/* Lower complex operations to scalar operations. Copyright (C) 2004 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "tm.h" #include "tree-flow.h" #include "tree-gimple.h" #include "tree-iterator.h" #include "tree-pass.h" #include "flags.h" /* Force EXP to be a gimple_val. */ static tree gimplify_val (block_stmt_iterator *bsi, tree type, tree exp) { tree t, new_stmt, orig_stmt; if (is_gimple_val (exp)) return exp; t = make_rename_temp (type, NULL); new_stmt = build (MODIFY_EXPR, type, t, exp); orig_stmt = bsi_stmt (*bsi); SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt)); TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt); bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT); return t; } /* Extract the real or imaginary part of a complex variable or constant. Make sure that it's a proper gimple_val and gimplify it if not. Emit any new code before BSI. */ static tree extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p) { tree ret, inner_type; inner_type = TREE_TYPE (TREE_TYPE (t)); switch (TREE_CODE (t)) { case COMPLEX_CST: ret = (imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t)); break; case COMPLEX_EXPR: ret = TREE_OPERAND (t, imagpart_p); break; case VAR_DECL: case PARM_DECL: ret = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), inner_type, t); break; default: abort (); } return gimplify_val (bsi, inner_type, ret); } /* Build a binary operation and gimplify it. Emit code before BSI. Return the gimple_val holding the result. */ static tree do_binop (block_stmt_iterator *bsi, enum tree_code code, tree type, tree a, tree b) { tree ret; ret = fold (build (code, type, a, b)); STRIP_NOPS (ret); return gimplify_val (bsi, type, ret); } /* Build a unary operation and gimplify it. Emit code before BSI. Return the gimple_val holding the result. */ static tree do_unop (block_stmt_iterator *bsi, enum tree_code code, tree type, tree a) { tree ret; ret = fold (build1 (code, type, a)); STRIP_NOPS (ret); return gimplify_val (bsi, type, ret); } /* Update an assignment to a complex variable in place. */ static void update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i) { tree stmt = bsi_stmt (*bsi); tree type; modify_stmt (stmt); if (TREE_CODE (stmt) == RETURN_EXPR) stmt = TREE_OPERAND (stmt, 0); type = TREE_TYPE (TREE_OPERAND (stmt, 1)); TREE_OPERAND (stmt, 1) = build (COMPLEX_EXPR, type, r, i); } /* Expand complex addition to scalars: a + b = (ar + br) + i(ai + bi) a - b = (ar - br) + i(ai + bi) */ static void expand_complex_addition (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree rr, ri; rr = do_binop (bsi, code, inner_type, ar, br); ri = do_binop (bsi, code, inner_type, ai, bi); update_complex_assignment (bsi, rr, ri); } /* Expand complex multiplication to scalars: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) */ static void expand_complex_multiplication (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi) { tree t1, t2, t3, t4, rr, ri; t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, br); t2 = do_binop (bsi, MULT_EXPR, inner_type, ai, bi); t3 = do_binop (bsi, MULT_EXPR, inner_type, ar, bi); /* Avoid expanding redundant multiplication for the common case of squaring a complex number. */ if (ar == br && ai == bi) t4 = t3; else t4 = do_binop (bsi, MULT_EXPR, inner_type, ai, br); rr = do_binop (bsi, MINUS_EXPR, inner_type, t1, t2); ri = do_binop (bsi, PLUS_EXPR, inner_type, t3, t4); update_complex_assignment (bsi, rr, ri); } /* Expand complex division to scalars, straightforward algorithm. a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) t = br*br + bi*bi */ static void expand_complex_div_straight (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree rr, ri, div, t1, t2, t3; t1 = do_binop (bsi, MULT_EXPR, inner_type, br, br); t2 = do_binop (bsi, MULT_EXPR, inner_type, bi, bi); div = do_binop (bsi, PLUS_EXPR, inner_type, t1, t2); t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, br); t2 = do_binop (bsi, MULT_EXPR, inner_type, ai, bi); t3 = do_binop (bsi, PLUS_EXPR, inner_type, t1, t2); rr = do_binop (bsi, code, inner_type, t3, div); t1 = do_binop (bsi, MULT_EXPR, inner_type, ai, br); t2 = do_binop (bsi, MULT_EXPR, inner_type, ar, bi); t3 = do_binop (bsi, MINUS_EXPR, inner_type, t1, t2); ri = do_binop (bsi, code, inner_type, t3, div); update_complex_assignment (bsi, rr, ri); } /* Expand complex division to scalars, modified algorithm to minimize overflow with wide input ranges. */ static void expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree rr, ri, ratio, div, t1, t2, min, max, cond; /* Examine |br| < |bi|, and branch. */ t1 = do_unop (bsi, ABS_EXPR, inner_type, br); t2 = do_unop (bsi, ABS_EXPR, inner_type, bi); cond = fold (build (LT_EXPR, boolean_type_node, t1, t2)); STRIP_NOPS (cond); if (TREE_CONSTANT (cond)) { if (integer_zerop (cond)) min = bi, max = br; else min = br, max = bi; } else { basic_block bb_cond, bb_true, bb_false, bb_join; tree l1, l2, l3; edge e; l1 = create_artificial_label (); t1 = build (GOTO_EXPR, void_type_node, l1); l2 = create_artificial_label (); t2 = build (GOTO_EXPR, void_type_node, l2); cond = build (COND_EXPR, void_type_node, cond, t1, t2); bsi_insert_before (bsi, cond, BSI_SAME_STMT); min = make_rename_temp (inner_type, NULL); max = make_rename_temp (inner_type, NULL); l3 = create_artificial_label (); /* Split the original block, and create the TRUE and FALSE blocks. */ e = split_block (bsi->bb, cond); bb_cond = e->src; bb_join = e->dest; bb_true = create_empty_bb (bb_cond); bb_false = create_empty_bb (bb_true); /* Wire the blocks together. */ e->flags = EDGE_TRUE_VALUE; redirect_edge_succ (e, bb_true); make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); make_edge (bb_true, bb_join, 0); make_edge (bb_false, bb_join, 0); /* Update dominance info. Note that bb_join's data was updated by split_block. */ if (dom_computed[CDI_DOMINATORS] >= DOM_CONS_OK) { set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); } /* Compute min and max for TRUE block. */ *bsi = bsi_start (bb_true); t1 = build (LABEL_EXPR, void_type_node, l1); bsi_insert_after (bsi, t1, BSI_NEW_STMT); t1 = build (MODIFY_EXPR, inner_type, min, br); bsi_insert_after (bsi, t1, BSI_NEW_STMT); t1 = build (MODIFY_EXPR, inner_type, max, bi); bsi_insert_after (bsi, t1, BSI_NEW_STMT); /* Compute min and max for FALSE block. */ *bsi = bsi_start (bb_false); t1 = build (LABEL_EXPR, void_type_node, l2); bsi_insert_after (bsi, t1, BSI_NEW_STMT); t1 = build (MODIFY_EXPR, inner_type, min, bi); bsi_insert_after (bsi, t1, BSI_NEW_STMT); t1 = build (MODIFY_EXPR, inner_type, max, br); bsi_insert_after (bsi, t1, BSI_NEW_STMT); /* Insert the join label into the tail of the original block. */ *bsi = bsi_start (bb_join); t1 = build (LABEL_EXPR, void_type_node, l3); bsi_insert_before (bsi, t1, BSI_SAME_STMT); } /* Now we have MIN(|br|, |bi|) and MAX(|br|, |bi|). We now use the ratio min/max to scale both the dividend and divisor. */ ratio = do_binop (bsi, code, inner_type, min, max); /* Calculate the divisor: min*ratio + max. */ t1 = do_binop (bsi, MULT_EXPR, inner_type, min, ratio); div = do_binop (bsi, PLUS_EXPR, inner_type, t1, max); /* Result is now ((ar + ai*ratio)/div) + i((ai - ar*ratio)/div). */ t1 = do_binop (bsi, MULT_EXPR, inner_type, ai, ratio); t2 = do_binop (bsi, PLUS_EXPR, inner_type, ar, t1); rr = do_binop (bsi, code, inner_type, t2, div); t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, ratio); t2 = do_binop (bsi, MINUS_EXPR, inner_type, ai, t1); ri = do_binop (bsi, code, inner_type, t2, div); update_complex_assignment (bsi, rr, ri); } /* Expand complex division to scalars. */ static void expand_complex_division (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { switch (flag_complex_divide_method) { case 0: /* straightforward implementation of complex divide acceptable. */ expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code); break; case 1: /* wide ranges of inputs must work for complex divide. */ expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code); break; default: /* C99-like requirements for complex divide (not yet implemented). */ abort (); } } /* Expand complex negation to scalars: -a = (-ar) + i(-ai) */ static void expand_complex_negation (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai) { tree rr, ri; rr = do_unop (bsi, NEGATE_EXPR, inner_type, ar); ri = do_unop (bsi, NEGATE_EXPR, inner_type, ai); update_complex_assignment (bsi, rr, ri); } /* Expand complex conjugate to scalars: ~a = (ar) + i(-ai) */ static void expand_complex_conjugate (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai) { tree ri; ri = do_unop (bsi, NEGATE_EXPR, inner_type, ai); update_complex_assignment (bsi, ar, ri); } /* Expand complex comparison (EQ or NE only). */ static void expand_complex_comparison (block_stmt_iterator *bsi, tree ar, tree ai, tree br, tree bi, enum tree_code code) { tree cr, ci, cc, stmt, type; cr = do_binop (bsi, code, boolean_type_node, ar, br); ci = do_binop (bsi, code, boolean_type_node, ai, bi); cc = do_binop (bsi, (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), boolean_type_node, cr, ci); stmt = bsi_stmt (*bsi); modify_stmt (stmt); switch (TREE_CODE (stmt)) { case RETURN_EXPR: stmt = TREE_OPERAND (stmt, 0); /* FALLTHRU */ case MODIFY_EXPR: type = TREE_TYPE (TREE_OPERAND (stmt, 1)); TREE_OPERAND (stmt, 1) = convert (type, cc); break; case COND_EXPR: TREE_OPERAND (stmt, 0) = cc; break; default: abort (); } } /* Process one statement. If we identify a complex operation, expand it. */ static void expand_complex_operations_1 (block_stmt_iterator *bsi) { tree stmt = bsi_stmt (*bsi); tree rhs, type, inner_type; tree ac, ar, ai, bc, br, bi; enum tree_code code; switch (TREE_CODE (stmt)) { case RETURN_EXPR: stmt = TREE_OPERAND (stmt, 0); if (!stmt) return; if (TREE_CODE (stmt) != MODIFY_EXPR) return; /* FALLTHRU */ case MODIFY_EXPR: rhs = TREE_OPERAND (stmt, 1); break; case COND_EXPR: rhs = TREE_OPERAND (stmt, 0); break; default: return; } type = TREE_TYPE (rhs); code = TREE_CODE (rhs); /* Initial filter for operations we handle. */ switch (code) { case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: case NEGATE_EXPR: case CONJ_EXPR: if (TREE_CODE (type) != COMPLEX_TYPE) return; inner_type = TREE_TYPE (type); break; case EQ_EXPR: case NE_EXPR: inner_type = TREE_TYPE (TREE_OPERAND (rhs, 1)); if (TREE_CODE (inner_type) != COMPLEX_TYPE) return; break; default: return; } /* Extract the components of the two complex values. Make sure and handle the common case of the same value used twice specially. */ ac = TREE_OPERAND (rhs, 0); ar = extract_component (bsi, ac, 0); ai = extract_component (bsi, ac, 1); if (TREE_CODE_CLASS (code) == '1') bc = br = bi = NULL; else { bc = TREE_OPERAND (rhs, 1); if (ac == bc) br = ar, bi = ai; else { br = extract_component (bsi, bc, 0); bi = extract_component (bsi, bc, 1); } } switch (code) { case PLUS_EXPR: case MINUS_EXPR: expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code); break; case MULT_EXPR: expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi); break; case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: expand_complex_division (bsi, inner_type, ar, ai, br, bi, code); break; case NEGATE_EXPR: expand_complex_negation (bsi, inner_type, ar, ai); break; case CONJ_EXPR: expand_complex_conjugate (bsi, inner_type, ar, ai); break; case EQ_EXPR: case NE_EXPR: expand_complex_comparison (bsi, ar, ai, br, bi, code); break; default: abort (); } } /* Main loop to process each statement. */ /* ??? Could use dominator bits to propagate from complex_expr at the same time. This might reveal more constants, particularly in cases such as (complex = complex op scalar). This may not be relevant after SRA and subsequent cleanups. Proof of this would be if we verify that the code generated by expand_complex_div_wide is simplified properly to straight-line code. */ static void expand_complex_operations (void) { int old_last_basic_block = last_basic_block; block_stmt_iterator bsi; basic_block bb; FOR_EACH_BB (bb) { if (bb->index >= old_last_basic_block) continue; for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) expand_complex_operations_1 (&bsi); } } struct tree_opt_pass pass_lower_complex = { "complex", /* name */ NULL, /* gate */ expand_complex_operations, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ 0, /* tv_id */ PROP_cfg, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_rename_vars | TODO_ggc_collect | TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow /* todo_flags_finish */ };