp); id->retbnd = bndtemp; insert_init_stmt (id, entry_bb, gimple_build_assign (bndtemp, chkp_get_zero_bounds_var ())); } return use; } /* Determine if the function can be copied. If so return NULL. If not return a string describng the reason for failure. */ const char * copy_forbidden (struct function *fun) { const char *reason = fun->cannot_be_copied_reason; /* Only examine the function once. */ if (fun->cannot_be_copied_set) return reason; /* We cannot copy a function that receives a non-local goto because we cannot remap the destination label used in the function that is performing the non-local goto. */ /* ??? Actually, this should be possible, if we work at it. No doubt there's just a handful of places that simply assume it doesn't happen and don't substitute properly. */ if (fun->has_nonlocal_label) { reason = G_("function %q+F can never be copied " "because it receives a non-local goto"); goto fail; } if (fun->has_forced_label_in_static) { reason = G_("function %q+F can never be copied because it saves " "address of local label in a static variable"); goto fail; } fail: fun->cannot_be_copied_reason = reason; fun->cannot_be_copied_set = true; return reason; } static const char *inline_forbidden_reason; /* A callback for walk_gimple_seq to handle statements. Returns non-null iff a function can not be inlined. Also sets the reason why. */ static tree inline_forbidden_p_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p, struct walk_stmt_info *wip) { tree fn = (tree) wip->info; tree t; gimple *stmt = gsi_stmt (*gsi); switch (gimple_code (stmt)) { case GIMPLE_CALL: /* Refuse to inline alloca call unless user explicitly forced so as this may change program's memory overhead drastically when the function using alloca is called in loop. In GCC present in SPEC2000 inlining into schedule_block cause it to require 2GB of RAM instead of 256MB. Don't do so for alloca calls emitted for VLA objects as those can't cause unbounded growth (they're always wrapped inside stack_save/stack_restore regions. */ if (gimple_maybe_alloca_call_p (stmt) && !gimple_call_alloca_for_var_p (as_a (stmt)) && !lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn))) { inline_forbidden_reason = G_("function %q+F can never be inlined because it uses " "alloca (override using the always_inline attribute)"); *handled_ops_p = true; return fn; } t = gimple_call_fndecl (stmt); if (t == NULL_TREE) break; /* We cannot inline functions that call setjmp. */ if (setjmp_call_p (t)) { inline_forbidden_reason = G_("function %q+F can never be inlined because it uses setjmp"); *handled_ops_p = true; return t; } if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL) switch (DECL_FUNCTION_CODE (t)) { /* We cannot inline functions that take a variable number of arguments. */ case BUILT_IN_VA_START: case BUILT_IN_NEXT_ARG: case BUILT_IN_VA_END: inline_forbidden_reason = G_("function %q+F can never be inlined because it " "uses variable argument lists"); *handled_ops_p = true; return t; case BUILT_IN_LONGJMP: /* We can't inline functions that call __builtin_longjmp at all. The non-local goto machinery really requires the destination be in a different function. If we allow the function calling __builtin_longjmp to be inlined into the function calling __builtin_setjmp, Things will Go Awry. */ inline_forbidden_reason = G_("function %q+F can never be inlined because " "it uses setjmp-longjmp exception handling"); *handled_ops_p = true; return t; case BUILT_IN_NONLOCAL_GOTO: /* Similarly. */ inline_forbidden_reason = G_("function %q+F can never be inlined because " "it uses non-local goto"); *handled_ops_p = true; return t; case BUILT_IN_RETURN: case BUILT_IN_APPLY_ARGS: /* If a __builtin_apply_args caller would be inlined, it would be saving arguments of the function it has been inlined into. Similarly __builtin_return would return from the function the inline has been inlined into. */ inline_forbidden_reason = G_("function %q+F can never be inlined because " "it uses __builtin_return or __builtin_apply_args"); *handled_ops_p = true; return t; default: break; } break; case GIMPLE_GOTO: t = gimple_goto_dest (stmt); /* We will not inline a function which uses computed goto. The addresses of its local labels, which may be tucked into global storage, are of course not constant across instantiations, which causes unexpected behavior. */ if (TREE_CODE (t) != LABEL_DECL) { inline_forbidden_reason = G_("function %q+F can never be inlined " "because it contains a computed goto"); *handled_ops_p = true; return t; } break; default: break; } *handled_ops_p = false; return NULL_TREE; } /* Return true if FNDECL is a function that cannot be inlined into another one. */ static bool inline_forbidden_p (tree fndecl) { struct function *fun = DECL_STRUCT_FUNCTION (fndecl); struct walk_stmt_info wi; basic_block bb; bool forbidden_p = false; /* First check for shared reasons not to copy the code. */ inline_forbidden_reason = copy_forbidden (fun); if (inline_forbidden_reason != NULL) return true; /* Next, walk the statements of the function looking for constraucts we can't handle, or are non-optimal for inlining. */ hash_set visited_nodes; memset (&wi, 0, sizeof (wi)); wi.info = (void *) fndecl; wi.pset = &visited_nodes; FOR_EACH_BB_FN (bb, fun) { gimple *ret; gimple_seq seq = bb_seq (bb); ret = walk_gimple_seq (seq, inline_forbidden_p_stmt, NULL, &wi); forbidden_p = (ret != NULL); if (forbidden_p) break; } return forbidden_p; } /* Return false if the function FNDECL cannot be inlined on account of its attributes, true otherwise. */ static bool function_attribute_inlinable_p (const_tree fndecl) { if (targetm.attribute_table) { const_tree a; for (a = DECL_ATTRIBUTES (fndecl); a; a = TREE_CHAIN (a)) { const_tree name = TREE_PURPOSE (a); int i; for (i = 0; targetm.attribute_table[i].name != NULL; i++) if (is_attribute_p (targetm.attribute_table[i].name, name)) return targetm.function_attribute_inlinable_p (fndecl); } } return true; } /* Returns nonzero if FN is a function that does not have any fundamental inline blocking properties. */ bool tree_inlinable_function_p (tree fn) { bool inlinable = true; bool do_warning; tree always_inline; /* If we've already decided this function shouldn't be inlined, there's no need to check again. */ if (DECL_UNINLINABLE (fn)) return false; /* We only warn for functions declared `inline' by the user. */ do_warning = (warn_inline && DECL_DECLARED_INLINE_P (fn) && !DECL_NO_INLINE_WARNING_P (fn) && !DECL_IN_SYSTEM_HEADER (fn)); always_inline = lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)); if (flag_no_inline && always_inline == NULL) { if (do_warning) warning (OPT_Winline, "function %q+F can never be inlined because it " "is suppressed using -fno-inline", fn); inlinable = false; } else if (!function_attribute_inlinable_p (fn)) { if (do_warning) warning (OPT_Winline, "function %q+F can never be inlined because it " "uses attributes conflicting with inlining", fn); inlinable = false; } else if (inline_forbidden_p (fn)) { /* See if we should warn about uninlinable functions. Previously, some of these warnings would be issued while trying to expand the function inline, but that would cause multiple warnings about functions that would for example call alloca. But since this a property of the function, just one warning is enough. As a bonus we can now give more details about the reason why a function is not inlinable. */ if (always_inline) error (inline_forbidden_reason, fn); else if (do_warning) warning (OPT_Winline, inline_forbidden_reason, fn); inlinable = false; } /* Squirrel away the result so that we don't have to check again. */ DECL_UNINLINABLE (fn) = !inlinable; return inlinable; } /* Estimate the cost of a memory move of type TYPE. Use machine dependent word size and take possible memcpy call into account and return cost based on whether optimizing for size or speed according to SPEED_P. */ int estimate_move_cost (tree type, bool ARG_UNUSED (speed_p)) { HOST_WIDE_INT size; gcc_assert (!VOID_TYPE_P (type)); if (TREE_CODE (type) == VECTOR_TYPE) { machine_mode inner = TYPE_MODE (TREE_TYPE (type)); machine_mode simd = targetm.vectorize.preferred_simd_mode (inner); int simd_mode_size = GET_MODE_SIZE (simd); return ((GET_MODE_SIZE (TYPE_MODE (type)) + simd_mode_size - 1) / simd_mode_size); } size = int_size_in_bytes (type); if (size < 0 || size > MOVE_MAX_PIECES * MOVE_RATIO (speed_p)) /* Cost of a memcpy call, 3 arguments and the call. */ return 4; else return ((size + MOVE_MAX_PIECES - 1) / MOVE_MAX_PIECES); } /* Returns cost of operation CODE, according to WEIGHTS */ static int estimate_operator_cost (enum tree_code code, eni_weights *weights, tree op1 ATTRIBUTE_UNUSED, tree op2) { switch (code) { /* These are "free" conversions, or their presumed cost is folded into other operations. */ case RANGE_EXPR: CASE_CONVERT: case COMPLEX_EXPR: case PAREN_EXPR: case VIEW_CONVERT_EXPR: return 0; /* Assign cost of 1 to usual operations. ??? We may consider mapping RTL costs to this. */ case COND_EXPR: case VEC_COND_EXPR: case VEC_PERM_EXPR: case PLUS_EXPR: case POINTER_PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case MULT_HIGHPART_EXPR: case FMA_EXPR: case ADDR_SPACE_CONVERT_EXPR: case FIXED_CONVERT_EXPR: case FIX_TRUNC_EXPR: case NEGATE_EXPR: case FLOAT_EXPR: case MIN_EXPR: case MAX_EXPR: case ABS_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case BIT_AND_EXPR: case BIT_NOT_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: case TRUTH_XOR_EXPR: case TRUTH_NOT_EXPR: case LT_EXPR: case LE_EXPR: case GT_EXPR: case GE_EXPR: case EQ_EXPR: case NE_EXPR: case ORDERED_EXPR: case UNORDERED_EXPR: case UNLT_EXPR: case UNLE_EXPR: case UNGT_EXPR: case UNGE_EXPR: case UNEQ_EXPR: case LTGT_EXPR: case CONJ_EXPR: case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: case POSTDECREMENT_EXPR: case POSTINCREMENT_EXPR: case REALIGN_LOAD_EXPR: case REDUC_MAX_EXPR: case REDUC_MIN_EXPR: case REDUC_PLUS_EXPR: case WIDEN_SUM_EXPR: case WIDEN_MULT_EXPR: case DOT_PROD_EXPR: case SAD_EXPR: case WIDEN_MULT_PLUS_EXPR: case WIDEN_MULT_MINUS_EXPR: case WIDEN_LSHIFT_EXPR: case VEC_WIDEN_MULT_HI_EXPR: case VEC_WIDEN_MULT_LO_EXPR: case VEC_WIDEN_MULT_EVEN_EXPR: case VEC_WIDEN_MULT_ODD_EXPR: case VEC_UNPACK_HI_EXPR: case VEC_UNPACK_LO_EXPR: case VEC_UNPACK_FLOAT_HI_EXPR: case VEC_UNPACK_FLOAT_LO_EXPR: case VEC_PACK_TRUNC_EXPR: case VEC_PACK_SAT_EXPR: case VEC_PACK_FIX_TRUNC_EXPR: case VEC_WIDEN_LSHIFT_HI_EXPR: case VEC_WIDEN_LSHIFT_LO_EXPR: return 1; /* Few special cases of expensive operations. This is useful to avoid inlining on functions having too many of these. */ case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: case TRUNC_MOD_EXPR: case CEIL_MOD_EXPR: case FLOOR_MOD_EXPR: case ROUND_MOD_EXPR: case RDIV_EXPR: if (TREE_CODE (op2) != INTEGER_CST) return weights->div_mod_cost; return 1; /* Bit-field insertion needs several shift and mask operations. */ case BIT_INSERT_EXPR: return 3; default: /* We expect a copy assignment with no operator. */ gcc_assert (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS); return 0; } } /* Estimate number of instructions that will be created by expanding the statements in the statement sequence STMTS. WEIGHTS contains weights attributed to various constructs. */ int estimate_num_insns_seq (gimple_seq stmts, eni_weights *weights) { int cost; gimple_stmt_iterator gsi; cost = 0; for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi)) cost += estimate_num_insns (gsi_stmt (gsi), weights); return cost; } /* Estimate number of instructions that will be created by expanding STMT. WEIGHTS contains weights attributed to various constructs. */ int estimate_num_insns (gimple *stmt, eni_weights *weights) { unsigned cost, i; enum gimple_code code = gimple_code (stmt); tree lhs; tree rhs; switch (code) { case GIMPLE_ASSIGN: /* Try to estimate the cost of assignments. We have three cases to deal with: 1) Simple assignments to registers; 2) Stores to things that must live in memory. This includes "normal" stores to scalars, but also assignments of large structures, or constructors of big arrays; Let us look at the first two cases, assuming we have "a = b + C": > If "a" is a GIMPLE register, the assignment to it is free on almost any target, because "a" usually ends up in a real register. Hence the only cost of this expression comes from the PLUS_EXPR, and we can ignore the GIMPLE_ASSIGN. If "a" is not a GIMPLE register, the assignment to "a" will most likely be a real store, so the cost of the GIMPLE_ASSIGN is the cost of moving something into "a", which we compute using the function estimate_move_cost. */ if (gimple_clobber_p (stmt)) return 0; /* ={v} {CLOBBER} stmt expands to nothing. */ lhs = gimple_assign_lhs (stmt); rhs = gimple_assign_rhs1 (stmt); cost = 0; /* Account for the cost of moving to / from memory. */ if (gimple_store_p (stmt)) cost += estimate_move_cost (TREE_TYPE (lhs), weights->time_based); if (gimple_assign_load_p (stmt)) cost += estimate_move_cost (TREE_TYPE (rhs), weights->time_based); cost += estimate_operator_cost (gimple_assign_rhs_code (stmt), weights, gimple_assign_rhs1 (stmt), get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) == GIMPLE_BINARY_RHS ? gimple_assign_rhs2 (stmt) : NULL); break; case GIMPLE_COND: cost = 1 + estimate_operator_cost (gimple_cond_code (stmt), weights, gimple_op (stmt, 0), gimple_op (stmt, 1)); break; case GIMPLE_SWITCH: { gswitch *switch_stmt = as_a (stmt); /* Take into account cost of the switch + guess 2 conditional jumps for each case label. TODO: once the switch expansion logic is sufficiently separated, we can do better job on estimating cost of the switch. */ if (weights->time_based) cost = floor_log2 (gimple_switch_num_labels (switch_stmt)) * 2; else cost = gimple_switch_num_labels (switch_stmt) * 2; } break; case GIMPLE_CALL: { tree decl; if (gimple_call_internal_p (stmt)) return 0; else if ((decl = gimple_call_fndecl (stmt)) && DECL_BUILT_IN (decl)) { /* Do not special case builtins where we see the body. This just confuse inliner. */ struct cgraph_node *node; if (!(node = cgraph_node::get (decl)) || node->definition) ; /* For buitins that are likely expanded to nothing or inlined do not account operand costs. */ else if (is_simple_builtin (decl)) return 0; else if (is_inexpensive_builtin (decl)) return weights->target_builtin_call_cost; else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) { /* We canonicalize x * x to pow (x, 2.0) with -ffast-math, so specialize the cheap expansion we do here. ??? This asks for a more general solution. */ switch (DECL_FUNCTION_CODE (decl)) { case BUILT_IN_POW: case BUILT_IN_POWF: case BUILT_IN_POWL: if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST && (real_equal (&TREE_REAL_CST (gimple_call_arg (stmt, 1)), &dconst2))) return estimate_operator_cost (MULT_EXPR, weights, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 0)); break; default: break; } } } cost = decl ? weights->call_cost : weights->indirect_call_cost; if (gimple_call_lhs (stmt)) cost += estimate_move_cost (TREE_TYPE (gimple_call_lhs (stmt)), weights->time_based); for (i = 0; i < gimple_call_num_args (stmt); i++) { tree arg = gimple_call_arg (stmt, i); cost += estimate_move_cost (TREE_TYPE (arg), weights->time_based); } break; } case GIMPLE_RETURN: return weights->return_cost; case GIMPLE_GOTO: case GIMPLE_LABEL: case GIMPLE_NOP: case GIMPLE_PHI: case GIMPLE_PREDICT: case GIMPLE_DEBUG: return 0; case GIMPLE_ASM: { int count = asm_str_count (gimple_asm_string (as_a (stmt))); /* 1000 means infinity. This avoids overflows later with very long asm statements. */ if (count > 1000) count = 1000; return count; } case GIMPLE_RESX: /* This is either going to be an external function call with one argument, or two register copy statements plus a goto. */ return 2; case GIMPLE_EH_DISPATCH: /* ??? This is going to turn into a switch statement. Ideally we'd have a look at the eh region and estimate the number of edges involved. */ return 10; case GIMPLE_BIND: return estimate_num_insns_seq ( gimple_bind_body (as_a (stmt)), weights); case GIMPLE_EH_FILTER: return estimate_num_insns_seq (gimple_eh_filter_failure (stmt), weights); case GIMPLE_CATCH: return estimate_num_insns_seq (gimple_catch_handler ( as_a (stmt)), weights); case GIMPLE_TRY: return (estimate_num_insns_seq (gimple_try_eval (stmt), weights) + estimate_num_insns_seq (gimple_try_cleanup (stmt), weights)); /* OMP directives are generally very expensive. */ case GIMPLE_OMP_RETURN: case GIMPLE_OMP_SECTIONS_SWITCH: case GIMPLE_OMP_ATOMIC_STORE: case GIMPLE_OMP_CONTINUE: /* ...except these, which are cheap. */ return 0; case GIMPLE_OMP_ATOMIC_LOAD: return weights->omp_cost; case GIMPLE_OMP_FOR: return (weights->omp_cost + estimate_num_insns_seq (gimple_omp_body (stmt), weights) + estimate_num_insns_seq (gimple_omp_for_pre_body (stmt), weights)); case GIMPLE_OMP_PARALLEL: case GIMPLE_OMP_TASK: case GIMPLE_OMP_CRITICAL: case GIMPLE_OMP_MASTER: case GIMPLE_OMP_TASKGROUP: case GIMPLE_OMP_ORDERED: case GIMPLE_OMP_SECTION: case GIMPLE_OMP_SECTIONS: case GIMPLE_OMP_SINGLE: case GIMPLE_OMP_TARGET: case GIMPLE_OMP_TEAMS: return (weights->omp_cost + estimate_num_insns_seq (gimple_omp_body (stmt), weights)); case GIMPLE_TRANSACTION: return (weights->tm_cost + estimate_num_insns_seq (gimple_transaction_body ( as_a (stmt)), weights)); default: gcc_unreachable (); } return cost; } /* Estimate number of instructions that will be created by expanding function FNDECL. WEIGHTS contains weights attributed to various constructs. */ int estimate_num_insns_fn (tree fndecl, eni_weights *weights) { struct function *my_function = DECL_STRUCT_FUNCTION (fndecl); gimple_stmt_iterator bsi; basic_block bb; int n = 0; gcc_assert (my_function && my_function->cfg); FOR_EACH_BB_FN (bb, my_function) { for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) n += estimate_num_insns (gsi_stmt (bsi), weights); } return n; } /* Initializes weights used by estimate_num_insns. */ void init_inline_once (void) { eni_size_weights.call_cost = 1; eni_size_weights.indirect_call_cost = 3; eni_size_weights.target_builtin_call_cost = 1; eni_size_weights.div_mod_cost = 1; eni_size_weights.omp_cost = 40; eni_size_weights.tm_cost = 10; eni_size_weights.time_based = false; eni_size_weights.return_cost = 1; /* Estimating time for call is difficult, since we have no idea what the called function does. In the current uses of eni_time_weights, underestimating the cost does less harm than overestimating it, so we choose a rather small value here. */ eni_time_weights.call_cost = 10; eni_time_weights.indirect_call_cost = 15; eni_time_weights.target_builtin_call_cost = 1; eni_time_weights.div_mod_cost = 10; eni_time_weights.omp_cost = 40; eni_time_weights.tm_cost = 40; eni_time_weights.time_based = true; eni_time_weights.return_cost = 2; } /* Install new lexical TREE_BLOCK underneath 'current_block'. */ static void prepend_lexical_block (tree current_block, tree new_block) { BLOCK_CHAIN (new_block) = BLOCK_SUBBLOCKS (current_block); BLOCK_SUBBLOCKS (current_block) = new_block; BLOCK_SUPERCONTEXT (new_block) = current_block; } /* Add local variables from CALLEE to CALLER. */ static inline void add_local_variables (struct function *callee, struct function *caller, copy_body_data *id) { tree var; unsigned ix; FOR_EACH_LOCAL_DECL (callee, ix, var) if (!can_be_nonlocal (var, id)) { tree new_var = remap_decl (var, id); /* Remap debug-expressions. */ if (VAR_P (new_var) && DECL_HAS_DEBUG_EXPR_P (var) && new_var != var) { tree tem = DECL_DEBUG_EXPR (var); bool old_regimplify = id->regimplify; id->remapping_type_depth++; walk_tree (&tem, copy_tree_body_r, id, NULL); id->remapping_type_depth--; id->regimplify = old_regimplify; SET_DECL_DEBUG_EXPR (new_var, tem); DECL_HAS_DEBUG_EXPR_P (new_var) = 1; } add_local_decl (caller, new_var); } } /* Add to BINDINGS a debug stmt resetting SRCVAR if inlining might have brought in or introduced any debug stmts for SRCVAR. */ static inline void reset_debug_binding (copy_body_data *id, tree srcvar, gimple_seq *bindings) { tree *remappedvarp = id->decl_map->get (srcvar); if (!remappedvarp) return; if (!VAR_P (*remappedvarp)) return; if (*remappedvarp == id->retvar || *remappedvarp == id->retbnd) return; tree tvar = target_for_debug_bind (*remappedvarp); if (!tvar) return; gdebug *stmt = gimple_build_debug_bind (tvar, NULL_TREE, id->call_stmt); gimple_seq_add_stmt (bindings, stmt); } /* For each inlined variable for which we may have debug bind stmts, add before GSI a final debug stmt resetting it, marking the end of its life, so that var-tracking knows it doesn't have to compute further locations for it. */ static inline void reset_debug_bindings (copy_body_data *id, gimple_stmt_iterator gsi) { tree var; unsigned ix; gimple_seq bindings = NULL; if (!gimple_in_ssa_p (id->src_cfun)) return; if (!opt_for_fn (id->dst_fn, flag_var_tracking_assignments)) return; for (var = DECL_ARGUMENTS (id->src_fn); var; var = DECL_CHAIN (var)) reset_debug_binding (id, var, &bindings); FOR_EACH_LOCAL_DECL (id->src_cfun, ix, var) reset_debug_binding (id, var, &bindings); gsi_insert_seq_before_without_update (&gsi, bindings, GSI_SAME_STMT); } /* If STMT is a GIMPLE_CALL, replace it with its inline expansion. */ static bool expand_call_inline (basic_block bb, gimple *stmt, copy_body_data *id) { tree use_retvar; tree fn; hash_map *dst; hash_map *st = NULL; tree return_slot; tree modify_dest; tree return_bounds = NULL; struct cgraph_edge *cg_edge; cgraph_inline_failed_t reason; basic_block return_block; edge e; gimple_stmt_iterator gsi, stmt_gsi; bool successfully_inlined = false; bool purge_dead_abnormal_edges; gcall *call_stmt; unsigned int i; /* The gimplifier uses input_location in too many places, such as internal_get_tmp_var (). */ location_t saved_location = input_location; input_location = gimple_location (stmt); /* From here on, we're only interested in CALL_EXPRs. */ call_stmt = dyn_cast (stmt); if (!call_stmt) goto egress; cg_edge = id->dst_node->get_edge (stmt); gcc_checking_assert (cg_edge); /* First, see if we can figure out what function is being called. If we cannot, then there is no hope of inlining the function. */ if (cg_edge->indirect_unknown_callee) goto egress; fn = cg_edge->callee->decl; gcc_checking_assert (fn); /* If FN is a declaration of a function in a nested scope that was globally declared inline, we don't set its DECL_INITIAL. However, we can't blindly follow DECL_ABSTRACT_ORIGIN because the C++ front-end uses it for cdtors to refer to their internal declarations, that are not real functions. Fortunately those don't have trees to be saved, so we can tell by checking their gimple_body. */ if (!DECL_INITIAL (fn) && DECL_ABSTRACT_ORIGIN (fn) && gimple_has_body_p (DECL_ABSTRACT_ORIGIN (fn))) fn = DECL_ABSTRACT_ORIGIN (fn); /* Don't try to inline functions that are not well-suited to inlining. */ if (cg_edge->inline_failed) { reason = cg_edge->inline_failed; /* If this call was originally indirect, we do not want to emit any inlining related warnings or sorry messages because there are no guarantees regarding those. */ if (cg_edge->indirect_inlining_edge) goto egress; if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) /* For extern inline functions that get redefined we always silently ignored always_inline flag. Better behavior would be to be able to keep both bodies and use extern inline body for inlining, but we can't do that because frontends overwrite the body. */ && !cg_edge->callee->local.redefined_extern_inline /* During early inline pass, report only when optimization is not turned on. */ && (symtab->global_info_ready || !optimize || cgraph_inline_failed_type (reason) == CIF_FINAL_ERROR) /* PR 20090218-1_0.c. Body can be provided by another module. */ && (reason != CIF_BODY_NOT_AVAILABLE || !flag_generate_lto)) { error ("inlining failed in call to always_inline %q+F: %s", fn, cgraph_inline_failed_string (reason)); if (gimple_location (stmt) != UNKNOWN_LOCATION) inform (gimple_location (stmt), "called from here"); else if (DECL_SOURCE_LOCATION (cfun->decl) != UNKNOWN_LOCATION) inform (DECL_SOURCE_LOCATION (cfun->decl), "called from this function"); } else if (warn_inline && DECL_DECLARED_INLINE_P (fn) && !DECL_NO_INLINE_WARNING_P (fn) && !DECL_IN_SYSTEM_HEADER (fn) && reason != CIF_UNSPECIFIED && !lookup_attribute ("noinline", DECL_ATTRIBUTES (fn)) /* Do not warn about not inlined recursive calls. */ && !cg_edge->recursive_p () /* Avoid warnings during early inline pass. */ && symtab->global_info_ready) { if (warning (OPT_Winline, "inlining failed in call to %q+F: %s", fn, _(cgraph_inline_failed_string (reason)))) { if (gimple_location (stmt) != UNKNOWN_LOCATION) inform (gimple_location (stmt), "called from here"); else if (DECL_SOURCE_LOCATION (cfun->decl) != UNKNOWN_LOCATION) inform (DECL_SOURCE_LOCATION (cfun->decl), "called from this function"); } } goto egress; } id->src_node = cg_edge->callee; /* If callee is thunk, all we need is to adjust the THIS pointer and redirect to function being thunked. */ if (id->src_node->thunk.thunk_p) { cgraph_edge *edge; tree virtual_offset = NULL; int freq = cg_edge->frequency; gcov_type count = cg_edge->count; tree op; gimple_stmt_iterator iter = gsi_for_stmt (stmt); cg_edge->remove (); edge = id->src_node->callees->clone (id->dst_node, call_stmt, gimple_uid (stmt), REG_BR_PROB_BASE, CGRAPH_FREQ_BASE, true); edge->frequency = freq; edge->count = count; if (id->src_node->thunk.virtual_offset_p) virtual_offset = size_int (id->src_node->thunk.virtual_value); op = create_tmp_reg_fn (cfun, TREE_TYPE (gimple_call_arg (stmt, 0)), NULL); gsi_insert_before (&iter, gimple_build_assign (op, gimple_call_arg (stmt, 0)), GSI_NEW_STMT); gcc_assert (id->src_node->thunk.this_adjusting); op = thunk_adjust (&iter, op, 1, id->src_node->thunk.fixed_offset, virtual_offset); gimple_call_set_arg (stmt, 0, op); gimple_call_set_fndecl (stmt, edge->callee->decl); update_stmt (stmt); id->src_node->remove (); expand_call_inline (bb, stmt, id); maybe_remove_unused_call_args (cfun, stmt); return true; } fn = cg_edge->callee->decl; cg_edge->callee->get_untransformed_body (); if (flag_checking && cg_edge->callee->decl != id->dst_node->decl) cg_edge->callee->verify (); /* We will be inlining this callee. */ id->eh_lp_nr = lookup_stmt_eh_lp (stmt); id->assign_stmts.create (0); /* Update the callers EH personality. */ if (DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl)) DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl) = DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl); /* Split the block holding the GIMPLE_CALL. */ e = split_block (bb, stmt); bb = e->src; return_block = e->dest; remove_edge (e); /* split_block splits after the statement; work around this by moving the call into the second block manually. Not pretty, but seems easier than doing the CFG manipulation by hand when the GIMPLE_CALL is in the last statement of BB. */ stmt_gsi = gsi_last_bb (bb); gsi_remove (&stmt_gsi, false); /* If the GIMPLE_CALL was in the last statement of BB, it may have been the source of abnormal edges. In this case, schedule the removal of dead abnormal edges. */ gsi = gsi_start_bb (return_block); if (gsi_end_p (gsi)) { gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); purge_dead_abnormal_edges = true; } else { gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); purge_dead_abnormal_edges = false; } stmt_gsi = gsi_start_bb (return_block); /* Build a block containing code to initialize the arguments, the actual inline expansion of the body, and a label for the return statements within the function to jump to. The type of the statement expression is the return type of the function call. ??? If the call does not have an associated block then we will remap all callee blocks to NULL, effectively dropping most of its debug information. This should only happen for calls to artificial decls inserted by the compiler itself. We need to either link the inlined blocks into the caller block tree or not refer to them in any way to not break GC for locations. */ if (gimple_block (stmt)) { id->block = make_node (BLOCK); BLOCK_ABSTRACT_ORIGIN (id->block) = fn; BLOCK_SOURCE_LOCATION (id->block) = LOCATION_LOCUS (gimple_location (stmt)); prepend_lexical_block (gimple_block (stmt), id->block); } /* Local declarations will be replaced by their equivalents in this map. */ st = id->decl_map; id->decl_map = new hash_map; dst = id->debug_map; id->debug_map = NULL; /* Record the function we are about to inline. */ id->src_fn = fn; id->src_cfun = DECL_STRUCT_FUNCTION (fn); id->call_stmt = stmt; /* If the src function contains an IFN_VA_ARG, then so will the dst function after inlining. */ if ((id->src_cfun->curr_properties & PROP_gimple_lva) == 0) { struct function *dst_cfun = DECL_STRUCT_FUNCTION (id->dst_fn); dst_cfun->curr_properties &= ~PROP_gimple_lva; } gcc_assert (!id->src_cfun->after_inlining); id->entry_bb = bb; if (lookup_attribute ("cold", DECL_ATTRIBUTES (fn))) { gimple_stmt_iterator si = gsi_last_bb (bb); gsi_insert_after (&si, gimple_build_predict (PRED_COLD_FUNCTION, NOT_TAKEN), GSI_NEW_STMT); } initialize_inlined_parameters (id, stmt, fn, bb); if (DECL_INITIAL (fn)) { if (gimple_block (stmt)) { tree *var; prepend_lexical_block (id->block, remap_blocks (DECL_INITIAL (fn), id)); gcc_checking_assert (BLOCK_SUBBLOCKS (id->block) && (BLOCK_CHAIN (BLOCK_SUBBLOCKS (id->block)) == NULL_TREE)); /* Move vars for PARM_DECLs from DECL_INITIAL block to id->block, otherwise for DWARF DW_TAG_formal_parameter will not be children of DW_TAG_inlined_subroutine, but of a DW_TAG_lexical_block under it. The parameters can be then evaluated in the debugger, but don't show in backtraces. */ for (var = &BLOCK_VARS (BLOCK_SUBBLOCKS (id->block)); *var; ) if (TREE_CODE (DECL_ORIGIN (*var)) == PARM_DECL) { tree v = *var; *var = TREE_CHAIN (v); TREE_CHAIN (v) = BLOCK_VARS (id->block); BLOCK_VARS (id->block) = v; } else var = &TREE_CHAIN (*var); } else remap_blocks_to_null (DECL_INITIAL (fn), id); } /* Return statements in the function body will be replaced by jumps to the RET_LABEL. */ gcc_assert (DECL_INITIAL (fn)); gcc_assert (TREE_CODE (DECL_INITIAL (fn)) == BLOCK); /* Find the LHS to which the result of this call is assigned. */ return_slot = NULL; if (gimple_call_lhs (stmt)) { modify_dest = gimple_call_lhs (stmt); /* Remember where to copy returned bounds. */ if (gimple_call_with_bounds_p (stmt) && TREE_CODE (modify_dest) == SSA_NAME) { gcall *retbnd = chkp_retbnd_call_by_val (modify_dest); if (retbnd) { return_bounds = gimple_call_lhs (retbnd); /* If returned bounds are not used then just remove unused call. */ if (!return_bounds) { gimple_stmt_iterator iter = gsi_for_stmt (retbnd); gsi_remove (&iter, true); } } } /* The function which we are inlining might not return a value, in which case we should issue a warning that the function does not return a value. In that case the optimizers will see that the variable to which the value is assigned was not initialized. We do not want to issue a warning about that uninitialized variable. */ if (DECL_P (modify_dest)) TREE_NO_WARNING (modify_dest) = 1; if (gimple_call_return_slot_opt_p (call_stmt)) { return_slot = modify_dest; modify_dest = NULL; } } else modify_dest = NULL; /* If we are inlining a call to the C++ operator new, we don't want to use type based alias analysis on the return value. Otherwise we may get confused if the compiler sees that the inlined new function returns a pointer which was just deleted. See bug 33407. */ if (DECL_IS_OPERATOR_NEW (fn)) { return_slot = NULL; modify_dest = NULL; } /* Declare the return variable for the function. */ use_retvar = declare_return_variable (id, return_slot, modify_dest, return_bounds, bb); /* Add local vars in this inlined callee to caller. */ add_local_variables (id->src_cfun, cfun, id); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Inlining "); print_generic_expr (dump_file, id->src_fn, 0); fprintf (dump_file, " to "); print_generic_expr (dump_file, id->dst_fn, 0); fprintf (dump_file, " with frequency %i\n", cg_edge->frequency); } /* This is it. Duplicate the callee body. Assume callee is pre-gimplified. Note that we must not alter the caller function in any way before this point, as this CALL_EXPR may be a self-referential call; if we're calling ourselves, we need to duplicate our body before altering anything. */ copy_body (id, cg_edge->callee->count, GCOV_COMPUTE_SCALE (cg_edge->frequency, CGRAPH_FREQ_BASE), bb, return_block, NULL); reset_debug_bindings (id, stmt_gsi); /* Reset the escaped solution. */ if (cfun->gimple_df) pt_solution_reset (&cfun->gimple_df->escaped); /* Clean up. */ if (id->debug_map) { delete id->debug_map; id->debug_map = dst; } delete id->decl_map; id->decl_map = st; /* Unlink the calls virtual operands before replacing it. */ unlink_stmt_vdef (stmt); if (gimple_vdef (stmt) && TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) release_ssa_name (gimple_vdef (stmt)); /* If the inlined function returns a result that we care about, substitute the GIMPLE_CALL with an assignment of the return variable to the LHS of the call. That is, if STMT was 'a = foo (...)', substitute the call with 'a = USE_RETVAR'. */ if (use_retvar && gimple_call_lhs (stmt)) { gimple *old_stmt = stmt; stmt = gimple_build_assign (gimple_call_lhs (stmt), use_retvar); gsi_replace (&stmt_gsi, stmt, false); maybe_clean_or_replace_eh_stmt (old_stmt, stmt); /* Copy bounds if we copy structure with bounds. */ if (chkp_function_instrumented_p (id->dst_fn) && !BOUNDED_P (use_retvar) && chkp_type_has_pointer (TREE_TYPE (use_retvar))) id->assign_stmts.safe_push (stmt); } else { /* Handle the case of inlining a function with no return statement, which causes the return value to become undefined. */ if (gimple_call_lhs (stmt) && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME) { tree name = gimple_call_lhs (stmt); tree var = SSA_NAME_VAR (name); tree def = var ? ssa_default_def (cfun, var) : NULL; if (def) { /* If the variable is used undefined, make this name undefined via a move. */ stmt = gimple_build_assign (gimple_call_lhs (stmt), def); gsi_replace (&stmt_gsi, stmt, true); } else { if (!var) { tree var = create_tmp_reg_fn (cfun, TREE_TYPE (name), NULL); SET_SSA_NAME_VAR_OR_IDENTIFIER (name, var); } /* Otherwise make this variable undefined. */ gsi_remove (&stmt_gsi, true); set_ssa_default_def (cfun, var, name); SSA_NAME_DEF_STMT (name) = gimple_build_nop (); } } else gsi_remove (&stmt_gsi, true); } /* Put returned bounds into the correct place if required. */ if (return_bounds) { gimple *old_stmt = SSA_NAME_DEF_STMT (return_bounds); gimple *new_stmt = gimple_build_assign (return_bounds, id->retbnd); gimple_stmt_iterator bnd_gsi = gsi_for_stmt (old_stmt); unlink_stmt_vdef (old_stmt); gsi_replace (&bnd_gsi, new_stmt, false); maybe_clean_or_replace_eh_stmt (old_stmt, new_stmt); cgraph_update_edges_for_call_stmt (old_stmt, gimple_call_fndecl (old_stmt), new_stmt); } if (purge_dead_abnormal_edges) { gimple_purge_dead_eh_edges (return_block); gimple_purge_dead_abnormal_call_edges (return_block); } /* If the value of the new expression is ignored, that's OK. We don't warn about this for CALL_EXPRs, so we shouldn't warn about the equivalent inlined version either. */ if (is_gimple_assign (stmt)) { gcc_assert (gimple_assign_single_p (stmt) || CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))); TREE_USED (gimple_assign_rhs1 (stmt)) = 1; } /* Copy bounds for all generated assigns that need it. */ for (i = 0; i < id->assign_stmts.length (); i++) chkp_copy_bounds_for_assign (id->assign_stmts[i], cg_edge); id->assign_stmts.release (); /* Output the inlining info for this abstract function, since it has been inlined. If we don't do this now, we can lose the information about the variables in the function when the blocks get blown away as soon as we remove the cgraph node. */ if (gimple_block (stmt)) (*debug_hooks->outlining_inline_function) (cg_edge->callee->decl); /* Update callgraph if needed. */ cg_edge->callee->remove (); id->block = NULL_TREE; successfully_inlined = true; egress: input_location = saved_location; return successfully_inlined; } /* Expand call statements reachable from STMT_P. We can only have CALL_EXPRs as the "toplevel" tree code or nested in a MODIFY_EXPR. */ static bool gimple_expand_calls_inline (basic_block bb, copy_body_data *id) { gimple_stmt_iterator gsi; bool inlined = false; for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);) { gimple *stmt = gsi_stmt (gsi); gsi_prev (&gsi); if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt)) inlined |= expand_call_inline (bb, stmt, id); } return inlined; } /* Walk all basic blocks created after FIRST and try to fold every statement in the STATEMENTS pointer set. */ static void fold_marked_statements (int first, hash_set *statements) { for (; first < n_basic_blocks_for_fn (cfun); first++) if (BASIC_BLOCK_FOR_FN (cfun, first)) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, first)); !gsi_end_p (gsi); gsi_next (&gsi)) if (statements->contains (gsi_stmt (gsi))) { gimple *old_stmt = gsi_stmt (gsi); tree old_decl = is_gimple_call (old_stmt) ? gimple_call_fndecl (old_stmt) : 0; if (old_decl && DECL_BUILT_IN (old_decl)) { /* Folding builtins can create multiple instructions, we need to look at all of them. */ gimple_stmt_iterator i2 = gsi; gsi_prev (&i2); if (fold_stmt (&gsi)) { gimple *new_stmt; /* If a builtin at the end of a bb folded into nothing, the following loop won't work. */ if (gsi_end_p (gsi)) { cgraph_update_edges_for_call_stmt (old_stmt, old_decl, NULL); break; } if (gsi_end_p (i2)) i2 = gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, first)); else gsi_next (&i2); while (1) { new_stmt = gsi_stmt (i2); update_stmt (new_stmt); cgraph_update_edges_for_call_stmt (old_stmt, old_decl, new_stmt); if (new_stmt == gsi_stmt (gsi)) { /* It is okay to check only for the very last of these statements. If it is a throwing statement nothing will change. If it isn't this can remove EH edges. If that weren't correct then because some intermediate stmts throw, but not the last one. That would mean we'd have to split the block, which we can't here and we'd loose anyway. And as builtins probably never throw, this all is mood anyway. */ if (maybe_clean_or_replace_eh_stmt (old_stmt, new_stmt)) gimple_purge_dead_eh_edges ( BASIC_BLOCK_FOR_FN (cfun, first)); break; } gsi_next (&i2); } } } else if (fold_stmt (&gsi)) { /* Re-read the statement from GSI as fold_stmt() may have changed it. */ gimple *new_stmt = gsi_stmt (gsi); update_stmt (new_stmt); if (is_gimple_call (old_stmt) || is_gimple_call (new_stmt)) cgraph_update_edges_for_call_stmt (old_stmt, old_decl, new_stmt); if (maybe_clean_or_replace_eh_stmt (old_stmt, new_stmt)) gimple_purge_dead_eh_edges (BASIC_BLOCK_FOR_FN (cfun, first)); } } } } /* Expand calls to inline functions in the body of FN. */ unsigned int optimize_inline_calls (tree fn) { copy_body_data id; basic_block bb; int last = n_basic_blocks_for_fn (cfun); bool inlined_p = false; /* Clear out ID. */ memset (&id, 0, sizeof (id)); id.src_node = id.dst_node = cgraph_node::get (fn); gcc_assert (id.dst_node->definition); id.dst_fn = fn; /* Or any functions that aren't finished yet. */ if (current_function_decl) id.dst_fn = current_function_decl; id.copy_decl = copy_decl_maybe_to_var; id.transform_call_graph_edges = CB_CGE_DUPLICATE; id.transform_new_cfg = false; id.transform_return_to_modify = true; id.transform_parameter = true; id.transform_lang_insert_block = NULL; id.statements_to_fold = new hash_set; push_gimplify_context (); /* We make no attempts to keep dominance info up-to-date. */ free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); /* Register specific gimple functions. */ gimple_register_cfg_hooks (); /* Reach the trees by walking over the CFG, and note the enclosing basic-blocks in the call edges. */ /* We walk the blocks going forward, because inlined function bodies will split id->current_basic_block, and the new blocks will follow it; we'll trudge through them, processing their CALL_EXPRs along the way. */ FOR_EACH_BB_FN (bb, cfun) inlined_p |= gimple_expand_calls_inline (bb, &id); pop_gimplify_context (NULL); if (flag_checking) { struct cgraph_edge *e; id.dst_node->verify (); /* Double check that we inlined everything we are supposed to inline. */ for (e = id.dst_node->callees; e; e = e->next_callee) gcc_assert (e->inline_failed); } /* Fold queued statements. */ fold_marked_statements (last, id.statements_to_fold); delete id.statements_to_fold; gcc_assert (!id.debug_stmts.exists ()); /* If we didn't inline into the function there is nothing to do. */ if (!inlined_p) return 0; /* Renumber the lexical scoping (non-code) blocks consecutively. */ number_blocks (fn); delete_unreachable_blocks_update_callgraph (&id); if (flag_checking) id.dst_node->verify (); /* It would be nice to check SSA/CFG/statement consistency here, but it is not possible yet - the IPA passes might make various functions to not throw and they don't care to proactively update local EH info. This is done later in fixup_cfg pass that also execute the verification. */ return (TODO_update_ssa | TODO_cleanup_cfg | (gimple_in_ssa_p (cfun) ? TODO_remove_unused_locals : 0) | (gimple_in_ssa_p (cfun) ? TODO_update_address_taken : 0) | (profile_status_for_fn (cfun) != PROFILE_ABSENT ? TODO_rebuild_frequencies : 0)); } /* Passed to walk_tree. Copies the node pointed to, if appropriate. */ tree copy_tree_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { enum tree_code code = TREE_CODE (*tp); enum tree_code_class cl = TREE_CODE_CLASS (code); /* We make copies of most nodes. */ if (IS_EXPR_CODE_CLASS (cl) || code == TREE_LIST || code == TREE_VEC || code == TYPE_DECL || code == OMP_CLAUSE) { /* Because the chain gets clobbered when we make a copy, we save it here. */ tree chain = NULL_TREE, new_tree; if (CODE_CONTAINS_STRUCT (code, TS_COMMON)) chain = TREE_CHAIN (*tp); /* Copy the node. */ new_tree = copy_node (*tp); *tp = new_tree; /* Now, restore the chain, if appropriate. That will cause walk_tree to walk into the chain as well. */ if (code == PARM_DECL || code == TREE_LIST || code == OMP_CLAUSE) TREE_CHAIN (*tp) = chain; /* For now, we don't update BLOCKs when we make copies. So, we have to nullify all BIND_EXPRs. */ if (TREE_CODE (*tp) == BIND_EXPR) BIND_EXPR_BLOCK (*tp) = NULL_TREE; } else if (code == CONSTRUCTOR) { /* CONSTRUCTOR nodes need special handling because we need to duplicate the vector of elements. */ tree new_tree; new_tree = copy_node (*tp); CONSTRUCTOR_ELTS (new_tree) = vec_safe_copy (CONSTRUCTOR_ELTS (*tp)); *tp = new_tree; } else if (code == STATEMENT_LIST) /* We used to just abort on STATEMENT_LIST, but we can run into them with statement-expressions (c++/40975). */ copy_statement_list (tp); else if (TREE_CODE_CLASS (code) == tcc_type) *walk_subtrees = 0; else if (TREE_CODE_CLASS (code) == tcc_declaration) *walk_subtrees = 0; else if (TREE_CODE_CLASS (code) == tcc_constant) *walk_subtrees = 0; return NULL_TREE; } /* The SAVE_EXPR pointed to by TP is being copied. If ST contains information indicating to what new SAVE_EXPR this one should be mapped, use that one. Otherwise, create a new node and enter it in ST. FN is the function into which the copy will be placed. */ static void remap_save_expr (tree *tp, hash_map *st, int *walk_subtrees) { tree *n; tree t; /* See if we already encountered this SAVE_EXPR. */ n = st->get (*tp); /* If we didn't already remap this SAVE_EXPR, do so now. */ if (!n) { t = copy_node (*tp); /* Remember this SAVE_EXPR. */ st->put (*tp, t); /* Make sure we don't remap an already-remapped SAVE_EXPR. */ st->put (t, t); } else { /* We've already walked into this SAVE_EXPR; don't do it again. */ *walk_subtrees = 0; t = *n; } /* Replace this SAVE_EXPR with the copy. */ *tp = t; } /* Called via walk_gimple_seq. If *GSIP points to a GIMPLE_LABEL for a local label, copies the declaration and enters it in the splay_tree in DATA (which is really a 'copy_body_data *'. */ static tree mark_local_labels_stmt (gimple_stmt_iterator *gsip, bool *handled_ops_p ATTRIBUTE_UNUSED, struct walk_stmt_info *wi) { copy_body_data *id = (copy_body_data *) wi->info; glabel *stmt = dyn_cast (gsi_stmt (*gsip)); if (stmt) { tree decl = gimple_label_label (stmt); /* Copy the decl and remember the copy. */ insert_decl_map (id, decl, id->copy_decl (decl, id)); } return NULL_TREE; } static gimple_seq duplicate_remap_omp_clause_seq (gimple_seq seq, struct walk_stmt_info *wi); /* Called via walk_gimple_seq by copy_gimple_seq_and_replace_local. Using the splay_tree pointed to by ST (which is really a `splay_tree'), remaps all local declarations to appropriate replacements in gimple operands. */ static tree replace_locals_op (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = (struct walk_stmt_info*) data; copy_body_data *id = (copy_body_data *) wi->info; hash_map *st = id->decl_map; tree *n; tree expr = *tp; /* For recursive invocations this is no longer the LHS itself. */ bool is_lhs = wi->is_lhs; wi->is_lhs = false; if (TREE_CODE (expr) == SSA_NAME) { *tp = remap_ssa_name (*tp, id); *walk_subtrees = 0; if (is_lhs) SSA_NAME_DEF_STMT (*tp) = gsi_stmt (wi->gsi); } /* Only a local declaration (variable or label). */ else if ((VAR_P (expr) && !TREE_STATIC (expr)) || TREE_CODE (expr) == LABEL_DECL) { /* Lookup the declaration. */ n = st->get (expr); /* If it's there, remap it. */ if (n) *tp = *n; *walk_subtrees = 0; } else if (TREE_CODE (expr) == STATEMENT_LIST || TREE_CODE (expr) == BIND_EXPR || TREE_CODE (expr) == SAVE_EXPR) gcc_unreachable (); else if (TREE_CODE (expr) == TARGET_EXPR) { /* Don't mess with a TARGET_EXPR that hasn't been expanded. It's OK for this to happen if it was part of a subtree that isn't immediately expanded, such as operand 2 of another TARGET_EXPR. */ if (!TREE_OPERAND (expr, 1)) { TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3); TREE_OPERAND (expr, 3) = NULL_TREE; } } else if (TREE_CODE (expr) == OMP_CLAUSE) { /* Before the omplower pass completes, some OMP clauses can contain sequences that are neither copied by gimple_seq_copy nor walked by walk_gimple_seq. To make copy_gimple_seq_and_replace_locals work even in those situations, we have to copy and process them explicitely. */ if (OMP_CLAUSE_CODE (expr) == OMP_CLAUSE_LASTPRIVATE) { gimple_seq seq = OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (expr); seq = duplicate_remap_omp_clause_seq (seq, wi); OMP_CLAUSE_LASTPRIVATE_GIMPLE_SEQ (expr) = seq; } else if (OMP_CLAUSE_CODE (expr) == OMP_CLAUSE_LINEAR) { gimple_seq seq = OMP_CLAUSE_LINEAR_GIMPLE_SEQ (expr); seq = duplicate_remap_omp_clause_seq (seq, wi); OMP_CLAUSE_LINEAR_GIMPLE_SEQ (expr) = seq; } else if (OMP_CLAUSE_CODE (expr) == OMP_CLAUSE_REDUCTION) { gimple_seq seq = OMP_CLAUSE_REDUCTION_GIMPLE_INIT (expr); seq = duplicate_remap_omp_clause_seq (seq, wi); OMP_CLAUSE_REDUCTION_GIMPLE_INIT (expr) = seq; seq = OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (expr); seq = duplicate_remap_omp_clause_seq (seq, wi); OMP_CLAUSE_REDUCTION_GIMPLE_MERGE (expr) = seq; } } /* Keep iterating. */ return NULL_TREE; } /* Called via walk_gimple_seq by copy_gimple_seq_and_replace_local. Using the splay_tree pointed to by ST (which is really a `splay_tree'), remaps all local declarations to appropriate replacements in gimple statements. */ static tree replace_locals_stmt (gimple_stmt_iterator *gsip, bool *handled_ops_p ATTRIBUTE_UNUSED, struct walk_stmt_info *wi) { copy_body_data *id = (copy_body_data *) wi->info; gimple *gs = gsi_stmt (*gsip); if (gbind *stmt = dyn_cast (gs)) { tree block = gimple_bind_block (stmt); if (block) { remap_block (&block, id); gimple_bind_set_block (stmt, block); } /* This will remap a lot of the same decls again, but this should be harmless. */ if (gimple_bind_vars (stmt)) { tree old_var, decls = gimple_bind_vars (stmt); for (old_var = decls; old_var; old_var = DECL_CHAIN (old_var)) if (!can_be_nonlocal (old_var, id) && ! variably_modified_type_p (TREE_TYPE (old_var), id->src_fn)) remap_decl (old_var, id); gcc_checking_assert (!id->prevent_decl_creation_for_types); id->prevent_decl_creation_for_types = true; gimple_bind_set_vars (stmt, remap_decls (decls, NULL, id)); id->prevent_decl_creation_for_types = false; } } /* Keep iterating. */ return NULL_TREE; } /* Create a copy of SEQ and remap all decls in it. */ static gimple_seq duplicate_remap_omp_clause_seq (gimple_seq seq, struct walk_stmt_info *wi) { if (!seq) return NULL; /* If there are any labels in OMP sequences, they can be only referred to in the sequence itself and therefore we can do both here. */ walk_gimple_seq (seq, mark_local_labels_stmt, NULL, wi); gimple_seq copy = gimple_seq_copy (seq); walk_gimple_seq (copy, replace_locals_stmt, replace_locals_op, wi); return copy; } /* Copies everything in SEQ and replaces variables and labels local to current_function_decl. */ gimple_seq copy_gimple_seq_and_replace_locals (gimple_seq seq) { copy_body_data id; struct walk_stmt_info wi; gimple_seq copy; /* There's nothing to do for NULL_TREE. */ if (seq == NULL) return seq; /* Set up ID. */ memset (&id, 0, sizeof (id)); id.src_fn = current_function_decl; id.dst_fn = current_function_decl; id.src_cfun = cfun; id.decl_map = new hash_map; id.debug_map = NULL; id.copy_decl = copy_decl_no_change; id.transform_call_graph_edges = CB_CGE_DUPLICATE; id.transform_new_cfg = false; id.transform_return_to_modify = false; id.transform_parameter = false; id.transform_lang_insert_block = NULL; /* Walk the tree once to find local labels. */ memset (&wi, 0, sizeof (wi)); hash_set visited; wi.info = &id; wi.pset = &visited; walk_gimple_seq (seq, mark_local_labels_stmt, NULL, &wi); copy = gimple_seq_copy (seq); /* Walk the copy, remapping decls. */ memset (&wi, 0, sizeof (wi)); wi.info = &id; walk_gimple_seq (copy, replace_locals_stmt, replace_locals_op, &wi); /* Clean up. */ delete id.decl_map; if (id.debug_map) delete id.debug_map; if (id.dependence_map) { delete id.dependence_map; id.dependence_map = NULL; } return copy; } /* Allow someone to determine if SEARCH is a child of TOP from gdb. */ static tree debug_find_tree_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data) { if (*tp == data) return (tree) data; else return NULL; } DEBUG_FUNCTION bool debug_find_tree (tree top, tree search) { return walk_tree_without_duplicates (&top, debug_find_tree_1, search) != 0; } /* Declare the variables created by the inliner. Add all the variables in VARS to BIND_EXPR. */ static void declare_inline_vars (tree block, tree vars) { tree t; for (t = vars; t; t = DECL_CHAIN (t)) { DECL_SEEN_IN_BIND_EXPR_P (t) = 1; gcc_assert (!TREE_STATIC (t) && !TREE_ASM_WRITTEN (t)); add_local_decl (cfun, t); } if (block) BLOCK_VARS (block) = chainon (BLOCK_VARS (block), vars); } /* Copy NODE (which must be a DECL). The DECL originally was in the FROM_FN, but now it will be in the TO_FN. PARM_TO_VAR means enable PARM_DECL to VAR_DECL translation. */ static tree copy_decl_for_dup_finish (copy_body_data *id, tree decl, tree copy) { /* Don't generate debug information for the copy if we wouldn't have generated it for the copy either. */ DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (decl); DECL_IGNORED_P (copy) = DECL_IGNORED_P (decl); /* Set the DECL_ABSTRACT_ORIGIN so the debugging routines know what declaration inspired this copy. */ DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (decl); /* The new variable/label has no RTL, yet. */ if (CODE_CONTAINS_STRUCT (TREE_CODE (copy), TS_DECL_WRTL) && !TREE_STATIC (copy) && !DECL_EXTERNAL (copy)) SET_DECL_RTL (copy, 0); /* These args would always appear unused, if not for this. */ TREE_USED (copy) = 1; /* Set the context for the new declaration. */ if (!DECL_CONTEXT (decl)) /* Globals stay global. */ ; else if (DECL_CONTEXT (decl) != id->src_fn) /* Things that weren't in the scope of the function we're inlining from aren't in the scope we're inlining to, either. */ ; else if (TREE_STATIC (decl)) /* Function-scoped static variables should stay in the original function. */ ; else /* Ordinary automatic local variables are now in the scope of the new function. */ DECL_CONTEXT (copy) = id->dst_fn; return copy; } static tree copy_decl_to_var (tree decl, copy_body_data *id) { tree copy, type; gcc_assert (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL); type = TREE_TYPE (decl); copy = build_decl (DECL_SOURCE_LOCATION (id->dst_fn), VAR_DECL, DECL_NAME (decl), type); if (DECL_PT_UID_SET_P (decl)) SET_DECL_PT_UID (copy, DECL_PT_UID (decl)); TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl); TREE_READONLY (copy) = TREE_READONLY (decl); TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl); DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (decl); return copy_decl_for_dup_finish (id, decl, copy); } /* Like copy_decl_to_var, but create a return slot object instead of a pointer variable for return by invisible reference. */ static tree copy_result_decl_to_var (tree decl, copy_body_data *id) { tree copy, type; gcc_assert (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL); type = TREE_TYPE (decl); if (DECL_BY_REFERENCE (decl)) type = TREE_TYPE (type); copy = build_decl (DECL_SOURCE_LOCATION (id->dst_fn), VAR_DECL, DECL_NAME (decl), type); if (DECL_PT_UID_SET_P (decl)) SET_DECL_PT_UID (copy, DECL_PT_UID (decl)); TREE_READONLY (copy) = TREE_READONLY (decl); TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl); if (!DECL_BY_REFERENCE (decl)) { TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl); DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (decl); } return copy_decl_for_dup_finish (id, decl, copy); } tree copy_decl_no_change (tree decl, copy_body_data *id) { tree copy; copy = copy_node (decl); /* The COPY is not abstract; it will be generated in DST_FN. */ DECL_ABSTRACT_P (copy) = false; lang_hooks.dup_lang_specific_decl (copy); /* TREE_ADDRESSABLE isn't used to indicate that a label's address has been taken; it's for internal bookkeeping in expand_goto_internal. */ if (TREE_CODE (copy) == LABEL_DECL) { TREE_ADDRESSABLE (copy) = 0; LABEL_DECL_UID (copy) = -1; } return copy_decl_for_dup_finish (id, decl, copy); } static tree copy_decl_maybe_to_var (tree decl, copy_body_data *id) { if (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL) return copy_decl_to_var (decl, id); else return copy_decl_no_change (decl, id); } /* Return a copy of the function's argument tree. */ static tree copy_arguments_for_versioning (tree orig_parm, copy_body_data * id, bitmap args_to_skip, tree *vars) { tree arg, *parg; tree new_parm = NULL; int i = 0; parg = &new_parm; for (arg = orig_parm; arg; arg = DECL_CHAIN (arg), i++) if (!args_to_skip || !bitmap_bit_p (args_to_skip, i)) { tree new_tree = remap_decl (arg, id); if (TREE_CODE (new_tree) != PARM_DECL) new_tree = id->copy_decl (arg, id); lang_hooks.dup_lang_specific_decl (new_tree); *parg = new_tree; parg = &DECL_CHAIN (new_tree); } else if (!id->decl_map->get (arg)) { /* Make an equivalent VAR_DECL. If the argument was used as temporary variable later in function, the uses will be replaced by local variable. */ tree var = copy_decl_to_var (arg, id); insert_decl_map (id, arg, var); /* Declare this new variable. */ DECL_CHAIN (var) = *vars; *vars = var; } return new_parm; } /* Return a copy of the function's static chain. */ static tree copy_static_chain (tree static_chain, copy_body_data * id) { tree *chain_copy, *pvar; chain_copy = &static_chain; for (pvar = chain_copy; *pvar; pvar = &DECL_CHAIN (*pvar)) { tree new_tree = remap_decl (*pvar, id); lang_hooks.dup_lang_specific_decl (new_tree); DECL_CHAIN (new_tree) = DECL_CHAIN (*pvar); *pvar = new_tree; } return static_chain; } /* Return true if the function is allowed to be versioned. This is a guard for the versioning functionality. */ bool tree_versionable_function_p (tree fndecl) { return (!lookup_attribute ("noclone", DECL_ATTRIBUTES (fndecl)) && copy_forbidden (DECL_STRUCT_FUNCTION (fndecl)) == NULL); } /* Delete all unreachable basic blocks and update callgraph. Doing so is somewhat nontrivial because we need to update all clones and remove inline function that become unreachable. */ static bool delete_unreachable_blocks_update_callgraph (copy_body_data *id) { bool changed = false; basic_block b, next_bb; find_unreachable_blocks (); /* Delete all unreachable basic blocks. */ for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb) { next_bb = b->next_bb; if (!(b->flags & BB_REACHABLE)) { gimple_stmt_iterator bsi; for (bsi = gsi_start_bb (b); !gsi_end_p (bsi); gsi_next (&bsi)) { struct cgraph_edge *e; struct cgraph_node *node; id->dst_node->remove_stmt_references (gsi_stmt (bsi)); if (gimple_code (gsi_stmt (bsi)) == GIMPLE_CALL &&(e = id->dst_node->get_edge (gsi_stmt (bsi))) != NULL) { if (!e->inline_failed) e->callee->remove_symbol_and_inline_clones (id->dst_node); else e->remove (); } if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES && id->dst_node->clones) for (node = id->dst_node->clones; node != id->dst_node;) { node->remove_stmt_references (gsi_stmt (bsi)); if (gimple_code (gsi_stmt (bsi)) == GIMPLE_CALL && (e = node->get_edge (gsi_stmt (bsi))) != NULL) { if (!e->inline_failed) e->callee->remove_symbol_and_inline_clones (id->dst_node); else e->remove (); } if (node->clones) node = node->clones; else if (node->next_sibling_clone) node = node->next_sibling_clone; else { while (node != id->dst_node && !node->next_sibling_clone) node = node->clone_of; if (node != id->dst_node) node = node->next_sibling_clone; } } } delete_basic_block (b); changed = true; } } return changed; } /* Update clone info after duplication. */ static void update_clone_info (copy_body_data * id) { struct cgraph_node *node; if (!id->dst_node->clones) return; for (node = id->dst_node->clones; node != id->dst_node;) { /* First update replace maps to match the new body. */ if (node->clone.tree_map) { unsigned int i; for (i = 0; i < vec_safe_length (node->clone.tree_map); i++) { struct ipa_replace_map *replace_info; replace_info = (*node->clone.tree_map)[i]; walk_tree (&replace_info->old_tree, copy_tree_body_r, id, NULL); walk_tree (&replace_info->new_tree, copy_tree_body_r, id, NULL); } } if (node->clones) node = node->clones; else if (node->next_sibling_clone) node = node->next_sibling_clone; else { while (node != id->dst_node && !node->next_sibling_clone) node = node->clone_of; if (node != id->dst_node) node = node->next_sibling_clone; } } } /* Create a copy of a function's tree. OLD_DECL and NEW_DECL are FUNCTION_DECL tree nodes of the original function and the new copied function respectively. In case we want to replace a DECL tree with another tree while duplicating the function's body, TREE_MAP represents the mapping between these trees. If UPDATE_CLONES is set, the call_stmt fields of edges of clones of the function will be updated. If non-NULL ARGS_TO_SKIP determine function parameters to remove from new version. If SKIP_RETURN is true, the new version will return void. If non-NULL BLOCK_TO_COPY determine what basic blocks to copy. If non_NULL NEW_ENTRY determine new entry BB of the clone. */ void tree_function_versioning (tree old_decl, tree new_decl, vec *tree_map, bool update_clones, bitmap args_to_skip, bool skip_return, bitmap blocks_to_copy, basic_block new_entry) { struct cgraph_node *old_version_node; struct cgraph_node *new_version_node; copy_body_data id; tree p; unsigned i; struct ipa_replace_map *replace_info; basic_block old_entry_block, bb; auto_vec init_stmts; tree vars = NULL_TREE; bitmap debug_args_to_skip = args_to_skip; gcc_assert (TREE_CODE (old_decl) == FUNCTION_DECL && TREE_CODE (new_decl) == FUNCTION_DECL); DECL_POSSIBLY_INLINED (old_decl) = 1; old_version_node = cgraph_node::get (old_decl); gcc_checking_assert (old_version_node); new_version_node = cgraph_node::get (new_decl); gcc_checking_assert (new_version_node); /* Copy over debug args. */ if (DECL_HAS_DEBUG_ARGS_P (old_decl)) { vec **new_debug_args, **old_debug_args; gcc_checking_assert (decl_debug_args_lookup (new_decl) == NULL); DECL_HAS_DEBUG_ARGS_P (new_decl) = 0; old_debug_args = decl_debug_args_lookup (old_decl); if (old_debug_args) { new_debug_args = decl_debug_args_insert (new_decl); *new_debug_args = vec_safe_copy (*old_debug_args); } } /* Output the inlining info for this abstract function, since it has been inlined. If we don't do this now, we can lose the information about the variables in the function when the blocks get blown away as soon as we remove the cgraph node. */ (*debug_hooks->outlining_inline_function) (old_decl); DECL_ARTIFICIAL (new_decl) = 1; DECL_ABSTRACT_ORIGIN (new_decl) = DECL_ORIGIN (old_decl); if (DECL_ORIGIN (old_decl) == old_decl) old_version_node->used_as_abstract_origin = true; DECL_FUNCTION_PERSONALITY (new_decl) = DECL_FUNCTION_PERSONALITY (old_decl); /* Prepare the data structures for the tree copy. */ memset (&id, 0, sizeof (id)); /* Generate a new name for the new version. */ id.statements_to_fold = new hash_set; id.decl_map = new hash_map; id.debug_map = NULL; id.src_fn = old_decl; id.dst_fn = new_decl; id.src_node = old_version_node; id.dst_node = new_version_node; id.src_cfun = DECL_STRUCT_FUNCTION (old_decl); id.blocks_to_copy = blocks_to_copy; id.copy_decl = copy_decl_no_change; id.transform_call_graph_edges = update_clones ? CB_CGE_MOVE_CLONES : CB_CGE_MOVE; id.transform_new_cfg = true; id.transform_return_to_modify = false; id.transform_parameter = false; id.transform_lang_insert_block = NULL; old_entry_block = ENTRY_BLOCK_PTR_FOR_FN (DECL_STRUCT_FUNCTION (old_decl)); DECL_RESULT (new_decl) = DECL_RESULT (old_decl); DECL_ARGUMENTS (new_decl) = DECL_ARGUMENTS (old_decl); initialize_cfun (new_decl, old_decl, old_entry_block->count); if (DECL_STRUCT_FUNCTION (new_decl)->gimple_df) DECL_STRUCT_FUNCTION (new_decl)->gimple_df->ipa_pta = id.src_cfun->gimple_df->ipa_pta; /* Copy the function's static chain. */ p = DECL_STRUCT_FUNCTION (old_decl)->static_chain_decl; if (p) DECL_STRUCT_FUNCTION (new_decl)->static_chain_decl = copy_static_chain (p, &id); /* If there's a tree_map, prepare for substitution. */ if (tree_map) for (i = 0; i < tree_map->length (); i++) { gimple *init; replace_info = (*tree_map)[i]; if (replace_info->replace_p) { int parm_num = -1; if (!replace_info->old_tree) { int p = replace_info->parm_num; tree parm; tree req_type, new_type; for (parm = DECL_ARGUMENTS (old_decl); p; parm = DECL_CHAIN (parm)) p--; replace_info->old_tree = parm; parm_num = replace_info->parm_num; req_type = TREE_TYPE (parm); new_type = TREE_TYPE (replace_info->new_tree); if (!useless_type_conversion_p (req_type, new_type)) { if (fold_convertible_p (req_type, replace_info->new_tree)) replace_info->new_tree = fold_build1 (NOP_EXPR, req_type, replace_info->new_tree); else if (TYPE_SIZE (req_type) == TYPE_SIZE (new_type)) replace_info->new_tree = fold_build1 (VIEW_CONVERT_EXPR, req_type, replace_info->new_tree); else { if (dump_file) { fprintf (dump_file, " const "); print_generic_expr (dump_file, replace_info->new_tree, 0); fprintf (dump_file, " can't be converted to param "); print_generic_expr (dump_file, parm, 0); fprintf (dump_file, "\n"); } replace_info->old_tree = NULL; } } } else gcc_assert (TREE_CODE (replace_info->old_tree) == PARM_DECL); if (replace_info->old_tree) { init = setup_one_parameter (&id, replace_info->old_tree, replace_info->new_tree, id.src_fn, NULL, &vars); if (init) init_stmts.safe_push (init); if (MAY_HAVE_DEBUG_STMTS && args_to_skip) { if (parm_num == -1) { tree parm; int p; for (parm = DECL_ARGUMENTS (old_decl), p = 0; parm; parm = DECL_CHAIN (parm), p++) if (parm == replace_info->old_tree) { parm_num = p; break; } } if (parm_num != -1) { if (debug_args_to_skip == args_to_skip) { debug_args_to_skip = BITMAP_ALLOC (NULL); bitmap_copy (debug_args_to_skip, args_to_skip); } bitmap_clear_bit (debug_args_to_skip, parm_num); } } } } } /* Copy the function's arguments. */ if (DECL_ARGUMENTS (old_decl) != NULL_TREE) DECL_ARGUMENTS (new_decl) = copy_arguments_for_versioning (DECL_ARGUMENTS (old_decl), &id, args_to_skip, &vars); DECL_INITIAL (new_decl) = remap_blocks (DECL_INITIAL (id.src_fn), &id); BLOCK_SUPERCONTEXT (DECL_INITIAL (new_decl)) = new_decl; declare_inline_vars (DECL_INITIAL (new_decl), vars); if (!vec_safe_is_empty (DECL_STRUCT_FUNCTION (old_decl)->local_decls)) /* Add local vars. */ add_local_variables (DECL_STRUCT_FUNCTION (old_decl), cfun, &id); if (DECL_RESULT (old_decl) == NULL_TREE) ; else if (skip_return && !VOID_TYPE_P (TREE_TYPE (DECL_RESULT (old_decl)))) { DECL_RESULT (new_decl) = build_decl (DECL_SOURCE_LOCATION (DECL_RESULT (old_decl)), RESULT_DECL, NULL_TREE, void_type_node); DECL_CONTEXT (DECL_RESULT (new_decl)) = new_decl; cfun->returns_struct = 0; cfun->returns_pcc_struct = 0; } else { tree old_name; DECL_RESULT (new_decl) = remap_decl (DECL_RESULT (old_decl), &id); lang_hooks.dup_lang_specific_decl (DECL_RESULT (new_decl)); if (gimple_in_ssa_p (id.src_cfun) && DECL_BY_REFERENCE (DECL_RESULT (old_decl)) && (old_name = ssa_default_def (id.src_cfun, DECL_RESULT (old_decl)))) { tree new_name = make_ssa_name (DECL_RESULT (new_decl)); insert_decl_map (&id, old_name, new_name); SSA_NAME_DEF_STMT (new_name) = gimple_build_nop (); set_ssa_default_def (cfun, DECL_RESULT (new_decl), new_name); } } /* Set up the destination functions loop tree. */ if (loops_for_fn (DECL_STRUCT_FUNCTION (old_decl)) != NULL) { cfun->curr_properties &= ~PROP_loops; loop_optimizer_init (AVOID_CFG_MODIFICATIONS); cfun->curr_properties |= PROP_loops; } /* Copy the Function's body. */ copy_body (&id, old_entry_block->count, REG_BR_PROB_BASE, ENTRY_BLOCK_PTR_FOR_FN (cfun), EXIT_BLOCK_PTR_FOR_FN (cfun), new_entry); /* Renumber the lexical scoping (non-code) blocks consecutively. */ number_blocks (new_decl); /* We want to create the BB unconditionally, so that the addition of debug stmts doesn't affect BB count, which may in the end cause codegen differences. */ bb = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))); while (init_stmts.length ()) insert_init_stmt (&id, bb, init_stmts.pop ()); update_clone_info (&id); /* Remap the nonlocal_goto_save_area, if any. */ if (cfun->nonlocal_goto_save_area) { struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); wi.info = &id; walk_tree (&cfun->nonlocal_goto_save_area, remap_gimple_op_r, &wi, NULL); } /* Clean up. */ delete id.decl_map; if (id.debug_map) delete id.debug_map; free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); fold_marked_statements (0, id.statements_to_fold); delete id.statements_to_fold; delete_unreachable_blocks_update_callgraph (&id); if (id.dst_node->definition) cgraph_edge::rebuild_references (); if (loops_state_satisfies_p (LOOPS_NEED_FIXUP)) { calculate_dominance_info (CDI_DOMINATORS); fix_loop_structure (NULL); } update_ssa (TODO_update_ssa); /* After partial cloning we need to rescale frequencies, so they are within proper range in the cloned function. */ if (new_entry) { struct cgraph_edge *e; rebuild_frequencies (); new_version_node->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count; for (e = new_version_node->callees; e; e = e->next_callee) { basic_block bb = gimple_bb (e->call_stmt); e->frequency = compute_call_stmt_bb_frequency (current_function_decl, bb); e->count = bb->count; } for (e = new_version_node->indirect_calls; e; e = e->next_callee) { basic_block bb = gimple_bb (e->call_stmt); e->frequency = compute_call_stmt_bb_frequency (current_function_decl, bb); e->count = bb->count; } } if (debug_args_to_skip && MAY_HAVE_DEBUG_STMTS) { tree parm; vec **debug_args = NULL; unsigned int len = 0; for (parm = DECL_ARGUMENTS (old_decl), i = 0; parm; parm = DECL_CHAIN (parm), i++) if (bitmap_bit_p (debug_args_to_skip, i) && is_gimple_reg (parm)) { tree ddecl; if (debug_args == NULL) { debug_args = decl_debug_args_insert (new_decl); len = vec_safe_length (*debug_args); } ddecl = make_node (DEBUG_EXPR_DECL); DECL_ARTIFICIAL (ddecl) = 1; TREE_TYPE (ddecl) = TREE_TYPE (parm); SET_DECL_MODE (ddecl, DECL_MODE (parm)); vec_safe_push (*debug_args, DECL_ORIGIN (parm)); vec_safe_push (*debug_args, ddecl); } if (debug_args != NULL) { /* On the callee side, add DEBUG D#Y s=> parm DEBUG var => D#Y stmts to the first bb where var is a VAR_DECL created for the optimized away parameter in DECL_INITIAL block. This hints in the debug info that var (whole DECL_ORIGIN is the parm PARM_DECL) is optimized away, but could be looked up at the call site as value of D#X there. */ tree var = vars, vexpr; gimple_stmt_iterator cgsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); gimple *def_temp; var = vars; i = vec_safe_length (*debug_args); do { i -= 2; while (var != NULL_TREE && DECL_ABSTRACT_ORIGIN (var) != (**debug_args)[i]) var = TREE_CHAIN (var); if (var == NULL_TREE) break; vexpr = make_node (DEBUG_EXPR_DECL); parm = (**debug_args)[i]; DECL_ARTIFICIAL (vexpr) = 1; TREE_TYPE (vexpr) = TREE_TYPE (parm); SET_DECL_MODE (vexpr, DECL_MODE (parm)); def_temp = gimple_build_debug_bind (var, vexpr, NULL); gsi_insert_before (&cgsi, def_temp, GSI_NEW_STMT); def_temp = gimple_build_debug_source_bind (vexpr, parm, NULL); gsi_insert_before (&cgsi, def_temp, GSI_NEW_STMT); } while (i > len); } } if (debug_args_to_skip && debug_args_to_skip != args_to_skip) BITMAP_FREE (debug_args_to_skip); free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); gcc_assert (!id.debug_stmts.exists ()); pop_cfun (); return; } /* EXP is CALL_EXPR present in a GENERIC expression tree. Try to integrate the callee and return the inlined body on success. */ tree maybe_inline_call_in_expr (tree exp) { tree fn = get_callee_fndecl (exp); /* We can only try to inline "const" functions. */ if (fn && TREE_READONLY (fn) && DECL_SAVED_TREE (fn)) { call_expr_arg_iterator iter; copy_body_data id; tree param, arg, t; hash_map decl_map; /* Remap the parameters. */ for (param = DECL_ARGUMENTS (fn), arg = first_call_expr_arg (exp, &iter); param; param = DECL_CHAIN (param), arg = next_call_expr_arg (&iter)) decl_map.put (param, arg); memset (&id, 0, sizeof (id)); id.src_fn = fn; id.dst_fn = current_function_decl; id.src_cfun = DECL_STRUCT_FUNCTION (fn); id.decl_map = &decl_map; id.copy_decl = copy_decl_no_change; id.transform_call_graph_edges = CB_CGE_DUPLICATE; id.transform_new_cfg = false; id.transform_return_to_modify = true; id.transform_parameter = true; id.transform_lang_insert_block = NULL; /* Make sure not to unshare trees behind the front-end's back since front-end specific mechanisms may rely on sharing. */ id.regimplify = false; id.do_not_unshare = true; /* We're not inside any EH region. */ id.eh_lp_nr = 0; t = copy_tree_body (&id); /* We can only return something suitable for use in a GENERIC expression tree. */ if (TREE_CODE (t) == MODIFY_EXPR) return TREE_OPERAND (t, 1); } return NULL_TREE; } /* Duplicate a type, fields and all. */ tree build_duplicate_type (tree type) { struct copy_body_data id; memset (&id, 0, sizeof (id)); id.src_fn = current_function_decl; id.dst_fn = current_function_decl; id.src_cfun = cfun; id.decl_map = new hash_map; id.debug_map = NULL; id.copy_decl = copy_decl_no_change; type = remap_type_1 (type, &id); delete id.decl_map; if (id.debug_map) delete id.debug_map; TYPE_CANONICAL (type) = type; return type; } /* Unshare the entire DECL_SAVED_TREE of FN and return the remapped parameters and RESULT_DECL in PARMS and RESULT. Used by C++ constexpr evaluation. */ tree copy_fn (tree fn, tree& parms, tree& result) { copy_body_data id; tree param; hash_map decl_map; tree *p = &parms; *p = NULL_TREE; memset (&id, 0, sizeof (id)); id.src_fn = fn; id.dst_fn = current_function_decl; id.src_cfun = DECL_STRUCT_FUNCTION (fn); id.decl_map = &decl_map; id.copy_decl = copy_decl_no_change; id.transform_call_graph_edges = CB_CGE_DUPLICATE; id.transform_new_cfg = false; id.transform_return_to_modify = false; id.transform_parameter = true; id.transform_lang_insert_block = NULL; /* Make sure not to unshare trees behind the front-end's back since front-end specific mechanisms may rely on sharing. */ id.regimplify = false; id.do_not_unshare = true; /* We're not inside any EH region. */ id.eh_lp_nr = 0; /* Remap the parameters and result and return them to the caller. */ for (param = DECL_ARGUMENTS (fn); param; param = DECL_CHAIN (param)) { *p = remap_decl (param, &id); p = &DECL_CHAIN (*p); } if (DECL_RESULT (fn)) result = remap_decl (DECL_RESULT (fn), &id); else result = NULL_TREE; return copy_tree_body (&id); }