# Copyright (C) 1999-2019 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3. If not see
# .
# Please email any bugs, comments, and/or additions to this file to:
# gcc-patches@gcc.gnu.org
# This file defines procs for determining features supported by the target.
# Try to compile the code given by CONTENTS into an output file of
# type TYPE, where TYPE is as for target_compile. Return a list
# whose first element contains the compiler messages and whose
# second element is the name of the output file.
#
# BASENAME is a prefix to use for source and output files.
# If ARGS is not empty, its first element is a string that
# should be added to the command line.
#
# Assume by default that CONTENTS is C code.
# Otherwise, code should contain:
# "// C++" for c++,
# "// D" for D,
# "! Fortran" for Fortran code,
# "/* ObjC", for ObjC
# "// ObjC++" for ObjC++
# and "// Go" for Go
# If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
# allow for ObjC/ObjC++ specific flags.
proc check_compile {basename type contents args} {
global tool
verbose "check_compile tool: $tool for $basename"
# Save additional_sources to avoid compiling testsuite's sources
# against check_compile's source.
global additional_sources
if [info exists additional_sources] {
set tmp_additional_sources "$additional_sources"
set additional_sources ""
}
if { [llength $args] > 0 } {
set options [list "additional_flags=[lindex $args 0]"]
} else {
set options ""
}
switch -glob -- $contents {
"*! Fortran*" { set src ${basename}[pid].f90 }
"*// C++*" { set src ${basename}[pid].cc }
"*// D*" { set src ${basename}[pid].d }
"*// ObjC++*" { set src ${basename}[pid].mm }
"*/* ObjC*" { set src ${basename}[pid].m }
"*// Go*" { set src ${basename}[pid].go }
default {
switch -- $tool {
"objc" { set src ${basename}[pid].m }
"obj-c++" { set src ${basename}[pid].mm }
default { set src ${basename}[pid].c }
}
}
}
set compile_type $type
switch -glob $type {
assembly { set output ${basename}[pid].s }
object { set output ${basename}[pid].o }
executable { set output ${basename}[pid].exe }
"rtl-*" {
set output ${basename}[pid].s
lappend options "additional_flags=-fdump-$type"
set compile_type assembly
}
}
set f [open $src "w"]
puts $f $contents
close $f
set lines [${tool}_target_compile $src $output $compile_type "$options"]
file delete $src
set scan_output $output
# Don't try folding this into the switch above; calling "glob" before the
# file is created won't work.
if [regexp "rtl-(.*)" $type dummy rtl_type] {
set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
file delete $output
}
# Restore additional_sources.
if [info exists additional_sources] {
set additional_sources "$tmp_additional_sources"
}
return [list $lines $scan_output]
}
proc current_target_name { } {
global target_info
if [info exists target_info(target,name)] {
set answer $target_info(target,name)
} else {
set answer ""
}
return $answer
}
# Implement an effective-target check for property PROP by invoking
# the Tcl command ARGS and seeing if it returns true.
proc check_cached_effective_target { prop args } {
global et_cache
set target [current_target_name]
if {![info exists et_cache($prop,$target)]} {
verbose "check_cached_effective_target $prop: checking $target" 2
if {[string is true -strict $args] || [string is false -strict $args]} {
error {check_cached_effective_target condition already evaluated; did you pass [...] instead of the expected {...}?}
} else {
set code [catch {uplevel eval $args} result]
if {$code != 0 && $code != 2} {
return -code $code $result
}
set et_cache($prop,$target) $result
}
}
set value $et_cache($prop,$target)
verbose "check_cached_effective_target $prop: returning $value for $target" 2
return $value
}
# Implements a version of check_cached_effective_target that also takes et_index
# into account when creating the key for the cache.
proc check_cached_effective_target_indexed { prop args } {
global et_index
set key "$et_index $prop"
verbose "check_cached_effective_target_index $prop: returning $key" 2
return [check_cached_effective_target $key [list uplevel eval $args]]
}
# Clear effective-target cache. This is useful after testing
# effective-target features and overriding TEST_ALWAYS_FLAGS and/or
# ALWAYS_CXXFLAGS.
# If one changes ALWAYS_CXXFLAGS or TEST_ALWAYS_FLAGS then they should
# do a clear_effective_target_cache at the end as the target cache can
# make decisions based upon the flags, and those decisions need to be
# redone when the flags change. An example of this is the
# asan_init/asan_finish pair.
proc clear_effective_target_cache { } {
global et_cache
array unset et_cache
}
# Like check_compile, but delete the output file and return true if the
# compiler printed no messages.
proc check_no_compiler_messages_nocache {args} {
set result [eval check_compile $args]
set lines [lindex $result 0]
set output [lindex $result 1]
remote_file build delete $output
return [string match "" $lines]
}
# Like check_no_compiler_messages_nocache, but cache the result.
# PROP is the property we're checking, and doubles as a prefix for
# temporary filenames.
proc check_no_compiler_messages {prop args} {
return [check_cached_effective_target $prop {
eval [list check_no_compiler_messages_nocache $prop] $args
}]
}
# Like check_compile, but return true if the compiler printed no
# messages and if the contents of the output file satisfy PATTERN.
# If PATTERN has the form "!REGEXP", the contents satisfy it if they
# don't match regular expression REGEXP, otherwise they satisfy it
# if they do match regular expression PATTERN. (PATTERN can start
# with something like "[!]" if the regular expression needs to match
# "!" as the first character.)
#
# Delete the output file before returning. The other arguments are
# as for check_compile.
proc check_no_messages_and_pattern_nocache {basename pattern args} {
global tool
set result [eval [list check_compile $basename] $args]
set lines [lindex $result 0]
set output [lindex $result 1]
set ok 0
if { [string match "" $lines] } {
set chan [open "$output"]
set invert [regexp {^!(.*)} $pattern dummy pattern]
set ok [expr { [regexp $pattern [read $chan]] != $invert }]
close $chan
}
remote_file build delete $output
return $ok
}
# Like check_no_messages_and_pattern_nocache, but cache the result.
# PROP is the property we're checking, and doubles as a prefix for
# temporary filenames.
proc check_no_messages_and_pattern {prop pattern args} {
return [check_cached_effective_target $prop {
eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
}]
}
# Try to compile and run an executable from code CONTENTS. Return true
# if the compiler reports no messages and if execution "passes" in the
# usual DejaGNU sense. The arguments are as for check_compile, with
# TYPE implicitly being "executable".
proc check_runtime_nocache {basename contents args} {
global tool
set result [eval [list check_compile $basename executable $contents] $args]
set lines [lindex $result 0]
set output [lindex $result 1]
set ok 0
if { [string match "" $lines] } {
# No error messages, everything is OK.
set result [remote_load target "./$output" "" ""]
set status [lindex $result 0]
verbose "check_runtime_nocache $basename: status is <$status>" 2
if { $status == "pass" } {
set ok 1
}
}
remote_file build delete $output
return $ok
}
# Like check_runtime_nocache, but cache the result. PROP is the
# property we're checking, and doubles as a prefix for temporary
# filenames.
proc check_runtime {prop args} {
global tool
return [check_cached_effective_target $prop {
eval [list check_runtime_nocache $prop] $args
}]
}
# Return 1 if GCC was configured with $pattern.
proc check_configured_with { pattern } {
global tool
set gcc_output [${tool}_target_compile "-v" "" "none" ""]
if { [ regexp "Configured with: \[^\n\]*$pattern" $gcc_output ] } {
verbose "Matched: $pattern" 2
return 1
}
verbose "Failed to match: $pattern" 2
return 0
}
###############################
# proc check_weak_available { }
###############################
# weak symbols are only supported in some configs/object formats
# this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
proc check_weak_available { } {
global target_cpu
# All mips targets should support it
if { [ string first "mips" $target_cpu ] >= 0 } {
return 1
}
# All AIX targets should support it
if { [istarget *-*-aix*] } {
return 1
}
# All solaris2 targets should support it
if { [istarget *-*-solaris2*] } {
return 1
}
# Windows targets Cygwin and MingW32 support it
if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
return 1
}
# HP-UX 10.X doesn't support it
if { [istarget hppa*-*-hpux10*] } {
return 0
}
# nvptx (nearly) supports it
if { [istarget nvptx-*-*] } {
return 1
}
# pdp11 doesn't support it
if { [istarget pdp11*-*-*] } {
return 0
}
# ELF and ECOFF support it. a.out does with gas/gld but may also with
# other linkers, so we should try it
set objformat [gcc_target_object_format]
switch $objformat {
elf { return 1 }
ecoff { return 1 }
a.out { return 1 }
mach-o { return 1 }
som { return 1 }
unknown { return -1 }
default { return 0 }
}
}
# return 1 if weak undefined symbols are supported.
proc check_effective_target_weak_undefined { } {
return [check_runtime weak_undefined {
extern void foo () __attribute__((weak));
int main (void) { if (foo) return 1; return 0; }
} ""]
}
###############################
# proc check_weak_override_available { }
###############################
# Like check_weak_available, but return 0 if weak symbol definitions
# cannot be overridden.
proc check_weak_override_available { } {
if { [istarget *-*-mingw*] } {
return 0
}
return [check_weak_available]
}
###############################
# proc check_visibility_available { what_kind }
###############################
# The visibility attribute is only support in some object formats
# This proc returns 1 if it is supported, 0 if not.
# The argument is the kind of visibility, default/protected/hidden/internal.
proc check_visibility_available { what_kind } {
if [string match "" $what_kind] { set what_kind "hidden" }
return [check_no_compiler_messages visibility_available_$what_kind object "
void f() __attribute__((visibility(\"$what_kind\")));
void f() {}
"]
}
###############################
# proc check_alias_available { }
###############################
# Determine if the target toolchain supports the alias attribute.
# Returns 2 if the target supports aliases. Returns 1 if the target
# only supports weak aliased. Returns 0 if the target does not
# support aliases at all. Returns -1 if support for aliases could not
# be determined.
proc check_alias_available { } {
global tool
return [check_cached_effective_target alias_available {
set src alias[pid].c
set obj alias[pid].o
verbose "check_alias_available compiling testfile $src" 2
set f [open $src "w"]
# Compile a small test program. The definition of "g" is
# necessary to keep the Solaris assembler from complaining
# about the program.
puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
close $f
set lines [${tool}_target_compile $src $obj object ""]
file delete $src
remote_file build delete $obj
if [string match "" $lines] then {
# No error messages, everything is OK.
return 2
} else {
if [regexp "alias definitions not supported" $lines] {
verbose "check_alias_available target does not support aliases" 2
set objformat [gcc_target_object_format]
if { $objformat == "elf" } {
verbose "check_alias_available but target uses ELF format, so it ought to" 2
return -1
} else {
return 0
}
} else {
if [regexp "only weak aliases are supported" $lines] {
verbose "check_alias_available target supports only weak aliases" 2
return 1
} else {
return -1
}
}
}
}]
}
# Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
proc check_effective_target_alias { } {
if { [check_alias_available] < 2 } {
return 0
} else {
return 1
}
}
# Returns 1 if the target toolchain supports ifunc, 0 otherwise.
proc check_ifunc_available { } {
return [check_no_compiler_messages ifunc_available object {
#ifdef __cplusplus
extern "C" {
#endif
extern void f_ ();
typedef void F (void);
F* g (void) { return &f_; }
void f () __attribute__ ((ifunc ("g")));
#ifdef __cplusplus
}
#endif
}]
}
# Returns true if --gc-sections is supported on the target.
proc check_gc_sections_available { } {
global tool
return [check_cached_effective_target gc_sections_available {
# Some targets don't support gc-sections despite whatever's
# advertised by ld's options.
if { [istarget alpha*-*-*]
|| [istarget ia64-*-*] } {
return 0
}
# elf2flt uses -q (--emit-relocs), which is incompatible with
# --gc-sections.
if { [board_info target exists ldflags]
&& [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
return 0
}
# VxWorks kernel modules are relocatable objects linked with -r,
# while RTP executables are linked with -q (--emit-relocs).
# Both of these options are incompatible with --gc-sections.
if { [istarget *-*-vxworks*] } {
return 0
}
# Check if the ld used by gcc supports --gc-sections.
set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
set ld_output [remote_exec host "$gcc_ld" "--help"]
if { [ string first "--gc-sections" $ld_output ] >= 0 } {
return 1
} else {
return 0
}
}]
}
# Return 1 if according to target_info struct and explicit target list
# target is supposed to support trampolines.
proc check_effective_target_trampolines { } {
if [target_info exists gcc,no_trampolines] {
return 0
}
if { [istarget avr-*-*]
|| [istarget msp430-*-*]
|| [istarget nvptx-*-*]
|| [istarget hppa2.0w-hp-hpux11.23]
|| [istarget hppa64-hp-hpux11.23] } {
return 0;
}
return 1
}
# Return 1 if target has limited stack size.
proc check_effective_target_stack_size { } {
if [target_info exists gcc,stack_size] {
return 1
}
return 0
}
# Return the value attribute of an effective target, otherwise return 0.
proc dg-effective-target-value { effective_target } {
if { "$effective_target" == "stack_size" } {
if [check_effective_target_stack_size] {
return [target_info gcc,stack_size]
}
}
return 0
}
# Return 1 if signal.h is supported.
proc check_effective_target_signal { } {
if [target_info exists gcc,signal_suppress] {
return 0
}
return 1
}
# Return 1 if according to target_info struct and explicit target list
# target disables -fdelete-null-pointer-checks. Targets should return 0
# if they simply default to -fno-delete-null-pointer-checks but obey
# -fdelete-null-pointer-checks when passed explicitly (and tests that
# depend on this option should do that).
proc check_effective_target_keeps_null_pointer_checks { } {
if [target_info exists keeps_null_pointer_checks] {
return 1
}
if { [istarget msp430-*-*] } {
return 1;
}
return 0
}
# Return the autofdo profile wrapper
# Linux by default allows 516KB of perf event buffers
# in /proc/sys/kernel/perf_event_mlock_kb
# Each individual perf tries to grab it
# This causes problems with parallel test suite runs. Instead
# limit us to 8 pages (32K), which should be good enough
# for the small test programs. With the default settings
# this allows parallelism of 16 and higher of parallel gcc-auto-profile
proc profopt-perf-wrapper { } {
global srcdir
return "$srcdir/../config/i386/gcc-auto-profile -o perf.data -m8 "
}
# Return true if profiling is supported on the target.
proc check_profiling_available { test_what } {
verbose "Profiling argument is <$test_what>" 1
# These conditions depend on the argument so examine them before
# looking at the cache variable.
# Tree profiling requires TLS runtime support.
if { $test_what == "-fprofile-generate" } {
if { ![check_effective_target_tls_runtime] } {
return 0
}
}
if { $test_what == "-fauto-profile" } {
if { !([istarget i?86-*-linux*] || [istarget x86_64-*-linux*]) } {
verbose "autofdo only supported on linux"
return 0
}
# not cross compiling?
if { ![isnative] } {
verbose "autofdo not supported for non native builds"
return 0
}
set event [profopt-perf-wrapper]
if {$event == "" } {
verbose "autofdo not supported"
return 0
}
global srcdir
set status [remote_exec host "$srcdir/../config/i386/gcc-auto-profile" "true -v >/dev/null"]
if { [lindex $status 0] != 0 } {
verbose "autofdo not supported because perf does not work"
return 0
}
# no good way to check this in advance -- check later instead.
#set status [remote_exec host "create_gcov" "2>/dev/null"]
#if { [lindex $status 0] != 255 } {
# verbose "autofdo not supported due to missing create_gcov"
# return 0
#}
}
# Support for -p on solaris2 relies on mcrt1.o which comes with the
# vendor compiler. We cannot reliably predict the directory where the
# vendor compiler (and thus mcrt1.o) is installed so we can't
# necessarily find mcrt1.o even if we have it.
if { [istarget *-*-solaris2*] && $test_what == "-p" } {
return 0
}
# We don't yet support profiling for MIPS16.
if { [istarget mips*-*-*]
&& ![check_effective_target_nomips16]
&& ($test_what == "-p" || $test_what == "-pg") } {
return 0
}
# MinGW does not support -p.
if { [istarget *-*-mingw*] && $test_what == "-p" } {
return 0
}
# cygwin does not support -p.
if { [istarget *-*-cygwin*] && $test_what == "-p" } {
return 0
}
# uClibc does not have gcrt1.o.
if { [check_effective_target_uclibc]
&& ($test_what == "-p" || $test_what == "-pg") } {
return 0
}
# Now examine the cache variable.
set profiling_working \
[check_cached_effective_target profiling_available {
# Some targets don't have any implementation of __bb_init_func or are
# missing other needed machinery.
if {[istarget aarch64*-*-elf]
|| [istarget am3*-*-linux*]
|| [istarget arm*-*-eabi*]
|| [istarget arm*-*-elf]
|| [istarget arm*-*-symbianelf*]
|| [istarget avr-*-*]
|| [istarget bfin-*-*]
|| [istarget cris-*-*]
|| [istarget crisv32-*-*]
|| [istarget csky-*-elf]
|| [istarget fido-*-elf]
|| [istarget h8300-*-*]
|| [istarget lm32-*-*]
|| [istarget m32c-*-elf]
|| [istarget m68k-*-elf]
|| [istarget m68k-*-uclinux*]
|| [istarget mips*-*-elf*]
|| [istarget mmix-*-*]
|| [istarget mn10300-*-elf*]
|| [istarget moxie-*-elf*]
|| [istarget msp430-*-*]
|| [istarget nds32*-*-elf]
|| [istarget nios2-*-elf]
|| [istarget nvptx-*-*]
|| [istarget powerpc-*-eabi*]
|| [istarget powerpc-*-elf]
|| [istarget rx-*-*]
|| [istarget tic6x-*-elf]
|| [istarget visium-*-*]
|| [istarget xstormy16-*]
|| [istarget xtensa*-*-elf]
|| [istarget *-*-rtems*]
|| [istarget *-*-vxworks*] } {
return 0
} else {
return 1
}
}]
# -pg link test result can't be cached since it may change between
# runs.
if { $profiling_working == 1
&& ![check_no_compiler_messages_nocache profiling executable {
int main() { return 0; } } "-pg"] } {
set profiling_working 0
}
return $profiling_working
}
# Check to see if a target is "freestanding". This is as per the definition
# in Section 4 of C99 standard. Effectively, it is a target which supports no
# extra headers or libraries other than what is considered essential.
proc check_effective_target_freestanding { } {
if { [istarget nvptx-*-*] } {
return 1
}
return 0
}
# Return 1 if target has packed layout of structure members by
# default, 0 otherwise. Note that this is slightly different than
# whether the target has "natural alignment": both attributes may be
# false.
proc check_effective_target_default_packed { } {
return [check_no_compiler_messages default_packed assembly {
struct x { char a; long b; } c;
int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
}]
}
# Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
# documentation, where the test also comes from.
proc check_effective_target_pcc_bitfield_type_matters { } {
# PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
# bitfields, but let's stick to the example code from the docs.
return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
struct foo1 { char x; char :0; char y; };
struct foo2 { char x; int :0; char y; };
int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
}]
}
# Add to FLAGS all the target-specific flags needed to use thread-local storage.
proc add_options_for_tls { flags } {
# On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
# libthread, so always pass -pthread for native TLS. Same for AIX.
# Need to duplicate native TLS check from
# check_effective_target_tls_native to avoid recursion.
if { ([istarget powerpc-ibm-aix*]) &&
[check_no_messages_and_pattern tls_native "!emutls" assembly {
__thread int i;
int f (void) { return i; }
void g (int j) { i = j; }
}] } {
return "-pthread [g++_link_flags [get_multilibs "-pthread"] ] $flags "
}
return $flags
}
# Return 1 if indirect jumps are supported, 0 otherwise.
proc check_effective_target_indirect_jumps {} {
if { [istarget nvptx-*-*] } {
return 0
}
return 1
}
# Return 1 if nonlocal goto is supported, 0 otherwise.
proc check_effective_target_nonlocal_goto {} {
if { [istarget nvptx-*-*] } {
return 0
}
return 1
}
# Return 1 if global constructors are supported, 0 otherwise.
proc check_effective_target_global_constructor {} {
if { [istarget nvptx-*-*] } {
return 0
}
return 1
}
# Return 1 if taking label values is supported, 0 otherwise.
proc check_effective_target_label_values {} {
if { [istarget nvptx-*-*] || [target_info exists gcc,no_label_values] } {
return 0
}
return 1
}
# Return 1 if builtin_return_address and builtin_frame_address are
# supported, 0 otherwise.
proc check_effective_target_return_address {} {
if { [istarget nvptx-*-*] } {
return 0
}
return 1
}
# Return 1 if the assembler does not verify function types against
# calls, 0 otherwise. Such verification will typically show up problems
# with K&R C function declarations.
proc check_effective_target_untyped_assembly {} {
if { [istarget nvptx-*-*] } {
return 0
}
return 1
}
# Return 1 if alloca is supported, 0 otherwise.
proc check_effective_target_alloca {} {
if { [istarget nvptx-*-*] } {
return [check_no_compiler_messages alloca assembly {
void f (void*);
void g (int n) { f (__builtin_alloca (n)); }
}]
}
return 1
}
# Return 1 if thread local storage (TLS) is supported, 0 otherwise.
proc check_effective_target_tls {} {
return [check_no_compiler_messages tls assembly {
__thread int i;
int f (void) { return i; }
void g (int j) { i = j; }
}]
}
# Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
proc check_effective_target_tls_native {} {
# VxWorks uses emulated TLS machinery, but with non-standard helper
# functions, so we fail to automatically detect it.
if { [istarget *-*-vxworks*] } {
return 0
}
return [check_no_messages_and_pattern tls_native "!emutls" assembly {
__thread int i;
int f (void) { return i; }
void g (int j) { i = j; }
}]
}
# Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
proc check_effective_target_tls_emulated {} {
# VxWorks uses emulated TLS machinery, but with non-standard helper
# functions, so we fail to automatically detect it.
if { [istarget *-*-vxworks*] } {
return 1
}
return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
__thread int i;
int f (void) { return i; }
void g (int j) { i = j; }
}]
}
# Return 1 if TLS executables can run correctly, 0 otherwise.
proc check_effective_target_tls_runtime {} {
return [check_runtime tls_runtime {
__thread int thr __attribute__((tls_model("global-dynamic"))) = 0;
int main (void) { return thr; }
} [add_options_for_tls ""]]
}
# Return 1 if atomic compare-and-swap is supported on 'int'
proc check_effective_target_cas_char {} {
return [check_no_compiler_messages cas_char assembly {
#ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
#error unsupported
#endif
} ""]
}
proc check_effective_target_cas_int {} {
return [check_no_compiler_messages cas_int assembly {
#if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
/* ok */
#elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
/* ok */
#else
#error unsupported
#endif
} ""]
}
# Return 1 if -ffunction-sections is supported, 0 otherwise.
proc check_effective_target_function_sections {} {
# Darwin has its own scheme and silently accepts -ffunction-sections.
if { [istarget *-*-darwin*] } {
return 0
}
return [check_no_compiler_messages functionsections assembly {
void foo (void) { }
} "-ffunction-sections"]
}
# Return 1 if instruction scheduling is available, 0 otherwise.
proc check_effective_target_scheduling {} {
return [check_no_compiler_messages scheduling object {
void foo (void) { }
} "-fschedule-insns"]
}
# Return 1 if trapping arithmetic is available, 0 otherwise.
proc check_effective_target_trapping {} {
return [check_no_compiler_messages trapping object {
int add (int a, int b) { return a + b; }
} "-ftrapv"]
}
# Return 1 if compilation with -fgraphite is error-free for trivial
# code, 0 otherwise.
proc check_effective_target_fgraphite {} {
return [check_no_compiler_messages fgraphite object {
void foo (void) { }
} "-O1 -fgraphite"]
}
# Return 1 if compilation with -fopenacc is error-free for trivial
# code, 0 otherwise.
proc check_effective_target_fopenacc {} {
# nvptx can be built with the device-side bits of openacc, but it
# does not make sense to test it as an openacc host.
if [istarget nvptx-*-*] { return 0 }
return [check_no_compiler_messages fopenacc object {
void foo (void) { }
} "-fopenacc"]
}
# Return 1 if compilation with -fopenmp is error-free for trivial
# code, 0 otherwise.
proc check_effective_target_fopenmp {} {
# nvptx can be built with the device-side bits of libgomp, but it
# does not make sense to test it as an openmp host.
if [istarget nvptx-*-*] { return 0 }
return [check_no_compiler_messages fopenmp object {
void foo (void) { }
} "-fopenmp"]
}
# Return 1 if compilation with -fgnu-tm is error-free for trivial
# code, 0 otherwise.
proc check_effective_target_fgnu_tm {} {
return [check_no_compiler_messages fgnu_tm object {
void foo (void) { }
} "-fgnu-tm"]
}
# Return 1 if the target supports mmap, 0 otherwise.
proc check_effective_target_mmap {} {
return [check_function_available "mmap"]
}
# Return 1 if the target supports dlopen, 0 otherwise.
proc check_effective_target_dlopen {} {
return [check_no_compiler_messages dlopen executable {
#include
int main(void) { dlopen ("dummy.so", RTLD_NOW); }
} [add_options_for_dlopen ""]]
}
proc add_options_for_dlopen { flags } {
return "$flags -ldl"
}
# Return 1 if the target supports clone, 0 otherwise.
proc check_effective_target_clone {} {
return [check_function_available "clone"]
}
# Return 1 if the target supports setrlimit, 0 otherwise.
proc check_effective_target_setrlimit {} {
# Darwin has non-posix compliant RLIMIT_AS
if { [istarget *-*-darwin*] } {
return 0
}
return [check_function_available "setrlimit"]
}
# Return 1 if the target supports gettimeofday, 0 otherwise.
proc check_effective_target_gettimeofday {} {
return [check_function_available "gettimeofday"]
}
# Return 1 if the target supports swapcontext, 0 otherwise.
proc check_effective_target_swapcontext {} {
return [check_no_compiler_messages swapcontext executable {
#include
int main (void)
{
ucontext_t orig_context,child_context;
if (swapcontext(&child_context, &orig_context) < 0) { }
}
}]
}
# Return 1 if compilation with -pthread is error-free for trivial
# code, 0 otherwise.
proc check_effective_target_pthread {} {
return [check_no_compiler_messages pthread object {
void foo (void) { }
} "-pthread"]
}
# Return 1 if compilation with -gstabs is error-free for trivial
# code, 0 otherwise.
proc check_effective_target_stabs {} {
return [check_no_compiler_messages stabs object {
void foo (void) { }
} "-gstabs"]
}
# Return 1 if compilation with -mpe-aligned-commons is error-free
# for trivial code, 0 otherwise.
proc check_effective_target_pe_aligned_commons {} {
if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
return [check_no_compiler_messages pe_aligned_commons object {
int foo;
} "-mpe-aligned-commons"]
}
return 0
}
# Return 1 if the target supports -static
proc check_effective_target_static {} {
return [check_no_compiler_messages static executable {
int main (void) { return 0; }
} "-static"]
}
# Return 1 if the target supports -fstack-protector
proc check_effective_target_fstack_protector {} {
return [check_runtime fstack_protector {
#include
int main (int argc, char *argv[]) {
char buf[64];
return !strcpy (buf, strrchr (argv[0], '/'));
}
} "-fstack-protector"]
}
# Return 1 if the target supports -fstack-check or -fstack-check=$stack_kind
proc check_stack_check_available { stack_kind } {
if [string match "" $stack_kind] then {
set stack_opt "-fstack-check"
} else { set stack_opt "-fstack-check=$stack_kind" }
return [check_no_compiler_messages stack_check_$stack_kind executable {
int main (void) { return 0; }
} "$stack_opt"]
}
# Return 1 if compilation with -freorder-blocks-and-partition is error-free
# for trivial code, 0 otherwise. As some targets (ARM for example) only
# warn when -fprofile-use is also supplied we test that combination too.
proc check_effective_target_freorder {} {
if { [check_no_compiler_messages freorder object {
void foo (void) { }
} "-freorder-blocks-and-partition"]
&& [check_no_compiler_messages fprofile_use_freorder object {
void foo (void) { }
} "-fprofile-use -freorder-blocks-and-partition -Wno-missing-profile"] } {
return 1
}
return 0
}
# Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
# emitted, 0 otherwise. Whether a shared library can actually be built is
# out of scope for this test.
proc check_effective_target_fpic { } {
# Note that M68K has a multilib that supports -fpic but not
# -fPIC, so we need to check both. We test with a program that
# requires GOT references.
foreach arg {fpic fPIC} {
if [check_no_compiler_messages $arg object {
extern int foo (void); extern int bar;
int baz (void) { return foo () + bar; }
} "-$arg"] {
return 1
}
}
return 0
}
# On AArch64, if -fpic is not supported, then we will fall back to -fPIC
# silently. So, we can't rely on above "check_effective_target_fpic" as it
# assumes compiler will give warning if -fpic not supported. Here we check
# whether binutils supports those new -fpic relocation modifiers, and assume
# -fpic is supported if there is binutils support. GCC configuration will
# enable -fpic for AArch64 in this case.
#
# "check_effective_target_aarch64_small_fpic" is dedicated for checking small
# memory model -fpic relocation types.
proc check_effective_target_aarch64_small_fpic { } {
if { [istarget aarch64*-*-*] } {
return [check_no_compiler_messages aarch64_small_fpic object {
void foo (void) { asm ("ldr x0, [x2, #:gotpage_lo15:globalsym]"); }
}]
} else {
return 0
}
}
# On AArch64, instruction sequence for TLS LE under -mtls-size=32 will utilize
# the relocation modifier "tprel_g0_nc" together with MOVK, it's only supported
# in binutils since 2015-03-04 as PR gas/17843.
#
# This test directive make sure binutils support all features needed by TLS LE
# under -mtls-size=32 on AArch64.
proc check_effective_target_aarch64_tlsle32 { } {
if { [istarget aarch64*-*-*] } {
return [check_no_compiler_messages aarch64_tlsle32 object {
void foo (void) { asm ("movk x1,#:tprel_g0_nc:t1"); }
}]
} else {
return 0
}
}
# Return 1 if -shared is supported, as in no warnings or errors
# emitted, 0 otherwise.
proc check_effective_target_shared { } {
# Note that M68K has a multilib that supports -fpic but not
# -fPIC, so we need to check both. We test with a program that
# requires GOT references.
return [check_no_compiler_messages shared executable {
extern int foo (void); extern int bar;
int baz (void) { return foo () + bar; }
} "-shared -fpic"]
}
# Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
proc check_effective_target_pie { } {
if { [istarget *-*-darwin\[912\]*]
|| [istarget *-*-dragonfly*]
|| [istarget *-*-freebsd*]
|| [istarget *-*-linux*]
|| [istarget *-*-gnu*] } {
return 1;
}
if { [istarget *-*-solaris2.1\[1-9\]*] } {
# Full PIE support was added in Solaris 11.3, but gcc errors out
# if missing, so check for that.
return [check_no_compiler_messages pie executable {
int main (void) { return 0; }
} "-pie -fpie"]
}
return 0
}
# Return true if the target supports -mpaired-single (as used on MIPS).
proc check_effective_target_mpaired_single { } {
return [check_no_compiler_messages mpaired_single object {
void foo (void) { }
} "-mpaired-single"]
}
# Return true if the target has access to FPU instructions.
proc check_effective_target_hard_float { } {
if { [istarget mips*-*-*] } {
return [check_no_compiler_messages hard_float assembly {
#if (defined __mips_soft_float || defined __mips16)
#error __mips_soft_float || __mips16
#endif
}]
}
# This proc is actually checking the availabilty of FPU
# support for doubles, so on the RX we must fail if the
# 64-bit double multilib has been selected.
if { [istarget rx-*-*] } {
return 0
# return [check_no_compiler_messages hard_float assembly {
#if defined __RX_64_BIT_DOUBLES__
#error __RX_64_BIT_DOUBLES__
#endif
# }]
}
# The generic test doesn't work for C-SKY because some cores have
# hard float for single precision only.
if { [istarget csky*-*-*] } {
return [check_no_compiler_messages hard_float assembly {
#if defined __csky_soft_float__
#error __csky_soft_float__
#endif
}]
}
# The generic test equates hard_float with "no call for adding doubles".
return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
double a (double b, double c) { return b + c; }
}]
}
# Return true if the target is a 64-bit MIPS target.
proc check_effective_target_mips64 { } {
return [check_no_compiler_messages mips64 assembly {
#ifndef __mips64
#error !__mips64
#endif
}]
}
# Return true if the target is a MIPS target that does not produce
# MIPS16 code.
proc check_effective_target_nomips16 { } {
return [check_no_compiler_messages nomips16 object {
#ifndef __mips
#error !__mips
#else
/* A cheap way of testing for -mflip-mips16. */
void foo (void) { asm ("addiu $20,$20,1"); }
void bar (void) { asm ("addiu $20,$20,1"); }
#endif
}]
}
# Add the options needed for MIPS16 function attributes. At the moment,
# we don't support MIPS16 PIC.
proc add_options_for_mips16_attribute { flags } {
return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
}
# Return true if we can force a mode that allows MIPS16 code generation.
# We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
# for o32 and o64.
proc check_effective_target_mips16_attribute { } {
return [check_no_compiler_messages mips16_attribute assembly {
#ifdef PIC
#error PIC
#endif
#if defined __mips_hard_float \
&& (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
&& (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
#error __mips_hard_float && (!_ABIO32 || !_ABIO64)
#endif
} [add_options_for_mips16_attribute ""]]
}
# Return 1 if the target supports long double larger than double when
# using the new ABI, 0 otherwise.
proc check_effective_target_mips_newabi_large_long_double { } {
return [check_no_compiler_messages mips_newabi_large_long_double object {
int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
} "-mabi=64"]
}
# Return true if the target is a MIPS target that has access
# to the LL and SC instructions.
proc check_effective_target_mips_llsc { } {
if { ![istarget mips*-*-*] } {
return 0
}
# Assume that these instructions are always implemented for
# non-elf* targets, via emulation if necessary.
if { ![istarget *-*-elf*] } {
return 1
}
# Otherwise assume LL/SC support for everything but MIPS I.
return [check_no_compiler_messages mips_llsc assembly {
#if __mips == 1
#error __mips == 1
#endif
}]
}
# Return true if the target is a MIPS target that uses in-place relocations.
proc check_effective_target_mips_rel { } {
if { ![istarget mips*-*-*] } {
return 0
}
return [check_no_compiler_messages mips_rel object {
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
#error _ABIN32 && (_ABIN32 || _ABI64)
#endif
}]
}
# Return true if the target is a MIPS target that uses the EABI.
proc check_effective_target_mips_eabi { } {
if { ![istarget mips*-*-*] } {
return 0
}
return [check_no_compiler_messages mips_eabi object {
#ifndef __mips_eabi
#error !__mips_eabi
#endif
}]
}
# Return 1 if the current multilib does not generate PIC by default.
proc check_effective_target_nonpic { } {
return [check_no_compiler_messages nonpic assembly {
#if __PIC__
#error __PIC__
#endif
}]
}
# Return 1 if the current multilib generates PIE by default.
proc check_effective_target_pie_enabled { } {
return [check_no_compiler_messages pie_enabled assembly {
#ifndef __PIE__
#error unsupported
#endif
}]
}
# Return 1 if the target generates -fstack-protector by default.
proc check_effective_target_fstack_protector_enabled {} {
return [ check_no_compiler_messages fstack_protector_enabled assembly {
#if !defined(__SSP__) && !defined(__SSP_ALL__) && \
!defined(__SSP_STRONG__) && !defined(__SSP_EXPICIT__)
#error unsupported
#endif
}]
}
# Return 1 if the target does not use a status wrapper.
proc check_effective_target_unwrapped { } {
if { [target_info needs_status_wrapper] != "" \
&& [target_info needs_status_wrapper] != "0" } {
return 0
}
return 1
}
# Return true if iconv is supported on the target. In particular IBM1047.
proc check_iconv_available { test_what } {
global libiconv
# If the tool configuration file has not set libiconv, try "-liconv"
if { ![info exists libiconv] } {
set libiconv "-liconv"
}
set test_what [lindex $test_what 1]
return [check_runtime_nocache $test_what [subst {
#include
int main (void)
{
iconv_t cd;
cd = iconv_open ("$test_what", "UTF-8");
if (cd == (iconv_t) -1)
return 1;
return 0;
}
}] $libiconv]
}
# Return true if the atomic library is supported on the target.
proc check_effective_target_libatomic_available { } {
return [check_no_compiler_messages libatomic_available executable {
int main (void) { return 0; }
} "-latomic"]
}
# Return 1 if an ASCII locale is supported on this host, 0 otherwise.
proc check_ascii_locale_available { } {
return 1
}
# Return true if named sections are supported on this target.
proc check_named_sections_available { } {
return [check_no_compiler_messages named_sections assembly {
int __attribute__ ((section("whatever"))) foo;
}]
}
# Return true if the "naked" function attribute is supported on this target.
proc check_effective_target_naked_functions { } {
return [check_no_compiler_messages naked_functions assembly {
void f() __attribute__((naked));
}]
}
# Return 1 if the target supports Fortran real kinds larger than real(8),
# 0 otherwise.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_large_real { } {
return [check_no_compiler_messages fortran_large_real executable {
! Fortran
integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
real(kind=k) :: x
x = cos (x)
end
}]
}
# Return 1 if the target supports Fortran real kind real(16),
# 0 otherwise. Contrary to check_effective_target_fortran_large_real
# this checks for Real(16) only; the other returned real(10) if
# both real(10) and real(16) are available.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_real_16 { } {
return [check_no_compiler_messages fortran_real_16 executable {
! Fortran
real(kind=16) :: x
x = cos (x)
end
}]
}
# Return 1 if the target supports Fortran real kind 10,
# 0 otherwise. Contrary to check_effective_target_fortran_large_real
# this checks for real(10) only.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_real_10 { } {
return [check_no_compiler_messages fortran_real_10 executable {
! Fortran
real(kind=10) :: x
x = cos (x)
end
}]
}
# Return 1 if the target supports Fortran's IEEE modules,
# 0 otherwise.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_ieee { flags } {
return [check_no_compiler_messages fortran_ieee executable {
! Fortran
use, intrinsic :: ieee_features
end
} $flags ]
}
# Return 1 if the target supports SQRT for the largest floating-point
# type. (Some targets lack the libm support for this FP type.)
# On most targets, this check effectively checks either whether sqrtl is
# available or on __float128 systems whether libquadmath is installed,
# which provides sqrtq.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_largest_fp_has_sqrt { } {
return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
! Fortran
use iso_fortran_env, only: real_kinds
integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
real(kind=maxFP), volatile :: x
x = 2.0_maxFP
x = sqrt (x)
end
}]
}
# Return 1 if the target supports Fortran integer kinds larger than
# integer(8), 0 otherwise.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_large_int { } {
return [check_no_compiler_messages fortran_large_int executable {
! Fortran
integer,parameter :: k = selected_int_kind (range (0_8) + 1)
integer(kind=k) :: i
end
}]
}
# Return 1 if the target supports Fortran integer(16), 0 otherwise.
#
# When the target name changes, replace the cached result.
proc check_effective_target_fortran_integer_16 { } {
return [check_no_compiler_messages fortran_integer_16 executable {
! Fortran
integer(16) :: i
end
}]
}
# Return 1 if we can statically link libgfortran, 0 otherwise.
#
# When the target name changes, replace the cached result.
proc check_effective_target_static_libgfortran { } {
return [check_no_compiler_messages static_libgfortran executable {
! Fortran
print *, 'test'
end
} "-static"]
}
# Return 1 if we can use the -rdynamic option, 0 otherwise.
proc check_effective_target_rdynamic { } {
return [check_no_compiler_messages rdynamic executable {
int main() { return 0; }
} "-rdynamic"]
}
proc check_linker_plugin_available { } {
return [check_no_compiler_messages_nocache linker_plugin executable {
int main() { return 0; }
} "-flto -fuse-linker-plugin"]
}
# Return 1 if the target OS supports running SSE executables, 0
# otherwise. Cache the result.
proc check_sse_os_support_available { } {
return [check_cached_effective_target sse_os_support_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} elseif { [istarget i?86-*-solaris2*] } {
# The Solaris 2 kernel doesn't save and restore SSE registers
# before Solaris 9 4/04. Before that, executables die with SIGILL.
check_runtime_nocache sse_os_support_available {
int main ()
{
asm volatile ("movaps %xmm0,%xmm0");
return 0;
}
} "-msse"
} else {
expr 1
}
}]
}
# Return 1 if the target OS supports running AVX executables, 0
# otherwise. Cache the result.
proc check_avx_os_support_available { } {
return [check_cached_effective_target avx_os_support_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} else {
# Check that OS has AVX and SSE saving enabled.
check_runtime_nocache avx_os_support_available {
int main ()
{
unsigned int eax, edx;
asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
return (eax & 0x06) != 0x06;
}
} ""
}
}]
}
# Return 1 if the target OS supports running AVX executables, 0
# otherwise. Cache the result.
proc check_avx512_os_support_available { } {
return [check_cached_effective_target avx512_os_support_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} else {
# Check that OS has AVX512, AVX and SSE saving enabled.
check_runtime_nocache avx512_os_support_available {
int main ()
{
unsigned int eax, edx;
asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
return (eax & 0xe6) != 0xe6;
}
} ""
}
}]
}
# Return 1 if the target supports executing SSE instructions, 0
# otherwise. Cache the result.
proc check_sse_hw_available { } {
return [check_cached_effective_target sse_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} else {
check_runtime_nocache sse_hw_available {
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
return 1;
return !(edx & bit_SSE);
}
} ""
}
}]
}
# Return 1 if the target supports executing SSE2 instructions, 0
# otherwise. Cache the result.
proc check_sse2_hw_available { } {
return [check_cached_effective_target sse2_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} else {
check_runtime_nocache sse2_hw_available {
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
return 1;
return !(edx & bit_SSE2);
}
} ""
}
}]
}
# Return 1 if the target supports executing SSE4 instructions, 0
# otherwise. Cache the result.
proc check_sse4_hw_available { } {
return [check_cached_effective_target sse4_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} else {
check_runtime_nocache sse4_hw_available {
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
return 1;
return !(ecx & bit_SSE4_2);
}
} ""
}
}]
}
# Return 1 if the target supports executing AVX instructions, 0
# otherwise. Cache the result.
proc check_avx_hw_available { } {
return [check_cached_effective_target avx_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
expr 0
} else {
check_runtime_nocache avx_hw_available {
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
return 1;
return ((ecx & (bit_AVX | bit_OSXSAVE))
!= (bit_AVX | bit_OSXSAVE));
}
} ""
}
}]
}
# Return 1 if the target supports executing AVX2 instructions, 0
# otherwise. Cache the result.
proc check_avx2_hw_available { } {
return [check_cached_effective_target avx2_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
expr 0
} else {
check_runtime_nocache avx2_hw_available {
#include
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (__get_cpuid_max (0, NULL) < 7)
return 1;
__cpuid (1, eax, ebx, ecx, edx);
if (!(ecx & bit_OSXSAVE))
return 1;
__cpuid_count (7, 0, eax, ebx, ecx, edx);
return !(ebx & bit_AVX2);
}
} ""
}
}]
}
# Return 1 if the target supports executing AVX512 foundation instructions, 0
# otherwise. Cache the result.
proc check_avx512f_hw_available { } {
return [check_cached_effective_target avx512f_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
expr 0
} else {
check_runtime_nocache avx512f_hw_available {
#include
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (__get_cpuid_max (0, NULL) < 7)
return 1;
__cpuid (1, eax, ebx, ecx, edx);
if (!(ecx & bit_OSXSAVE))
return 1;
__cpuid_count (7, 0, eax, ebx, ecx, edx);
return !(ebx & bit_AVX512F);
}
} ""
}
}]
}
# Return 1 if the target supports running SSE executables, 0 otherwise.
proc check_effective_target_sse_runtime { } {
if { [check_effective_target_sse]
&& [check_sse_hw_available]
&& [check_sse_os_support_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running SSE2 executables, 0 otherwise.
proc check_effective_target_sse2_runtime { } {
if { [check_effective_target_sse2]
&& [check_sse2_hw_available]
&& [check_sse_os_support_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running SSE4 executables, 0 otherwise.
proc check_effective_target_sse4_runtime { } {
if { [check_effective_target_sse4]
&& [check_sse4_hw_available]
&& [check_sse_os_support_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running AVX executables, 0 otherwise.
proc check_effective_target_avx_runtime { } {
if { [check_effective_target_avx]
&& [check_avx_hw_available]
&& [check_avx_os_support_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running AVX2 executables, 0 otherwise.
proc check_effective_target_avx2_runtime { } {
if { [check_effective_target_avx2]
&& [check_avx2_hw_available]
&& [check_avx_os_support_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running AVX512f executables, 0 otherwise.
proc check_effective_target_avx512f_runtime { } {
if { [check_effective_target_avx512f]
&& [check_avx512f_hw_available]
&& [check_avx512_os_support_available] } {
return 1
}
return 0
}
# Return 1 if bmi2 instructions can be compiled.
proc check_effective_target_bmi2 { } {
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
return 0
}
return [check_no_compiler_messages bmi2 object {
unsigned int
_bzhi_u32 (unsigned int __X, unsigned int __Y)
{
return __builtin_ia32_bzhi_si (__X, __Y);
}
} "-mbmi2" ]
}
# Return 1 if the target supports executing MIPS Paired-Single instructions,
# 0 otherwise. Cache the result.
proc check_mpaired_single_hw_available { } {
return [check_cached_effective_target mpaired_single_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget mips*-*-*]) } {
expr 0
} else {
check_runtime_nocache mpaired_single_hw_available {
int main()
{
asm volatile ("pll.ps $f2,$f4,$f6");
return 0;
}
} ""
}
}]
}
# Return 1 if the target supports executing Loongson vector instructions,
# 0 otherwise. Cache the result.
proc check_mips_loongson_mmi_hw_available { } {
return [check_cached_effective_target mips_loongson_mmi_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget mips*-*-*]) } {
expr 0
} else {
check_runtime_nocache mips_loongson_mmi_hw_available {
#include
int main()
{
asm volatile ("paddw $f2,$f4,$f6");
return 0;
}
} "-mloongson-mmi"
}
}]
}
# Return 1 if the target supports executing MIPS MSA instructions, 0
# otherwise. Cache the result.
proc check_mips_msa_hw_available { } {
return [check_cached_effective_target mips_msa_hw_available {
# If this is not the right target then we can skip the test.
if { !([istarget mips*-*-*]) } {
expr 0
} else {
check_runtime_nocache mips_msa_hw_available {
#if !defined(__mips_msa)
#error "MSA NOT AVAIL"
#else
#if !(((__mips == 64) || (__mips == 32)) && (__mips_isa_rev >= 2))
#error "MSA NOT AVAIL FOR ISA REV < 2"
#endif
#if !defined(__mips_hard_float)
#error "MSA HARD_FLOAT REQUIRED"
#endif
#if __mips_fpr != 64
#error "MSA 64-bit FPR REQUIRED"
#endif
#include
int main()
{
v8i16 v = __builtin_msa_ldi_h (0);
v[0] = 0;
return v[0];
}
#endif
} "-mmsa"
}
}]
}
# Return 1 if the target supports running MIPS Paired-Single
# executables, 0 otherwise.
proc check_effective_target_mpaired_single_runtime { } {
if { [check_effective_target_mpaired_single]
&& [check_mpaired_single_hw_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running Loongson executables, 0 otherwise.
proc check_effective_target_mips_loongson_mmi_runtime { } {
if { [check_effective_target_mips_loongson_mmi]
&& [check_mips_loongson_mmi_hw_available] } {
return 1
}
return 0
}
# Return 1 if the target supports running MIPS MSA executables, 0 otherwise.
proc check_effective_target_mips_msa_runtime { } {
if { [check_effective_target_mips_msa]
&& [check_mips_msa_hw_available] } {
return 1
}
return 0
}
# Return 1 if we are compiling for 64-bit PowerPC but we do not use direct
# move instructions for moves from GPR to FPR.
proc check_effective_target_powerpc64_no_dm { } {
# The "mulld" checks if we are generating PowerPC64 code. The "lfd"
# checks if we do not use direct moves, but use the old-fashioned
# slower move-via-the-stack.
return [check_no_messages_and_pattern powerpc64_no_dm \
{\mmulld\M.*\mlfd} assembly {
double f(long long x) { return x*x; }
} {-O2}]
}
# Return 1 if the target supports the __builtin_cpu_supports built-in,
# including having a new enough library to support the test. Cache the result.
# Require at least a power7 to run on.
proc check_ppc_cpu_supports_hw_available { } {
return [check_cached_effective_target ppc_cpu_supports_hw_available {
# Some simulators are known to not support VSX/power8 instructions.
# For now, disable on Darwin
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mvsx"
check_runtime_nocache ppc_cpu_supports_hw_available {
int main()
{
#ifdef __MACH__
asm volatile ("xxlor vs0,vs0,vs0");
#else
asm volatile ("xxlor 0,0,0");
#endif
if (!__builtin_cpu_supports ("vsx"))
return 1;
return 0;
}
} $options
}
}]
}
# Return 1 if the target supports executing 750CL paired-single instructions, 0
# otherwise. Cache the result.
proc check_750cl_hw_available { } {
return [check_cached_effective_target 750cl_hw_available {
# If this is not the right target then we can skip the test.
if { ![istarget powerpc-*paired*] } {
expr 0
} else {
check_runtime_nocache 750cl_hw_available {
int main()
{
#ifdef __MACH__
asm volatile ("ps_mul v0,v0,v0");
#else
asm volatile ("ps_mul 0,0,0");
#endif
return 0;
}
} "-mpaired"
}
}]
}
# Return 1 if the target supports executing power8 vector instructions, 0
# otherwise. Cache the result.
proc check_p8vector_hw_available { } {
return [check_cached_effective_target p8vector_hw_available {
# Some simulators are known to not support VSX/power8 instructions.
# For now, disable on Darwin
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mpower8-vector"
check_runtime_nocache p8vector_hw_available {
int main()
{
#ifdef __MACH__
asm volatile ("xxlorc vs0,vs0,vs0");
#else
asm volatile ("xxlorc 0,0,0");
#endif
return 0;
}
} $options
}
}]
}
# Return 1 if the target supports executing power9 vector instructions, 0
# otherwise. Cache the result.
proc check_p9vector_hw_available { } {
return [check_cached_effective_target p9vector_hw_available {
# Some simulators are known to not support VSX/power8/power9
# instructions. For now, disable on Darwin.
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mpower9-vector"
check_runtime_nocache p9vector_hw_available {
int main()
{
long e = -1;
vector double v = (vector double) { 0.0, 0.0 };
asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v));
return e;
}
} $options
}
}]
}
# Return 1 if the target supports executing power9 modulo instructions, 0
# otherwise. Cache the result.
proc check_p9modulo_hw_available { } {
return [check_cached_effective_target p9modulo_hw_available {
# Some simulators are known to not support VSX/power8/power9
# instructions. For now, disable on Darwin.
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mmodulo"
check_runtime_nocache p9modulo_hw_available {
int main()
{
int i = 5, j = 3, r = -1;
asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j));
return (r == 2);
}
} $options
}
}]
}
# Return 1 if the target supports executing __float128 on PowerPC via software
# emulation, 0 otherwise. Cache the result.
proc check_ppc_float128_sw_available { } {
return [check_cached_effective_target ppc_float128_sw_available {
# Some simulators are known to not support VSX/power8/power9
# instructions. For now, disable on Darwin.
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mfloat128 -mvsx"
check_runtime_nocache ppc_float128_sw_available {
volatile __float128 x = 1.0q;
volatile __float128 y = 2.0q;
int main()
{
__float128 z = x + y;
return (z != 3.0q);
}
} $options
}
}]
}
# Return 1 if the target supports executing __float128 on PowerPC via power9
# hardware instructions, 0 otherwise. Cache the result.
proc check_ppc_float128_hw_available { } {
return [check_cached_effective_target ppc_float128_hw_available {
# Some simulators are known to not support VSX/power8/power9
# instructions. For now, disable on Darwin.
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mfloat128 -mvsx -mfloat128-hardware -mpower9-vector"
check_runtime_nocache ppc_float128_hw_available {
volatile __float128 x = 1.0q;
volatile __float128 y = 2.0q;
int main()
{
__float128 z = x + y;
__float128 w = -1.0q;
__asm__ ("xsaddqp %0,%1,%2" : "+v" (w) : "v" (x), "v" (y));
return ((z != 3.0q) || (z != w));
}
} $options
}
}]
}
# Return 1 if the target supports executing VSX instructions, 0
# otherwise. Cache the result.
proc check_vsx_hw_available { } {
return [check_cached_effective_target vsx_hw_available {
# Some simulators are known to not support VSX instructions.
# For now, disable on Darwin
if { [istarget powerpc-*-eabi]
|| [istarget powerpc*-*-eabispe]
|| [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mvsx"
check_runtime_nocache vsx_hw_available {
int main()
{
#ifdef __MACH__
asm volatile ("xxlor vs0,vs0,vs0");
#else
asm volatile ("xxlor 0,0,0");
#endif
return 0;
}
} $options
}
}]
}
# Return 1 if the target supports executing AltiVec instructions, 0
# otherwise. Cache the result.
proc check_vmx_hw_available { } {
return [check_cached_effective_target vmx_hw_available {
# Some simulators are known to not support VMX instructions.
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
expr 0
} else {
# Most targets don't require special flags for this test case, but
# Darwin does. Just to be sure, make sure VSX is not enabled for
# the altivec tests.
if { [istarget *-*-darwin*]
|| [istarget *-*-aix*] } {
set options "-maltivec -mno-vsx"
} else {
set options "-mno-vsx"
}
check_runtime_nocache vmx_hw_available {
int main()
{
#ifdef __MACH__
asm volatile ("vor v0,v0,v0");
#else
asm volatile ("vor 0,0,0");
#endif
return 0;
}
} $options
}
}]
}
proc check_ppc_recip_hw_available { } {
return [check_cached_effective_target ppc_recip_hw_available {
# Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
# For now, disable on Darwin
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
expr 0
} else {
set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
check_runtime_nocache ppc_recip_hw_available {
volatile double d_recip, d_rsqrt, d_four = 4.0;
volatile float f_recip, f_rsqrt, f_four = 4.0f;
int main()
{
asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
return 0;
}
} $options
}
}]
}
# Return 1 if the target supports executing AltiVec and Cell PPU
# instructions, 0 otherwise. Cache the result.
proc check_effective_target_cell_hw { } {
return [check_cached_effective_target cell_hw_available {
# Some simulators are known to not support VMX and PPU instructions.
if { [istarget powerpc-*-eabi*] } {
expr 0
} else {
# Most targets don't require special flags for this test
# case, but Darwin and AIX do.
if { [istarget *-*-darwin*]
|| [istarget *-*-aix*] } {
set options "-maltivec -mcpu=cell"
} else {
set options "-mcpu=cell"
}
check_runtime_nocache cell_hw_available {
int main()
{
#ifdef __MACH__
asm volatile ("vor v0,v0,v0");
asm volatile ("lvlx v0,r0,r0");
#else
asm volatile ("vor 0,0,0");
asm volatile ("lvlx 0,0,0");
#endif
return 0;
}
} $options
}
}]
}
# Return 1 if the target supports executing 64-bit instructions, 0
# otherwise. Cache the result.
proc check_effective_target_powerpc64 { } {
global powerpc64_available_saved
global tool
if [info exists powerpc64_available_saved] {
verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
} else {
set powerpc64_available_saved 0
# Some simulators are known to not support powerpc64 instructions.
if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
verbose "check_effective_target_powerpc64 returning 0" 2
return $powerpc64_available_saved
}
# Set up, compile, and execute a test program containing a 64-bit
# instruction. Include the current process ID in the file
# names to prevent conflicts with invocations for multiple
# testsuites.
set src ppc[pid].c
set exe ppc[pid].x
set f [open $src "w"]
puts $f "int main() {"
puts $f "#ifdef __MACH__"
puts $f " asm volatile (\"extsw r0,r0\");"
puts $f "#else"
puts $f " asm volatile (\"extsw 0,0\");"
puts $f "#endif"
puts $f " return 0; }"
close $f
set opts "additional_flags=-mcpu=G5"
verbose "check_effective_target_powerpc64 compiling testfile $src" 2
set lines [${tool}_target_compile $src $exe executable "$opts"]
file delete $src
if [string match "" $lines] then {
# No error message, compilation succeeded.
set result [${tool}_load "./$exe" "" ""]
set status [lindex $result 0]
remote_file build delete $exe
verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
if { $status == "pass" } then {
set powerpc64_available_saved 1
}
} else {
verbose "check_effective_target_powerpc64 testfile compilation failed" 2
}
}
return $powerpc64_available_saved
}
# GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
# complex float arguments. This affects gfortran tests that call cabsf
# in libm built by an earlier compiler. Return 0 if libm uses the same
# argument passing as the compiler under test, 1 otherwise.
proc check_effective_target_broken_cplxf_arg { } {
# Skip the work for targets known not to be affected.
if { ![istarget powerpc*-*-linux*] || ![is-effective-target lp64] } {
return 0
}
return [check_cached_effective_target broken_cplxf_arg {
check_runtime_nocache broken_cplxf_arg {
#include
extern void abort (void);
float fabsf (float);
float cabsf (_Complex float);
int main ()
{
_Complex float cf;
float f;
cf = 3 + 4.0fi;
f = cabsf (cf);
if (fabsf (f - 5.0) > 0.0001)
/* Yes, it's broken. */
return 0;
/* All fine, not broken. */
return 1;
}
} "-lm"
}]
}
# Return 1 is this is a TI C6X target supporting C67X instructions
proc check_effective_target_ti_c67x { } {
return [check_no_compiler_messages ti_c67x assembly {
#if !defined(_TMS320C6700)
#error !_TMS320C6700
#endif
}]
}
# Return 1 is this is a TI C6X target supporting C64X+ instructions
proc check_effective_target_ti_c64xp { } {
return [check_no_compiler_messages ti_c64xp assembly {
#if !defined(_TMS320C6400_PLUS)
#error !_TMS320C6400_PLUS
#endif
}]
}
proc check_alpha_max_hw_available { } {
return [check_runtime alpha_max_hw_available {
int main() { return __builtin_alpha_amask(1<<8) != 0; }
}]
}
# Returns true iff the FUNCTION is available on the target system.
# (This is essentially a Tcl implementation of Autoconf's
# AC_CHECK_FUNC.)
proc check_function_available { function } {
return [check_no_compiler_messages ${function}_available \
executable [subst {
#ifdef __cplusplus
extern "C"
#endif
char $function ();
int main () { $function (); }
}] "-fno-builtin" ]
}
# Returns true iff "fork" is available on the target system.
proc check_fork_available {} {
return [check_function_available "fork"]
}
# Returns true iff "mkfifo" is available on the target system.
proc check_mkfifo_available {} {
if { [istarget *-*-cygwin*] } {
# Cygwin has mkfifo, but support is incomplete.
return 0
}
return [check_function_available "mkfifo"]
}
# Returns true iff "__cxa_atexit" is used on the target system.
proc check_cxa_atexit_available { } {
return [check_cached_effective_target cxa_atexit_available {
if { [istarget hppa*-*-hpux10*] } {
# HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
expr 0
} elseif { [istarget *-*-vxworks] } {
# vxworks doesn't have __cxa_atexit but subsequent test passes.
expr 0
} else {
check_runtime_nocache cxa_atexit_available {
// C++
#include
static unsigned int count;
struct X
{
X() { count = 1; }
~X()
{
if (count != 3)
exit(1);
count = 4;
}
};
void f()
{
static X x;
}
struct Y
{
Y() { f(); count = 2; }
~Y()
{
if (count != 2)
exit(1);
count = 3;
}
};
Y y;
int main() { return 0; }
}
}
}]
}
proc check_effective_target_objc2 { } {
return [check_no_compiler_messages objc2 object {
#ifdef __OBJC2__
int dummy[1];
#else
#error !__OBJC2__
#endif
}]
}
proc check_effective_target_next_runtime { } {
return [check_no_compiler_messages objc2 object {
#ifdef __NEXT_RUNTIME__
int dummy[1];
#else
#error !__NEXT_RUNTIME__
#endif
}]
}
# Return 1 if we're generating code for big-endian memory order.
proc check_effective_target_be { } {
return [check_no_compiler_messages be object {
int dummy[__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ? 1 : -1];
}]
}
# Return 1 if we're generating code for little-endian memory order.
proc check_effective_target_le { } {
return [check_no_compiler_messages le object {
int dummy[__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ? 1 : -1];
}]
}
# Return 1 if we're generating 32-bit code using default options, 0
# otherwise.
proc check_effective_target_ilp32 { } {
return [check_no_compiler_messages ilp32 object {
int dummy[sizeof (int) == 4
&& sizeof (void *) == 4
&& sizeof (long) == 4 ? 1 : -1];
}]
}
# Return 1 if we're generating ia32 code using default options, 0
# otherwise.
proc check_effective_target_ia32 { } {
return [check_no_compiler_messages ia32 object {
int dummy[sizeof (int) == 4
&& sizeof (void *) == 4
&& sizeof (long) == 4 ? 1 : -1] = { __i386__ };
}]
}
# Return 1 if we're generating x32 code using default options, 0
# otherwise.
proc check_effective_target_x32 { } {
return [check_no_compiler_messages x32 object {
int dummy[sizeof (int) == 4
&& sizeof (void *) == 4
&& sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
}]
}
# Return 1 if we're generating 32-bit integers using default
# options, 0 otherwise.
proc check_effective_target_int32 { } {
return [check_no_compiler_messages int32 object {
int dummy[sizeof (int) == 4 ? 1 : -1];
}]
}
# Return 1 if we're generating 32-bit or larger integers using default
# options, 0 otherwise.
proc check_effective_target_int32plus { } {
return [check_no_compiler_messages int32plus object {
int dummy[sizeof (int) >= 4 ? 1 : -1];
}]
}
# Return 1 if we're generating 32-bit or larger pointers using default
# options, 0 otherwise.
proc check_effective_target_ptr32plus { } {
# The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
# in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
# cannot really hold a 32-bit address, so we always return false here.
if { [istarget msp430-*-*] } {
return 0
}
return [check_no_compiler_messages ptr32plus object {
int dummy[sizeof (void *) >= 4 ? 1 : -1];
}]
}
# Return 1 if we support 16-bit or larger array and structure sizes
# using default options, 0 otherwise.
# This implies at least a 20-bit address space, as no targets have an address
# space between 16 and 20 bits.
proc check_effective_target_size20plus { } {
return [check_no_compiler_messages size20plus object {
char dummy[65537L];
}]
}
# Return 1 if we support 24-bit or larger array and structure sizes
# using default options, 0 otherwise.
# This implies at least a 32-bit address space, as no targets have an address
# space between 24 and 32 bits.
proc check_effective_target_size32plus { } {
return [check_no_compiler_messages size32plus object {
char dummy[16777217L];
}]
}
# Returns 1 if we're generating 16-bit or smaller integers with the
# default options, 0 otherwise.
proc check_effective_target_int16 { } {
return [check_no_compiler_messages int16 object {
int dummy[sizeof (int) < 4 ? 1 : -1];
}]
}
# Return 1 if we're generating 64-bit code using default options, 0
# otherwise.
proc check_effective_target_lp64 { } {
return [check_no_compiler_messages lp64 object {
int dummy[sizeof (int) == 4
&& sizeof (void *) == 8
&& sizeof (long) == 8 ? 1 : -1];
}]
}
# Return 1 if we're generating 64-bit code using default llp64 options,
# 0 otherwise.
proc check_effective_target_llp64 { } {
return [check_no_compiler_messages llp64 object {
int dummy[sizeof (int) == 4
&& sizeof (void *) == 8
&& sizeof (long long) == 8
&& sizeof (long) == 4 ? 1 : -1];
}]
}
# Return 1 if long and int have different sizes,
# 0 otherwise.
proc check_effective_target_long_neq_int { } {
return [check_no_compiler_messages long_ne_int object {
int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
}]
}
# Return 1 if int size is equal to float size,
# 0 otherwise.
proc check_effective_target_int_eq_float { } {
return [check_no_compiler_messages int_eq_float object {
int dummy[sizeof (int) >= sizeof (float) ? 1 : -1];
}]
}
# Return 1 if pointer size is equal to long size,
# 0 otherwise.
proc check_effective_target_ptr_eq_long { } {
# sizeof (void *) == 4 for msp430-elf -mlarge which is equal to
# sizeof (long). Avoid false positive.
if { [istarget msp430-*-*] } {
return 0
}
return [check_no_compiler_messages ptr_eq_long object {
int dummy[sizeof (void *) == sizeof (long) ? 1 : -1];
}]
}
# Return 1 if the target supports long double larger than double,
# 0 otherwise.
proc check_effective_target_large_long_double { } {
return [check_no_compiler_messages large_long_double object {
int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
}]
}
# Return 1 if the target supports double larger than float,
# 0 otherwise.
proc check_effective_target_large_double { } {
return [check_no_compiler_messages large_double object {
int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
}]
}
# Return 1 if the target supports long double of 128 bits,
# 0 otherwise.
proc check_effective_target_longdouble128 { } {
return [check_no_compiler_messages longdouble128 object {
int dummy[sizeof(long double) == 16 ? 1 : -1];
}]
}
# Return 1 if the target supports long double of 64 bits,
# 0 otherwise.
proc check_effective_target_longdouble64 { } {
return [check_no_compiler_messages longdouble64 object {
int dummy[sizeof(long double) == 8 ? 1 : -1];
}]
}
# Return 1 if the target supports double of 64 bits,
# 0 otherwise.
proc check_effective_target_double64 { } {
return [check_no_compiler_messages double64 object {
int dummy[sizeof(double) == 8 ? 1 : -1];
}]
}
# Return 1 if the target supports double of at least 64 bits,
# 0 otherwise.
proc check_effective_target_double64plus { } {
return [check_no_compiler_messages double64plus object {
int dummy[sizeof(double) >= 8 ? 1 : -1];
}]
}
# Return 1 if the target supports 'w' suffix on floating constant
# 0 otherwise.
proc check_effective_target_has_w_floating_suffix { } {
set opts ""
if [check_effective_target_c++] {
append opts "-std=gnu++03"
}
return [check_no_compiler_messages w_fp_suffix object {
float dummy = 1.0w;
} "$opts"]
}
# Return 1 if the target supports 'q' suffix on floating constant
# 0 otherwise.
proc check_effective_target_has_q_floating_suffix { } {
set opts ""
if [check_effective_target_c++] {
append opts "-std=gnu++03"
}
return [check_no_compiler_messages q_fp_suffix object {
float dummy = 1.0q;
} "$opts"]
}
# Return 1 if the target supports the _FloatN / _FloatNx type
# indicated in the function name, 0 otherwise.
proc check_effective_target_float16 {} {
return [check_no_compiler_messages_nocache float16 object {
_Float16 x;
} [add_options_for_float16 ""]]
}
proc check_effective_target_float32 {} {
return [check_no_compiler_messages_nocache float32 object {
_Float32 x;
} [add_options_for_float32 ""]]
}
proc check_effective_target_float64 {} {
return [check_no_compiler_messages_nocache float64 object {
_Float64 x;
} [add_options_for_float64 ""]]
}
proc check_effective_target_float128 {} {
return [check_no_compiler_messages_nocache float128 object {
_Float128 x;
} [add_options_for_float128 ""]]
}
proc check_effective_target_float32x {} {
return [check_no_compiler_messages_nocache float32x object {
_Float32x x;
} [add_options_for_float32x ""]]
}
proc check_effective_target_float64x {} {
return [check_no_compiler_messages_nocache float64x object {
_Float64x x;
} [add_options_for_float64x ""]]
}
proc check_effective_target_float128x {} {
return [check_no_compiler_messages_nocache float128x object {
_Float128x x;
} [add_options_for_float128x ""]]
}
# Likewise, but runtime support for any special options used as well
# as compile-time support is required.
proc check_effective_target_float16_runtime {} {
return [check_effective_target_float16]
}
proc check_effective_target_float32_runtime {} {
return [check_effective_target_float32]
}
proc check_effective_target_float64_runtime {} {
return [check_effective_target_float64]
}
proc check_effective_target_float128_runtime {} {
if { ![check_effective_target_float128] } {
return 0
}
if { [istarget powerpc*-*-*] } {
return [check_effective_target_base_quadfloat_support]
}
return 1
}
proc check_effective_target_float32x_runtime {} {
return [check_effective_target_float32x]
}
proc check_effective_target_float64x_runtime {} {
if { ![check_effective_target_float64x] } {
return 0
}
if { [istarget powerpc*-*-*] } {
return [check_effective_target_base_quadfloat_support]
}
return 1
}
proc check_effective_target_float128x_runtime {} {
return [check_effective_target_float128x]
}
# Return 1 if the target hardware supports any options added for
# _FloatN and _FloatNx types, 0 otherwise.
proc check_effective_target_floatn_nx_runtime {} {
if { [istarget powerpc*-*-aix*] } {
return 0
}
if { [istarget powerpc*-*-*] } {
return [check_effective_target_base_quadfloat_support]
}
return 1
}
# Add options needed to use the _FloatN / _FloatNx type indicated in
# the function name.
proc add_options_for_float16 { flags } {
if { [istarget arm*-*-*] } {
return "$flags -mfp16-format=ieee"
}
return "$flags"
}
proc add_options_for_float32 { flags } {
return "$flags"
}
proc add_options_for_float64 { flags } {
return "$flags"
}
proc add_options_for_float128 { flags } {
return [add_options_for___float128 "$flags"]
}
proc add_options_for_float32x { flags } {
return "$flags"
}
proc add_options_for_float64x { flags } {
return [add_options_for___float128 "$flags"]
}
proc add_options_for_float128x { flags } {
return "$flags"
}
# Return 1 if the target supports __float128,
# 0 otherwise.
proc check_effective_target___float128 { } {
if { [istarget powerpc*-*-*] } {
return [check_ppc_float128_sw_available]
}
if { [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*] } {
return 1
}
return 0
}
proc add_options_for___float128 { flags } {
if { [istarget powerpc*-*-*] } {
return "$flags -mfloat128 -mvsx"
}
return "$flags"
}
# Return 1 if the target supports any special run-time requirements
# for __float128 or _Float128,
# 0 otherwise.
proc check_effective_target_base_quadfloat_support { } {
if { [istarget powerpc*-*-*] } {
return [check_vsx_hw_available]
}
return 1
}
# Return 1 if the target supports all four forms of fused multiply-add
# (fma, fms, fnma, and fnms) for both float and double.
proc check_effective_target_scalar_all_fma { } {
return [istarget aarch64*-*-*]
}
# Return 1 if the target supports compiling fixed-point,
# 0 otherwise.
proc check_effective_target_fixed_point { } {
return [check_no_compiler_messages fixed_point object {
_Sat _Fract x; _Sat _Accum y;
}]
}
# Return 1 if the target supports compiling decimal floating point,
# 0 otherwise.
proc check_effective_target_dfp_nocache { } {
verbose "check_effective_target_dfp_nocache: compiling source" 2
set ret [check_no_compiler_messages_nocache dfp object {
float x __attribute__((mode(DD)));
}]
verbose "check_effective_target_dfp_nocache: returning $ret" 2
return $ret
}
proc check_effective_target_dfprt_nocache { } {
return [check_runtime_nocache dfprt {
typedef float d64 __attribute__((mode(DD)));
d64 x = 1.2df, y = 2.3dd, z;
int main () { z = x + y; return 0; }
}]
}
# Return 1 if the target supports compiling Decimal Floating Point,
# 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_dfp { } {
return [check_cached_effective_target dfp {
check_effective_target_dfp_nocache
}]
}
# Return 1 if the target supports linking and executing Decimal Floating
# Point, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_dfprt { } {
return [check_cached_effective_target dfprt {
check_effective_target_dfprt_nocache
}]
}
proc check_effective_target_powerpc_popcntb_ok { } {
return [check_cached_effective_target powerpc_popcntb_ok {
# Disable on Darwin.
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
expr 0
} else {
check_runtime_nocache powerpc_popcntb_ok {
volatile int r;
volatile int a = 0x12345678;
int main()
{
asm volatile ("popcntb %0,%1" : "=r" (r) : "r" (a));
return 0;
}
} "-mcpu=power5"
}
}]
}
# Return 1 if the target supports executing DFP hardware instructions,
# 0 otherwise. Cache the result.
proc check_dfp_hw_available { } {
return [check_cached_effective_target dfp_hw_available {
# For now, disable on Darwin
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
expr 0
} else {
check_runtime_nocache dfp_hw_available {
volatile _Decimal64 r;
volatile _Decimal64 a = 4.0DD;
volatile _Decimal64 b = 2.0DD;
int main()
{
asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
return 0;
}
} "-mcpu=power6 -mhard-float"
}
}]
}
# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
proc check_effective_target_ucn_nocache { } {
# -std=c99 is only valid for C
if [check_effective_target_c] {
set ucnopts "-std=c99"
} else {
set ucnopts ""
}
verbose "check_effective_target_ucn_nocache: compiling source" 2
set ret [check_no_compiler_messages_nocache ucn object {
int \u00C0;
} $ucnopts]
verbose "check_effective_target_ucn_nocache: returning $ret" 2
return $ret
}
# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
#
# This won't change for different subtargets, so cache the result.
proc check_effective_target_ucn { } {
return [check_cached_effective_target ucn {
check_effective_target_ucn_nocache
}]
}
# Return 1 if the target needs a command line argument to enable a SIMD
# instruction set.
proc check_effective_target_vect_cmdline_needed { } {
global et_vect_cmdline_needed_target_name
if { ![info exists et_vect_cmdline_needed_target_name] } {
set et_vect_cmdline_needed_target_name ""
}
# If the target has changed since we set the cached value, clear it.
set current_target [current_target_name]
if { $current_target != $et_vect_cmdline_needed_target_name } {
verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
set et_vect_cmdline_needed_target_name $current_target
if { [info exists et_vect_cmdline_needed_saved] } {
verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
unset et_vect_cmdline_needed_saved
}
}
return [check_cached_effective_target vect_cmdline_needed {
if { [istarget alpha*-*-*]
|| [istarget ia64-*-*]
|| (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& ![is-effective-target ia32])
|| ([istarget powerpc*-*-*]
&& ([check_effective_target_powerpc_spe]
|| [check_effective_target_powerpc_altivec]))
|| ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
|| [istarget spu-*-*]
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon])
|| [istarget aarch64*-*-*] } {
return 0
} else {
return 1
}}]
}
# Return 1 if the target supports hardware vectors of int, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_int { } {
return [check_cached_effective_target_indexed vect_int {
expr {
[istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget spu-*-*]
|| [istarget sparc*-*-*]
|| [istarget alpha*-*-*]
|| [istarget ia64-*-*]
|| [istarget aarch64*-*-*]
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& ([et-is-effective-target mips_loongson_mmi]
|| [et-is-effective-target mips_msa]))
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx])
}}]
}
# Return 1 if the target supports signed int->float conversion
#
proc check_effective_target_vect_intfloat_cvt { } {
return [check_cached_effective_target_indexed vect_intfloat_cvt {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target supports signed double->int conversion
#
proc check_effective_target_vect_doubleint_cvt { } {
return [check_cached_effective_target_indexed vect_doubleint_cvt {
expr { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_no_compiler_messages vect_doubleint_cvt assembly {
#ifdef __tune_atom__
# error No double vectorizer support.
#endif
}])
|| [istarget aarch64*-*-*]
|| [istarget spu-*-*]
|| ([istarget powerpc*-*-*] && [check_vsx_hw_available])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target supports signed int->double conversion
#
proc check_effective_target_vect_intdouble_cvt { } {
return [check_cached_effective_target_indexed vect_intdouble_cvt {
expr { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_no_compiler_messages vect_intdouble_cvt assembly {
#ifdef __tune_atom__
# error No double vectorizer support.
#endif
}])
|| [istarget aarch64*-*-*]
|| [istarget spu-*-*]
|| ([istarget powerpc*-*-*] && [check_vsx_hw_available])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
#Return 1 if we're supporting __int128 for target, 0 otherwise.
proc check_effective_target_int128 { } {
return [check_no_compiler_messages int128 object {
int dummy[
#ifndef __SIZEOF_INT128__
-1
#else
1
#endif
];
}]
}
# Return 1 if the target supports unsigned int->float conversion
#
proc check_effective_target_vect_uintfloat_cvt { } {
return [check_cached_effective_target_indexed vect_uintfloat_cvt {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget aarch64*-*-*]
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target supports signed float->int conversion
#
proc check_effective_target_vect_floatint_cvt { } {
return [check_cached_effective_target_indexed vect_floatint_cvt {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target supports unsigned float->int conversion
#
proc check_effective_target_vect_floatuint_cvt { } {
return [check_cached_effective_target_indexed vect_floatuint_cvt {
expr { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if peeling for alignment might be profitable on the target
#
proc check_effective_target_vect_peeling_profitable { } {
return [check_cached_effective_target_indexed vect_peeling_profitable {
expr { ([istarget s390*-*-*]
&& [check_effective_target_s390_vx])
|| [check_effective_target_vect_element_align_preferred] }}]
}
# Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_simd_clones { } {
# On i?86/x86_64 #pragma omp declare simd builds a sse2, avx,
# avx2 and avx512f clone. Only the right clone for the
# specified arch will be chosen, but still we need to at least
# be able to assemble avx512f.
return [check_cached_effective_target_indexed vect_simd_clones {
expr { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_effective_target_avx512f]) }}]
}
# Return 1 if this is a AArch64 target supporting big endian
proc check_effective_target_aarch64_big_endian { } {
return [check_no_compiler_messages aarch64_big_endian assembly {
#if !defined(__aarch64__) || !defined(__AARCH64EB__)
#error !__aarch64__ || !__AARCH64EB__
#endif
}]
}
# Return 1 if this is a AArch64 target supporting little endian
proc check_effective_target_aarch64_little_endian { } {
if { ![istarget aarch64*-*-*] } {
return 0
}
return [check_no_compiler_messages aarch64_little_endian assembly {
#if !defined(__aarch64__) || defined(__AARCH64EB__)
#error FOO
#endif
}]
}
# Return 1 if this is an AArch64 target supporting SVE.
proc check_effective_target_aarch64_sve { } {
if { ![istarget aarch64*-*-*] } {
return 0
}
return [check_no_compiler_messages aarch64_sve assembly {
#if !defined (__ARM_FEATURE_SVE)
#error FOO
#endif
}]
}
# Return the size in bits of an SVE vector, or 0 if the size is variable.
proc aarch64_sve_bits { } {
return [check_cached_effective_target aarch64_sve_bits {
global tool
set src dummy[pid].c
set f [open $src "w"]
puts $f "int bits = __ARM_FEATURE_SVE_BITS;"
close $f
set output [${tool}_target_compile $src "" preprocess ""]
file delete $src
regsub {.*bits = ([^;]*);.*} $output {\1} bits
expr { $bits }
}]
}
# Return 1 if this is a compiler supporting ARC atomic operations
proc check_effective_target_arc_atomic { } {
return [check_no_compiler_messages arc_atomic assembly {
#if !defined(__ARC_ATOMIC__)
#error FOO
#endif
}]
}
# Return 1 if this is an arm target using 32-bit instructions
proc check_effective_target_arm32 { } {
if { ![istarget arm*-*-*] } {
return 0
}
return [check_no_compiler_messages arm32 assembly {
#if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
#error !__arm || __thumb__ && !__thumb2__
#endif
}]
}
# Return 1 if this is an arm target not using Thumb
proc check_effective_target_arm_nothumb { } {
if { ![istarget arm*-*-*] } {
return 0
}
return [check_no_compiler_messages arm_nothumb assembly {
#if !defined(__arm__) || (defined(__thumb__) || defined(__thumb2__))
#error !__arm__ || __thumb || __thumb2__
#endif
}]
}
# Return 1 if this is a little-endian ARM target
proc check_effective_target_arm_little_endian { } {
if { ![istarget arm*-*-*] } {
return 0
}
return [check_no_compiler_messages arm_little_endian assembly {
#if !defined(__arm__) || !defined(__ARMEL__)
#error !__arm__ || !__ARMEL__
#endif
}]
}
# Return 1 if this is an ARM target that only supports aligned vector accesses
proc check_effective_target_arm_vect_no_misalign { } {
if { ![istarget arm*-*-*] } {
return 0
}
return [check_no_compiler_messages arm_vect_no_misalign assembly {
#if !defined(__arm__) \
|| (defined(__ARM_FEATURE_UNALIGNED) \
&& defined(__ARMEL__))
#error !__arm__ || (__ARMEL__ && __ARM_FEATURE_UNALIGNED)
#endif
}]
}
# Return 1 if this is an ARM target supporting -mfloat-abi=soft. Some
# multilibs may be incompatible with this option.
proc check_effective_target_arm_soft_ok { } {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_soft_ok executable {
int main() { return 0;}
} "-mfloat-abi=soft"]
} else {
return 0
}
}
# Return 1 if this is an ARM target supporting -mfpu=vfp
# -mfloat-abi=softfp. Some multilibs may be incompatible with these
# options.
proc check_effective_target_arm_vfp_ok { } {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_vfp_ok object {
int dummy;
} "-mfpu=vfp -mfloat-abi=softfp"]
} else {
return 0
}
}
# Return 1 if this is an ARM target supporting -mfpu=vfp3
# -mfloat-abi=softfp.
proc check_effective_target_arm_vfp3_ok { } {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_vfp3_ok object {
int dummy;
} "-mfpu=vfp3 -mfloat-abi=softfp"]
} else {
return 0
}
}
# Return 1 if this is an ARM target supporting -mfpu=fp-armv8
# -mfloat-abi=softfp.
proc check_effective_target_arm_v8_vfp_ok {} {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_v8_vfp_ok object {
int foo (void)
{
__asm__ volatile ("vrinta.f32.f32 s0, s0");
return 0;
}
} "-mfpu=fp-armv8 -mfloat-abi=softfp"]
} else {
return 0
}
}
# Return 1 if this is an ARM target supporting -mfpu=vfp
# -mfloat-abi=hard. Some multilibs may be incompatible with these
# options.
proc check_effective_target_arm_hard_vfp_ok { } {
if { [check_effective_target_arm32]
&& ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
return [check_no_compiler_messages arm_hard_vfp_ok executable {
int main() { return 0;}
} "-mfpu=vfp -mfloat-abi=hard"]
} else {
return 0
}
}
# Return 1 if this is an ARM target defining __ARM_FP. We may need
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
# incompatible with these options. Also set et_arm_fp_flags to the
# best options to add.
proc check_effective_target_arm_fp_ok_nocache { } {
global et_arm_fp_flags
set et_arm_fp_flags ""
if { [check_effective_target_arm32] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfloat-abi=hard"} {
if { [check_no_compiler_messages_nocache arm_fp_ok object {
#ifndef __ARM_FP
#error __ARM_FP not defined
#endif
} "$flags"] } {
set et_arm_fp_flags $flags
return 1
}
}
}
return 0
}
proc check_effective_target_arm_fp_ok { } {
return [check_cached_effective_target arm_fp_ok \
check_effective_target_arm_fp_ok_nocache]
}
# Add the options needed to define __ARM_FP. We need either
# -mfloat-abi=softfp or -mfloat-abi=hard, but if one is already
# specified by the multilib, use it.
proc add_options_for_arm_fp { flags } {
if { ! [check_effective_target_arm_fp_ok] } {
return "$flags"
}
global et_arm_fp_flags
return "$flags $et_arm_fp_flags"
}
# Return 1 if this is an ARM target that supports DSP multiply with
# current multilib flags.
proc check_effective_target_arm_dsp { } {
return [check_no_compiler_messages arm_dsp assembly {
#ifndef __ARM_FEATURE_DSP
#error not DSP
#endif
int i;
}]
}
# Return 1 if this is an ARM target that supports unaligned word/halfword
# load/store instructions.
proc check_effective_target_arm_unaligned { } {
return [check_no_compiler_messages arm_unaligned assembly {
#ifndef __ARM_FEATURE_UNALIGNED
#error no unaligned support
#endif
int i;
}]
}
# Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
# incompatible with these options. Also set et_arm_crypto_flags to the
# best options to add.
proc check_effective_target_arm_crypto_ok_nocache { } {
global et_arm_crypto_flags
set et_arm_crypto_flags ""
if { [check_effective_target_arm_v8_neon_ok] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache arm_crypto_ok object {
#include "arm_neon.h"
uint8x16_t
foo (uint8x16_t a, uint8x16_t b)
{
return vaeseq_u8 (a, b);
}
} "$flags"] } {
set et_arm_crypto_flags $flags
return 1
}
}
}
return 0
}
# Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
proc check_effective_target_arm_crypto_ok { } {
return [check_cached_effective_target arm_crypto_ok \
check_effective_target_arm_crypto_ok_nocache]
}
# Add options for crypto extensions.
proc add_options_for_arm_crypto { flags } {
if { ! [check_effective_target_arm_crypto_ok] } {
return "$flags"
}
global et_arm_crypto_flags
return "$flags $et_arm_crypto_flags"
}
# Add the options needed for NEON. We need either -mfloat-abi=softfp
# or -mfloat-abi=hard, but if one is already specified by the
# multilib, use it. Similarly, if a -mfpu option already enables
# NEON, do not add -mfpu=neon.
proc add_options_for_arm_neon { flags } {
if { ! [check_effective_target_arm_neon_ok] } {
return "$flags"
}
global et_arm_neon_flags
return "$flags $et_arm_neon_flags"
}
proc add_options_for_arm_v8_vfp { flags } {
if { ! [check_effective_target_arm_v8_vfp_ok] } {
return "$flags"
}
return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
}
proc add_options_for_arm_v8_neon { flags } {
if { ! [check_effective_target_arm_v8_neon_ok] } {
return "$flags"
}
global et_arm_v8_neon_flags
return "$flags $et_arm_v8_neon_flags -march=armv8-a"
}
# Add the options needed for ARMv8.1 Adv.SIMD. Also adds the ARMv8 NEON
# options for AArch64 and for ARM.
proc add_options_for_arm_v8_1a_neon { flags } {
if { ! [check_effective_target_arm_v8_1a_neon_ok] } {
return "$flags"
}
global et_arm_v8_1a_neon_flags
return "$flags $et_arm_v8_1a_neon_flags"
}
# Add the options needed for ARMv8.2 with the scalar FP16 extension.
# Also adds the ARMv8 FP options for ARM and for AArch64.
proc add_options_for_arm_v8_2a_fp16_scalar { flags } {
if { ! [check_effective_target_arm_v8_2a_fp16_scalar_ok] } {
return "$flags"
}
global et_arm_v8_2a_fp16_scalar_flags
return "$flags $et_arm_v8_2a_fp16_scalar_flags"
}
# Add the options needed for ARMv8.2 with the FP16 extension. Also adds
# the ARMv8 NEON options for ARM and for AArch64.
proc add_options_for_arm_v8_2a_fp16_neon { flags } {
if { ! [check_effective_target_arm_v8_2a_fp16_neon_ok] } {
return "$flags"
}
global et_arm_v8_2a_fp16_neon_flags
return "$flags $et_arm_v8_2a_fp16_neon_flags"
}
proc add_options_for_arm_crc { flags } {
if { ! [check_effective_target_arm_crc_ok] } {
return "$flags"
}
global et_arm_crc_flags
return "$flags $et_arm_crc_flags"
}
# Add the options needed for NEON. We need either -mfloat-abi=softfp
# or -mfloat-abi=hard, but if one is already specified by the
# multilib, use it. Similarly, if a -mfpu option already enables
# NEON, do not add -mfpu=neon.
proc add_options_for_arm_neonv2 { flags } {
if { ! [check_effective_target_arm_neonv2_ok] } {
return "$flags"
}
global et_arm_neonv2_flags
return "$flags $et_arm_neonv2_flags"
}
# Add the options needed for vfp3.
proc add_options_for_arm_vfp3 { flags } {
if { ! [check_effective_target_arm_vfp3_ok] } {
return "$flags"
}
return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
}
# Return 1 if this is an ARM target supporting -mfpu=neon
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
# incompatible with these options. Also set et_arm_neon_flags to the
# best options to add.
proc check_effective_target_arm_neon_ok_nocache { } {
global et_arm_neon_flags
set et_arm_neon_flags ""
if { [check_effective_target_arm32] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp" "-mfpu=neon -mfloat-abi=softfp -march=armv7-a" "-mfloat-abi=hard" "-mfpu=neon -mfloat-abi=hard" "-mfpu=neon -mfloat-abi=hard -march=armv7-a"} {
if { [check_no_compiler_messages_nocache arm_neon_ok object {
#include
int dummy;
#ifndef __ARM_NEON__
#error not NEON
#endif
/* Avoid the case where a test adds -mfpu=neon, but the toolchain is
configured for -mcpu=arm926ej-s, for example. */
#if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M'
#error Architecture does not support NEON.
#endif
} "$flags"] } {
set et_arm_neon_flags $flags
return 1
}
}
}
return 0
}
proc check_effective_target_arm_neon_ok { } {
return [check_cached_effective_target arm_neon_ok \
check_effective_target_arm_neon_ok_nocache]
}
# Return 1 if this is an ARM target supporting -mfpu=neon without any
# -mfloat-abi= option. Useful in tests where add_options is not
# supported (such as lto tests).
proc check_effective_target_arm_neon_ok_no_float_abi_nocache { } {
if { [check_effective_target_arm32] } {
foreach flags {"-mfpu=neon"} {
if { [check_no_compiler_messages_nocache arm_neon_ok_no_float_abi object {
#include
int dummy;
#ifndef __ARM_NEON__
#error not NEON
#endif
/* Avoid the case where a test adds -mfpu=neon, but the toolchain is
configured for -mcpu=arm926ej-s, for example. */
#if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M'
#error Architecture does not support NEON.
#endif
} "$flags"] } {
return 1
}
}
}
return 0
}
proc check_effective_target_arm_neon_ok_no_float_abi { } {
return [check_cached_effective_target arm_neon_ok_no_float_abi \
check_effective_target_arm_neon_ok_no_float_abi_nocache]
}
proc check_effective_target_arm_crc_ok_nocache { } {
global et_arm_crc_flags
set et_arm_crc_flags "-march=armv8-a+crc"
return [check_no_compiler_messages_nocache arm_crc_ok object {
#if !defined (__ARM_FEATURE_CRC32)
#error FOO
#endif
} "$et_arm_crc_flags"]
}
proc check_effective_target_arm_crc_ok { } {
return [check_cached_effective_target arm_crc_ok \
check_effective_target_arm_crc_ok_nocache]
}
# Return 1 if this is an ARM target supporting -mfpu=neon-fp16
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
# incompatible with these options. Also set et_arm_neon_fp16_flags to
# the best options to add.
proc check_effective_target_arm_neon_fp16_ok_nocache { } {
global et_arm_neon_fp16_flags
global et_arm_neon_flags
set et_arm_neon_fp16_flags ""
if { [check_effective_target_arm32]
&& [check_effective_target_arm_neon_ok] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
"-mfpu=neon-fp16 -mfloat-abi=softfp"
"-mfp16-format=ieee"
"-mfloat-abi=softfp -mfp16-format=ieee"
"-mfpu=neon-fp16 -mfp16-format=ieee"
"-mfpu=neon-fp16 -mfloat-abi=softfp -mfp16-format=ieee"} {
if { [check_no_compiler_messages_nocache arm_neon_fp16_ok object {
#include "arm_neon.h"
float16x4_t
foo (float32x4_t arg)
{
return vcvt_f16_f32 (arg);
}
} "$et_arm_neon_flags $flags"] } {
set et_arm_neon_fp16_flags [concat $et_arm_neon_flags $flags]
return 1
}
}
}
return 0
}
proc check_effective_target_arm_neon_fp16_ok { } {
return [check_cached_effective_target arm_neon_fp16_ok \
check_effective_target_arm_neon_fp16_ok_nocache]
}
proc check_effective_target_arm_neon_fp16_hw { } {
if {! [check_effective_target_arm_neon_fp16_ok] } {
return 0
}
global et_arm_neon_fp16_flags
check_runtime_nocache arm_neon_fp16_hw {
int
main (int argc, char **argv)
{
asm ("vcvt.f32.f16 q1, d0");
return 0;
}
} $et_arm_neon_fp16_flags
}
proc add_options_for_arm_neon_fp16 { flags } {
if { ! [check_effective_target_arm_neon_fp16_ok] } {
return "$flags"
}
global et_arm_neon_fp16_flags
return "$flags $et_arm_neon_fp16_flags"
}
# Return 1 if this is an ARM target supporting the FP16 alternative
# format. Some multilibs may be incompatible with the options needed. Also
# set et_arm_neon_fp16_flags to the best options to add.
proc check_effective_target_arm_fp16_alternative_ok_nocache { } {
global et_arm_neon_fp16_flags
set et_arm_neon_fp16_flags ""
if { [check_effective_target_arm32] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
"-mfpu=neon-fp16 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache \
arm_fp16_alternative_ok object {
#if !defined (__ARM_FP16_FORMAT_ALTERNATIVE)
#error __ARM_FP16_FORMAT_ALTERNATIVE not defined
#endif
} "$flags -mfp16-format=alternative"] } {
set et_arm_neon_fp16_flags "$flags -mfp16-format=alternative"
return 1
}
}
}
return 0
}
proc check_effective_target_arm_fp16_alternative_ok { } {
return [check_cached_effective_target arm_fp16_alternative_ok \
check_effective_target_arm_fp16_alternative_ok_nocache]
}
# Return 1 if this is an ARM target supports specifying the FP16 none
# format. Some multilibs may be incompatible with the options needed.
proc check_effective_target_arm_fp16_none_ok_nocache { } {
if { [check_effective_target_arm32] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
"-mfpu=neon-fp16 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache \
arm_fp16_none_ok object {
#if defined (__ARM_FP16_FORMAT_ALTERNATIVE)
#error __ARM_FP16_FORMAT_ALTERNATIVE defined
#endif
#if defined (__ARM_FP16_FORMAT_IEEE)
#error __ARM_FP16_FORMAT_IEEE defined
#endif
} "$flags -mfp16-format=none"] } {
return 1
}
}
}
return 0
}
proc check_effective_target_arm_fp16_none_ok { } {
return [check_cached_effective_target arm_fp16_none_ok \
check_effective_target_arm_fp16_none_ok_nocache]
}
# Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
# incompatible with these options. Also set et_arm_v8_neon_flags to the
# best options to add.
proc check_effective_target_arm_v8_neon_ok_nocache { } {
global et_arm_v8_neon_flags
set et_arm_v8_neon_flags ""
if { [check_effective_target_arm32] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache arm_v8_neon_ok object {
#if __ARM_ARCH < 8
#error not armv8 or later
#endif
#include "arm_neon.h"
void
foo ()
{
__asm__ volatile ("vrintn.f32 q0, q0");
}
} "$flags -march=armv8-a"] } {
set et_arm_v8_neon_flags $flags
return 1
}
}
}
return 0
}
proc check_effective_target_arm_v8_neon_ok { } {
return [check_cached_effective_target arm_v8_neon_ok \
check_effective_target_arm_v8_neon_ok_nocache]
}
# Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
# incompatible with these options. Also set et_arm_neonv2_flags to the
# best options to add.
proc check_effective_target_arm_neonv2_ok_nocache { } {
global et_arm_neonv2_flags
global et_arm_neon_flags
set et_arm_neonv2_flags ""
if { [check_effective_target_arm32]
&& [check_effective_target_arm_neon_ok] } {
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
#include "arm_neon.h"
float32x2_t
foo (float32x2_t a, float32x2_t b, float32x2_t c)
{
return vfma_f32 (a, b, c);
}
} "$et_arm_neon_flags $flags"] } {
set et_arm_neonv2_flags [concat $et_arm_neon_flags $flags]
return 1
}
}
}
return 0
}
proc check_effective_target_arm_neonv2_ok { } {
return [check_cached_effective_target arm_neonv2_ok \
check_effective_target_arm_neonv2_ok_nocache]
}
# Add the options needed for VFP FP16 support. We need either
# -mfloat-abi=softfp or -mfloat-abi=hard. If one is already specified by
# the multilib, use it.
proc add_options_for_arm_fp16 { flags } {
if { ! [check_effective_target_arm_fp16_ok] } {
return "$flags"
}
global et_arm_fp16_flags
return "$flags $et_arm_fp16_flags"
}
# Add the options needed to enable support for IEEE format
# half-precision support. This is valid for ARM targets.
proc add_options_for_arm_fp16_ieee { flags } {
if { ! [check_effective_target_arm_fp16_ok] } {
return "$flags"
}
global et_arm_fp16_flags
return "$flags $et_arm_fp16_flags -mfp16-format=ieee"
}
# Add the options needed to enable support for ARM Alternative format
# half-precision support. This is valid for ARM targets.
proc add_options_for_arm_fp16_alternative { flags } {
if { ! [check_effective_target_arm_fp16_ok] } {
return "$flags"
}
global et_arm_fp16_flags
return "$flags $et_arm_fp16_flags -mfp16-format=alternative"
}
# Return 1 if this is an ARM target that can support a VFP fp16 variant.
# Skip multilibs that are incompatible with these options and set
# et_arm_fp16_flags to the best options to add. This test is valid for
# ARM only.
proc check_effective_target_arm_fp16_ok_nocache { } {
global et_arm_fp16_flags
set et_arm_fp16_flags ""
if { ! [check_effective_target_arm32] } {
return 0;
}
if [check-flags \
[list "" { *-*-* } { "-mfpu=*" } \
{ "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" \
"-mfpu=*fpv[1-9][0-9]*" "-mfpu=*fp-armv8*" } ]] {
# Multilib flags would override -mfpu.
return 0
}
if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
# Must generate floating-point instructions.
return 0
}
if [check_effective_target_arm_hf_eabi] {
# Use existing float-abi and force an fpu which supports fp16
set et_arm_fp16_flags "-mfpu=vfpv4"
return 1;
}
if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
# The existing -mfpu value is OK; use it, but add softfp.
set et_arm_fp16_flags "-mfloat-abi=softfp"
return 1;
}
# Add -mfpu for a VFP fp16 variant since there is no preprocessor
# macro to check for this support.
set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
int dummy;
} "$flags"] } {
set et_arm_fp16_flags "$flags"
return 1
}
return 0
}
proc check_effective_target_arm_fp16_ok { } {
return [check_cached_effective_target arm_fp16_ok \
check_effective_target_arm_fp16_ok_nocache]
}
# Return 1 if the target supports executing VFP FP16 instructions, 0
# otherwise. This test is valid for ARM only.
proc check_effective_target_arm_fp16_hw { } {
if {! [check_effective_target_arm_fp16_ok] } {
return 0
}
global et_arm_fp16_flags
check_runtime_nocache arm_fp16_hw {
int
main (int argc, char **argv)
{
__fp16 a = 1.0;
float r;
asm ("vcvtb.f32.f16 %0, %1"
: "=w" (r) : "w" (a)
: /* No clobbers. */);
return (r == 1.0) ? 0 : 1;
}
} "$et_arm_fp16_flags -mfp16-format=ieee"
}
# Creates a series of routines that return 1 if the given architecture
# can be selected and a routine to give the flags to select that architecture
# Note: Extra flags may be added to disable options from newer compilers
# (Thumb in particular - but others may be added in the future).
# Warning: Do not use check_effective_target_arm_arch_*_ok for architecture
# extension (eg. ARMv8.1-A) since there is no macro defined for them. See
# how only __ARM_ARCH_8A__ is checked for ARMv8.1-A.
# Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
# /* { dg-add-options arm_arch_v5t } */
# /* { dg-require-effective-target arm_arch_v5t_multilib } */
foreach { armfunc armflag armdefs } {
v4 "-march=armv4 -marm" __ARM_ARCH_4__
v4t "-march=armv4t" __ARM_ARCH_4T__
v5t "-march=armv5t" __ARM_ARCH_5T__
v5te "-march=armv5te" __ARM_ARCH_5TE__
v6 "-march=armv6" __ARM_ARCH_6__
v6k "-march=armv6k" __ARM_ARCH_6K__
v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
v6z "-march=armv6z" __ARM_ARCH_6Z__
v6m "-march=armv6-m -mthumb -mfloat-abi=soft" __ARM_ARCH_6M__
v7a "-march=armv7-a" __ARM_ARCH_7A__
v7r "-march=armv7-r" __ARM_ARCH_7R__
v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
v7ve "-march=armv7ve -marm"
"__ARM_ARCH_7A__ && __ARM_FEATURE_IDIV"
v8a "-march=armv8-a" __ARM_ARCH_8A__
v8_1a "-march=armv8.1-a" __ARM_ARCH_8A__
v8_2a "-march=armv8.2-a" __ARM_ARCH_8A__
v8m_base "-march=armv8-m.base -mthumb -mfloat-abi=soft"
__ARM_ARCH_8M_BASE__
v8m_main "-march=armv8-m.main -mthumb" __ARM_ARCH_8M_MAIN__
v8r "-march=armv8-r" __ARM_ARCH_8R__ } {
eval [string map [list FUNC $armfunc FLAG $armflag DEFS $armdefs ] {
proc check_effective_target_arm_arch_FUNC_ok { } {
if { [ string match "*-marm*" "FLAG" ] &&
![check_effective_target_arm_arm_ok] } {
return 0
}
return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
#if !(DEFS)
#error !(DEFS)
#endif
int
main (void)
{
return 0;
}
} "FLAG" ]
}
proc add_options_for_arm_arch_FUNC { flags } {
return "$flags FLAG"
}
proc check_effective_target_arm_arch_FUNC_multilib { } {
return [check_runtime arm_arch_FUNC_multilib {
int
main (void)
{
return 0;
}
} [add_options_for_arm_arch_FUNC ""]]
}
}]
}
# Return 1 if GCC was configured with --with-mode=
proc check_effective_target_default_mode { } {
return [check_configured_with "with-mode="]
}
# Return 1 if this is an ARM target where -marm causes ARM to be
# used (not Thumb)
proc check_effective_target_arm_arm_ok { } {
return [check_no_compiler_messages arm_arm_ok assembly {
#if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
#error !__arm__ || __thumb__ || __thumb2__
#endif
} "-marm"]
}
# Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
# used.
proc check_effective_target_arm_thumb1_ok { } {
return [check_no_compiler_messages arm_thumb1_ok assembly {
#if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
#error !__arm__ || !__thumb__ || __thumb2__
#endif
int foo (int i) { return i; }
} "-mthumb"]
}
# Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
# used.
proc check_effective_target_arm_thumb2_ok { } {
return [check_no_compiler_messages arm_thumb2_ok assembly {
#if !defined(__thumb2__)
#error !__thumb2__
#endif
int foo (int i) { return i; }
} "-mthumb"]
}
# Return 1 if this is an ARM target where Thumb-1 is used without options
# added by the test.
proc check_effective_target_arm_thumb1 { } {
return [check_no_compiler_messages arm_thumb1 assembly {
#if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
#error !__arm__ || !__thumb__ || __thumb2__
#endif
int i;
} ""]
}
# Return 1 if this is an ARM target where Thumb-2 is used without options
# added by the test.
proc check_effective_target_arm_thumb2 { } {
return [check_no_compiler_messages arm_thumb2 assembly {
#if !defined(__thumb2__)
#error !__thumb2__
#endif
int i;
} ""]
}
# Return 1 if this is an ARM target where conditional execution is available.
proc check_effective_target_arm_cond_exec { } {
return [check_no_compiler_messages arm_cond_exec assembly {
#if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__)
#error FOO
#endif
int i;
} ""]
}
# Return 1 if this is an ARM cortex-M profile cpu
proc check_effective_target_arm_cortex_m { } {
if { ![istarget arm*-*-*] } {
return 0
}
return [check_no_compiler_messages arm_cortex_m assembly {
#if defined(__ARM_ARCH_ISA_ARM)
#error __ARM_ARCH_ISA_ARM is defined
#endif
int i;
} "-mthumb"]
}
# Return 1 if this is an ARM target where -mthumb causes Thumb-1 to be
# used and MOVT/MOVW instructions to be available.
proc check_effective_target_arm_thumb1_movt_ok {} {
if [check_effective_target_arm_thumb1_ok] {
return [check_no_compiler_messages arm_movt object {
int
foo (void)
{
asm ("movt r0, #42");
}
} "-mthumb"]
} else {
return 0
}
}
# Return 1 if this is an ARM target where -mthumb causes Thumb-1 to be
# used and CBZ and CBNZ instructions are available.
proc check_effective_target_arm_thumb1_cbz_ok {} {
if [check_effective_target_arm_thumb1_ok] {
return [check_no_compiler_messages arm_movt object {
int
foo (void)
{
asm ("cbz r0, 2f\n2:");
}
} "-mthumb"]
} else {
return 0
}
}
# Return 1 if this is an ARM target where ARMv8-M Security Extensions is
# available.
proc check_effective_target_arm_cmse_ok {} {
return [check_no_compiler_messages arm_cmse object {
int
foo (void)
{
asm ("bxns r0");
}
} "-mcmse"];
}
# Return 1 if this compilation turns on string_ops_prefer_neon on.
proc check_effective_target_arm_tune_string_ops_prefer_neon { } {
return [check_no_messages_and_pattern arm_tune_string_ops_prefer_neon "@string_ops_prefer_neon:\t1" assembly {
int foo (void) { return 0; }
} "-O2 -mprint-tune-info" ]
}
# Return 1 if the target supports executing NEON instructions, 0
# otherwise. Cache the result.
proc check_effective_target_arm_neon_hw { } {
return [check_runtime arm_neon_hw_available {
int
main (void)
{
long long a = 0, b = 1;
asm ("vorr %P0, %P1, %P2"
: "=w" (a)
: "0" (a), "w" (b));
return (a != 1);
}
} [add_options_for_arm_neon ""]]
}
# Return true if this is an AArch64 target that can run SVE code.
proc check_effective_target_aarch64_sve_hw { } {
if { ![istarget aarch64*-*-*] } {
return 0
}
return [check_runtime aarch64_sve_hw_available {
int
main (void)
{
asm volatile ("ptrue p0.b");
return 0;
}
}]
}
# Return true if this is an AArch64 target that can run SVE code and
# if its SVE vectors have exactly BITS bits.
proc aarch64_sve_hw_bits { bits } {
if { ![check_effective_target_aarch64_sve_hw] } {
return 0
}
return [check_runtime aarch64_sve${bits}_hw [subst {
int
main (void)
{
int res;
asm volatile ("cntd %0" : "=r" (res));
if (res * 64 != $bits)
__builtin_abort ();
return 0;
}
}]]
}
# Return true if this is an AArch64 target that can run SVE code and
# if its SVE vectors have exactly 256 bits.
proc check_effective_target_aarch64_sve256_hw { } {
return [aarch64_sve_hw_bits 256]
}
proc check_effective_target_arm_neonv2_hw { } {
return [check_runtime arm_neon_hwv2_available {
#include "arm_neon.h"
int
main (void)
{
float32x2_t a, b, c;
asm ("vfma.f32 %P0, %P1, %P2"
: "=w" (a)
: "w" (b), "w" (c));
return 0;
}
} [add_options_for_arm_neonv2 ""]]
}
# Return 1 if the target supports the ARMv8.1 Adv.SIMD extension, 0
# otherwise. The test is valid for AArch64 and ARM. Record the command
# line options needed.
proc check_effective_target_arm_v8_1a_neon_ok_nocache { } {
global et_arm_v8_1a_neon_flags
set et_arm_v8_1a_neon_flags ""
if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
return 0;
}
# Iterate through sets of options to find the compiler flags that
# need to be added to the -march option. Start with the empty set
# since AArch64 only needs the -march setting.
foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \
"-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
foreach arches { "-march=armv8-a+rdma" "-march=armv8.1-a" } {
if { [check_no_compiler_messages_nocache arm_v8_1a_neon_ok object {
#if !defined (__ARM_FEATURE_QRDMX)
#error "__ARM_FEATURE_QRDMX not defined"
#endif
} "$flags $arches"] } {
set et_arm_v8_1a_neon_flags "$flags $arches"
return 1
}
}
}
return 0;
}
proc check_effective_target_arm_v8_1a_neon_ok { } {
return [check_cached_effective_target arm_v8_1a_neon_ok \
check_effective_target_arm_v8_1a_neon_ok_nocache]
}
# Return 1 if the target supports ARMv8.2 scalar FP16 arithmetic
# instructions, 0 otherwise. The test is valid for ARM and for AArch64.
# Record the command line options needed.
proc check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache { } {
global et_arm_v8_2a_fp16_scalar_flags
set et_arm_v8_2a_fp16_scalar_flags ""
if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
return 0;
}
# Iterate through sets of options to find the compiler flags that
# need to be added to the -march option.
foreach flags {"" "-mfpu=fp-armv8" "-mfloat-abi=softfp" \
"-mfpu=fp-armv8 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache \
arm_v8_2a_fp16_scalar_ok object {
#if !defined (__ARM_FEATURE_FP16_SCALAR_ARITHMETIC)
#error "__ARM_FEATURE_FP16_SCALAR_ARITHMETIC not defined"
#endif
} "$flags -march=armv8.2-a+fp16"] } {
set et_arm_v8_2a_fp16_scalar_flags "$flags -march=armv8.2-a+fp16"
return 1
}
}
return 0;
}
proc check_effective_target_arm_v8_2a_fp16_scalar_ok { } {
return [check_cached_effective_target arm_v8_2a_fp16_scalar_ok \
check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache]
}
# Return 1 if the target supports ARMv8.2 Adv.SIMD FP16 arithmetic
# instructions, 0 otherwise. The test is valid for ARM and for AArch64.
# Record the command line options needed.
proc check_effective_target_arm_v8_2a_fp16_neon_ok_nocache { } {
global et_arm_v8_2a_fp16_neon_flags
set et_arm_v8_2a_fp16_neon_flags ""
if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
return 0;
}
# Iterate through sets of options to find the compiler flags that
# need to be added to the -march option.
foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \
"-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
if { [check_no_compiler_messages_nocache \
arm_v8_2a_fp16_neon_ok object {
#if !defined (__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#error "__ARM_FEATURE_FP16_VECTOR_ARITHMETIC not defined"
#endif
} "$flags -march=armv8.2-a+fp16"] } {
set et_arm_v8_2a_fp16_neon_flags "$flags -march=armv8.2-a+fp16"
return 1
}
}
return 0;
}
proc check_effective_target_arm_v8_2a_fp16_neon_ok { } {
return [check_cached_effective_target arm_v8_2a_fp16_neon_ok \
check_effective_target_arm_v8_2a_fp16_neon_ok_nocache]
}
# Return 1 if the target supports ARMv8.2 Adv.SIMD Dot Product
# instructions, 0 otherwise. The test is valid for ARM and for AArch64.
# Record the command line options needed.
proc check_effective_target_arm_v8_2a_dotprod_neon_ok_nocache { } {
global et_arm_v8_2a_dotprod_neon_flags
set et_arm_v8_2a_dotprod_neon_flags ""
if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
return 0;
}
# Iterate through sets of options to find the compiler flags that
# need to be added to the -march option.
foreach flags {"" "-mfloat-abi=softfp -mfpu=neon-fp-armv8" "-mfloat-abi=hard -mfpu=neon-fp-armv8"} {
if { [check_no_compiler_messages_nocache \
arm_v8_2a_dotprod_neon_ok object {
#include
#if !defined (__ARM_FEATURE_DOTPROD)
#error "__ARM_FEATURE_DOTPROD not defined"
#endif
} "$flags -march=armv8.2-a+dotprod"] } {
set et_arm_v8_2a_dotprod_neon_flags "$flags -march=armv8.2-a+dotprod"
return 1
}
}
return 0;
}
proc check_effective_target_arm_v8_2a_dotprod_neon_ok { } {
return [check_cached_effective_target arm_v8_2a_dotprod_neon_ok \
check_effective_target_arm_v8_2a_dotprod_neon_ok_nocache]
}
proc add_options_for_arm_v8_2a_dotprod_neon { flags } {
if { ! [check_effective_target_arm_v8_2a_dotprod_neon_ok] } {
return "$flags"
}
global et_arm_v8_2a_dotprod_neon_flags
return "$flags $et_arm_v8_2a_dotprod_neon_flags"
}
# Return 1 if the target supports FP16 VFMAL and VFMSL
# instructions, 0 otherwise.
# Record the command line options needed.
proc check_effective_target_arm_fp16fml_neon_ok_nocache { } {
global et_arm_fp16fml_neon_flags
set et_arm_fp16fml_neon_flags ""
if { ![istarget arm*-*-*] } {
return 0;
}
# Iterate through sets of options to find the compiler flags that
# need to be added to the -march option.
foreach flags {"" "-mfloat-abi=softfp -mfpu=neon-fp-armv8" "-mfloat-abi=hard -mfpu=neon-fp-armv8"} {
if { [check_no_compiler_messages_nocache \
arm_fp16fml_neon_ok assembly {
#include
float32x2_t
foo (float32x2_t r, float16x4_t a, float16x4_t b)
{
return vfmlal_high_u32 (r, a, b);
}
} "$flags -march=armv8.2-a+fp16fml"] } {
set et_arm_fp16fml_neon_flags "$flags -march=armv8.2-a+fp16fml"
return 1
}
}
return 0;
}
proc check_effective_target_arm_fp16fml_neon_ok { } {
return [check_cached_effective_target arm_fp16fml_neon_ok \
check_effective_target_arm_fp16fml_neon_ok_nocache]
}
proc add_options_for_arm_fp16fml_neon { flags } {
if { ! [check_effective_target_arm_fp16fml_neon_ok] } {
return "$flags"
}
global et_arm_fp16fml_neon_flags
return "$flags $et_arm_fp16fml_neon_flags"
}
# Return 1 if the target supports executing ARMv8 NEON instructions, 0
# otherwise.
proc check_effective_target_arm_v8_neon_hw { } {
return [check_runtime arm_v8_neon_hw_available {
#include "arm_neon.h"
int
main (void)
{
float32x2_t a = { 1.0f, 2.0f };
#ifdef __ARM_ARCH_ISA_A64
asm ("frinta %0.2s, %1.2s"
: "=w" (a)
: "w" (a));
#else
asm ("vrinta.f32 %P0, %P1"
: "=w" (a)
: "0" (a));
#endif
return a[0] == 2.0f;
}
} [add_options_for_arm_v8_neon ""]]
}
# Return 1 if the target supports executing the ARMv8.1 Adv.SIMD extension, 0
# otherwise. The test is valid for AArch64 and ARM.
proc check_effective_target_arm_v8_1a_neon_hw { } {
if { ![check_effective_target_arm_v8_1a_neon_ok] } {
return 0;
}
return [check_runtime arm_v8_1a_neon_hw_available {
int
main (void)
{
#ifdef __ARM_ARCH_ISA_A64
__Int32x2_t a = {0, 1};
__Int32x2_t b = {0, 2};
__Int32x2_t result;
asm ("sqrdmlah %0.2s, %1.2s, %2.2s"
: "=w"(result)
: "w"(a), "w"(b)
: /* No clobbers. */);
#else
__simd64_int32_t a = {0, 1};
__simd64_int32_t b = {0, 2};
__simd64_int32_t result;
asm ("vqrdmlah.s32 %P0, %P1, %P2"
: "=w"(result)
: "w"(a), "w"(b)
: /* No clobbers. */);
#endif
return result[0];
}
} [add_options_for_arm_v8_1a_neon ""]]
}
# Return 1 if the target supports executing floating point instructions from
# ARMv8.2 with the FP16 extension, 0 otherwise. The test is valid for ARM and
# for AArch64.
proc check_effective_target_arm_v8_2a_fp16_scalar_hw { } {
if { ![check_effective_target_arm_v8_2a_fp16_scalar_ok] } {
return 0;
}
return [check_runtime arm_v8_2a_fp16_scalar_hw_available {
int
main (void)
{
__fp16 a = 1.0;
__fp16 result;
#ifdef __ARM_ARCH_ISA_A64
asm ("fabs %h0, %h1"
: "=w"(result)
: "w"(a)
: /* No clobbers. */);
#else
asm ("vabs.f16 %0, %1"
: "=w"(result)
: "w"(a)
: /* No clobbers. */);
#endif
return (result == 1.0) ? 0 : 1;
}
} [add_options_for_arm_v8_2a_fp16_scalar ""]]
}
# Return 1 if the target supports executing Adv.SIMD instructions from ARMv8.2
# with the FP16 extension, 0 otherwise. The test is valid for ARM and for
# AArch64.
proc check_effective_target_arm_v8_2a_fp16_neon_hw { } {
if { ![check_effective_target_arm_v8_2a_fp16_neon_ok] } {
return 0;
}
return [check_runtime arm_v8_2a_fp16_neon_hw_available {
int
main (void)
{
#ifdef __ARM_ARCH_ISA_A64
__Float16x4_t a = {1.0, -1.0, 1.0, -1.0};
__Float16x4_t result;
asm ("fabs %0.4h, %1.4h"
: "=w"(result)
: "w"(a)
: /* No clobbers. */);
#else
__simd64_float16_t a = {1.0, -1.0, 1.0, -1.0};
__simd64_float16_t result;
asm ("vabs.f16 %P0, %P1"
: "=w"(result)
: "w"(a)
: /* No clobbers. */);
#endif
return (result[0] == 1.0) ? 0 : 1;
}
} [add_options_for_arm_v8_2a_fp16_neon ""]]
}
# Return 1 if the target supports executing AdvSIMD instructions from ARMv8.2
# with the Dot Product extension, 0 otherwise. The test is valid for ARM and for
# AArch64.
proc check_effective_target_arm_v8_2a_dotprod_neon_hw { } {
if { ![check_effective_target_arm_v8_2a_dotprod_neon_ok] } {
return 0;
}
return [check_runtime arm_v8_2a_dotprod_neon_hw_available {
#include "arm_neon.h"
int
main (void)
{
uint32x2_t results = {0,0};
uint8x8_t a = {1,1,1,1,2,2,2,2};
uint8x8_t b = {2,2,2,2,3,3,3,3};
#ifdef __ARM_ARCH_ISA_A64
asm ("udot %0.2s, %1.8b, %2.8b"
: "=w"(results)
: "w"(a), "w"(b)
: /* No clobbers. */);
#else
asm ("vudot.u8 %P0, %P1, %P2"
: "=w"(results)
: "w"(a), "w"(b)
: /* No clobbers. */);
#endif
return (results[0] == 8 && results[1] == 24) ? 1 : 0;
}
} [add_options_for_arm_v8_2a_dotprod_neon ""]]
}
# Return 1 if this is a ARM target with NEON enabled.
proc check_effective_target_arm_neon { } {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_neon object {
#ifndef __ARM_NEON__
#error not NEON
#else
int dummy;
#endif
}]
} else {
return 0
}
}
proc check_effective_target_arm_neonv2 { } {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_neon object {
#ifndef __ARM_NEON__
#error not NEON
#else
#ifndef __ARM_FEATURE_FMA
#error not NEONv2
#else
int dummy;
#endif
#endif
}]
} else {
return 0
}
}
# Return 1 if this is an ARM target with load acquire and store release
# instructions for 8-, 16- and 32-bit types.
proc check_effective_target_arm_acq_rel { } {
return [check_no_compiler_messages arm_acq_rel object {
void
load_acquire_store_release (void)
{
asm ("lda r0, [r1]\n\t"
"stl r0, [r1]\n\t"
"ldah r0, [r1]\n\t"
"stlh r0, [r1]\n\t"
"ldab r0, [r1]\n\t"
"stlb r0, [r1]"
: : : "r0", "memory");
}
}]
}
# Add the options needed for MIPS Paired-Single.
proc add_options_for_mpaired_single { flags } {
if { ! [check_effective_target_mpaired_single] } {
return "$flags"
}
return "$flags -mpaired-single"
}
# Add the options needed for MIPS SIMD Architecture.
proc add_options_for_mips_msa { flags } {
if { ! [check_effective_target_mips_msa] } {
return "$flags"
}
return "$flags -mmsa"
}
# Add the options needed for MIPS Loongson MMI Architecture.
proc add_options_for_mips_loongson_mmi { flags } {
if { ! [check_effective_target_mips_loongson_mmi] } {
return "$flags"
}
return "$flags -mloongson-mmi"
}
# Return 1 if this a Loongson-2E or -2F target using an ABI that supports
# the Loongson vector modes.
proc check_effective_target_mips_loongson_mmi { } {
return [check_no_compiler_messages loongson assembly {
#if !defined(__mips_loongson_mmi)
#error !__mips_loongson_mmi
#endif
#if !defined(__mips_loongson_vector_rev)
#error !__mips_loongson_vector_rev
#endif
}]
}
# Return 1 if this is a MIPS target that supports the legacy NAN.
proc check_effective_target_mips_nanlegacy { } {
return [check_no_compiler_messages nanlegacy assembly {
#include
int main () { return 0; }
} "-mnan=legacy"]
}
# Return 1 if an MSA program can be compiled to object
proc check_effective_target_mips_msa { } {
if ![check_effective_target_nomips16] {
return 0
}
return [check_no_compiler_messages msa object {
#if !defined(__mips_msa)
#error "MSA NOT AVAIL"
#else
#if !(((__mips == 64) || (__mips == 32)) && (__mips_isa_rev >= 2))
#error "MSA NOT AVAIL FOR ISA REV < 2"
#endif
#if !defined(__mips_hard_float)
#error "MSA HARD_FLOAT REQUIRED"
#endif
#if __mips_fpr != 64
#error "MSA 64-bit FPR REQUIRED"
#endif
#include
int main()
{
v8i16 v = __builtin_msa_ldi_h (1);
return v[0];
}
#endif
} "-mmsa" ]
}
# Return 1 if this is an ARM target that adheres to the ABI for the ARM
# Architecture.
proc check_effective_target_arm_eabi { } {
return [check_no_compiler_messages arm_eabi object {
#ifndef __ARM_EABI__
#error not EABI
#else
int dummy;
#endif
}]
}
# Return 1 if this is an ARM target that adheres to the hard-float variant of
# the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
proc check_effective_target_arm_hf_eabi { } {
return [check_no_compiler_messages arm_hf_eabi object {
#if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
#error not hard-float EABI
#else
int dummy;
#endif
}]
}
# Return 1 if this is an ARM target that uses the soft float ABI
# with no floating-point instructions at all (e.g. -mfloat-abi=soft).
proc check_effective_target_arm_softfloat { } {
return [check_no_compiler_messages arm_softfloat object {
#if !defined(__SOFTFP__)
#error not soft-float EABI
#else
int dummy;
#endif
}]
}
# Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
# Some multilibs may be incompatible with this option.
proc check_effective_target_arm_iwmmxt_ok { } {
if { [check_effective_target_arm32] } {
return [check_no_compiler_messages arm_iwmmxt_ok object {
int dummy;
} "-mcpu=iwmmxt"]
} else {
return 0
}
}
# Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
# for an ARM target.
proc check_effective_target_arm_prefer_ldrd_strd { } {
if { ![check_effective_target_arm32] } {
return 0;
}
return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
void foo (void) { __asm__ ("" ::: "r4", "r5"); }
} "-O2 -mthumb" ]
}
# Return 1 if this is a PowerPC target supporting -meabi.
proc check_effective_target_powerpc_eabi_ok { } {
if { [istarget powerpc*-*-*] } {
return [check_no_compiler_messages powerpc_eabi_ok object {
int dummy;
} "-meabi"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target with floating-point registers.
proc check_effective_target_powerpc_fprs { } {
if { [istarget powerpc*-*-*]
|| [istarget rs6000-*-*] } {
return [check_no_compiler_messages powerpc_fprs object {
#ifdef __NO_FPRS__
#error no FPRs
#else
int dummy;
#endif
}]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target with hardware double-precision
# floating point.
proc check_effective_target_powerpc_hard_double { } {
if { [istarget powerpc*-*-*]
|| [istarget rs6000-*-*] } {
return [check_no_compiler_messages powerpc_hard_double object {
#ifdef _SOFT_DOUBLE
#error soft double
#else
int dummy;
#endif
}]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -maltivec.
proc check_effective_target_powerpc_altivec_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# AltiVec is not supported on AIX before 5.3.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5.1*]
|| [istarget powerpc*-*-aix5.2*] } {
return 0
}
return [check_no_compiler_messages powerpc_altivec_ok object {
int dummy;
} "-maltivec"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -mpower8-vector
proc check_effective_target_powerpc_p8vector_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# AltiVec is not supported on AIX before 5.3.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5.1*]
|| [istarget powerpc*-*-aix5.2*] } {
return 0
}
return [check_no_compiler_messages powerpc_p8vector_ok object {
int main (void) {
#ifdef __MACH__
asm volatile ("xxlorc vs0,vs0,vs0");
#else
asm volatile ("xxlorc 0,0,0");
#endif
return 0;
}
} "-mpower8-vector"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -mpower9-vector
proc check_effective_target_powerpc_p9vector_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# AltiVec is not supported on AIX before 5.3.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5.1*]
|| [istarget powerpc*-*-aix5.2*] } {
return 0
}
return [check_no_compiler_messages powerpc_p9vector_ok object {
int main (void) {
long e = -1;
vector double v = (vector double) { 0.0, 0.0 };
asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v));
return e;
}
} "-mpower9-vector"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -mmodulo
proc check_effective_target_powerpc_p9modulo_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# AltiVec is not supported on AIX before 5.3.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5.1*]
|| [istarget powerpc*-*-aix5.2*] } {
return 0
}
return [check_no_compiler_messages powerpc_p9modulo_ok object {
int main (void) {
int i = 5, j = 3, r = -1;
asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j));
return (r == 2);
}
} "-mmodulo"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -mfloat128 via either
# software emulation on power7/power8 systems or hardware support on power9.
proc check_effective_target_powerpc_float128_sw_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# AltiVec is not supported on AIX before 5.3.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5.1*]
|| [istarget powerpc*-*-aix5.2*] } {
return 0
}
return [check_no_compiler_messages powerpc_float128_sw_ok object {
volatile __float128 x = 1.0q;
volatile __float128 y = 2.0q;
int main() {
__float128 z = x + y;
return (z == 3.0q);
}
} "-mfloat128 -mvsx"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -mfloat128 via hardware
# support on power9.
proc check_effective_target_powerpc_float128_hw_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# AltiVec is not supported on AIX before 5.3.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5.1*]
|| [istarget powerpc*-*-aix5.2*] } {
return 0
}
return [check_no_compiler_messages powerpc_float128_hw_ok object {
volatile __float128 x = 1.0q;
volatile __float128 y = 2.0q;
int main() {
__float128 z;
__asm__ ("xsaddqp %0,%1,%2" : "=v" (z) : "v" (x), "v" (y));
return (z == 3.0q);
}
} "-mfloat128-hardware"]
} else {
return 0
}
}
# Return 1 if current options define float128, 0 otherwise.
proc check_effective_target_ppc_float128 { } {
return [check_no_compiler_messages_nocache ppc_float128 object {
#ifndef __FLOAT128__
nope no good
#endif
}]
}
# Return 1 if current options generate float128 insns, 0 otherwise.
proc check_effective_target_ppc_float128_insns { } {
return [check_no_compiler_messages_nocache ppc_float128 object {
#ifndef __FLOAT128_HARDWARE__
nope no good
#endif
}]
}
# Return 1 if current options generate VSX instructions, 0 otherwise.
proc check_effective_target_powerpc_vsx { } {
return [check_no_compiler_messages_nocache powerpc_vsx object {
#ifndef __VSX__
nope no vsx
#endif
}]
}
# Return 1 if this is a PowerPC target supporting -mvsx
proc check_effective_target_powerpc_vsx_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# VSX is not supported on AIX before 7.1.
if { [istarget powerpc*-*-aix4*]
|| [istarget powerpc*-*-aix5*]
|| [istarget powerpc*-*-aix6*] } {
return 0
}
return [check_no_compiler_messages powerpc_vsx_ok object {
int main (void) {
#ifdef __MACH__
asm volatile ("xxlor vs0,vs0,vs0");
#else
asm volatile ("xxlor 0,0,0");
#endif
return 0;
}
} "-mvsx"]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target supporting -mhtm
proc check_effective_target_powerpc_htm_ok { } {
if { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget rs6000-*-*] } {
# HTM is not supported on AIX yet.
if { [istarget powerpc*-*-aix*] } {
return 0
}
return [check_no_compiler_messages powerpc_htm_ok object {
int main (void) {
asm volatile ("tbegin. 0");
return 0;
}
} "-mhtm"]
} else {
return 0
}
}
# Return 1 if the target supports executing HTM hardware instructions,
# 0 otherwise. Cache the result.
proc check_htm_hw_available { } {
return [check_cached_effective_target htm_hw_available {
# For now, disable on Darwin
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
expr 0
} else {
check_runtime_nocache htm_hw_available {
int main()
{
__builtin_ttest ();
return 0;
}
} "-mhtm"
}
}]
}
# Return 1 if this is a PowerPC target supporting -mcpu=cell.
proc check_effective_target_powerpc_ppu_ok { } {
if [check_effective_target_powerpc_altivec_ok] {
return [check_no_compiler_messages cell_asm_available object {
int main (void) {
#ifdef __MACH__
asm volatile ("lvlx v0,v0,v0");
#else
asm volatile ("lvlx 0,0,0");
#endif
return 0;
}
}]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target that supports SPU.
proc check_effective_target_powerpc_spu { } {
if { [istarget powerpc*-*-linux*] } {
return [check_effective_target_powerpc_altivec_ok]
} else {
return 0
}
}
# Return 1 if this is a PowerPC SPE target. The check includes options
# specified by dg-options for this test, so don't cache the result.
proc check_effective_target_powerpc_spe_nocache { } {
if { [istarget powerpc*-*-*] } {
return [check_no_compiler_messages_nocache powerpc_spe object {
#ifndef __SPE__
#error not SPE
#else
int dummy;
#endif
} [current_compiler_flags]]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target with SPE enabled.
proc check_effective_target_powerpc_spe { } {
if { [istarget powerpc*-*-*] } {
return [check_no_compiler_messages powerpc_spe object {
#ifndef __SPE__
#error not SPE
#else
int dummy;
#endif
}]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target with Altivec enabled.
proc check_effective_target_powerpc_altivec { } {
if { [istarget powerpc*-*-*] } {
return [check_no_compiler_messages powerpc_altivec object {
#ifndef __ALTIVEC__
#error not Altivec
#else
int dummy;
#endif
}]
} else {
return 0
}
}
# Return 1 if this is a PowerPC 405 target. The check includes options
# specified by dg-options for this test, so don't cache the result.
proc check_effective_target_powerpc_405_nocache { } {
if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
return [check_no_compiler_messages_nocache powerpc_405 object {
#ifdef __PPC405__
int dummy;
#else
#error not a PPC405
#endif
} [current_compiler_flags]]
} else {
return 0
}
}
# Return 1 if this is a PowerPC target using the ELFv2 ABI.
proc check_effective_target_powerpc_elfv2 { } {
if { [istarget powerpc*-*-*] } {
return [check_no_compiler_messages powerpc_elfv2 object {
#if _CALL_ELF != 2
#error not ELF v2 ABI
#else
int dummy;
#endif
}]
} else {
return 0
}
}
# Return 1 if this is a SPU target with a toolchain that
# supports automatic overlay generation.
proc check_effective_target_spu_auto_overlay { } {
if { [istarget spu*-*-elf*] } {
return [check_no_compiler_messages spu_auto_overlay executable {
int main (void) { }
} "-Wl,--auto-overlay" ]
} else {
return 0
}
}
# The VxWorks SPARC simulator accepts only EM_SPARC executables and
# chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
# test environment appears to run executables on such a simulator.
proc check_effective_target_ultrasparc_hw { } {
return [check_runtime ultrasparc_hw {
int main() { return 0; }
} "-mcpu=ultrasparc"]
}
# Return 1 if the test environment supports executing UltraSPARC VIS2
# instructions. We check this by attempting: "bmask %g0, %g0, %g0"
proc check_effective_target_ultrasparc_vis2_hw { } {
return [check_runtime ultrasparc_vis2_hw {
int main() { __asm__(".word 0x81b00320"); return 0; }
} "-mcpu=ultrasparc3"]
}
# Return 1 if the test environment supports executing UltraSPARC VIS3
# instructions. We check this by attempting: "addxc %g0, %g0, %g0"
proc check_effective_target_ultrasparc_vis3_hw { } {
return [check_runtime ultrasparc_vis3_hw {
int main() { __asm__(".word 0x81b00220"); return 0; }
} "-mcpu=niagara3"]
}
# Return 1 if this is a SPARC-V9 target.
proc check_effective_target_sparc_v9 { } {
if { [istarget sparc*-*-*] } {
return [check_no_compiler_messages sparc_v9 object {
int main (void) {
asm volatile ("return %i7+8");
return 0;
}
}]
} else {
return 0
}
}
# Return 1 if this is a SPARC target with VIS enabled.
proc check_effective_target_sparc_vis { } {
if { [istarget sparc*-*-*] } {
return [check_no_compiler_messages sparc_vis object {
#ifndef __VIS__
#error not VIS
#else
int dummy;
#endif
}]
} else {
return 0
}
}
# Return 1 if the target supports hardware vector shift operation.
proc check_effective_target_vect_shift { } {
return [check_cached_effective_target_indexed vect_shift {
expr {([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget aarch64*-*-*]
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& ([et-is-effective-target mips_msa]
|| [et-is-effective-target mips_loongson_mmi]))
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports hardware vector shift by register operation.
proc check_effective_target_vect_var_shift { } {
return [check_cached_effective_target_indexed vect_var_shift {
expr {(([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_avx2_available])
}}]
}
proc check_effective_target_whole_vector_shift { } {
if { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget ia64-*-*]
|| [istarget aarch64*-*-*]
|| [istarget powerpc64*-*-*]
|| ([is-effective-target arm_neon]
&& [check_effective_target_arm_little_endian])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_loongson_mmi])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) } {
set answer 1
} else {
set answer 0
}
verbose "check_effective_target_vect_long: returning $answer" 2
return $answer
}
# Return 1 if the target supports vector bswap operations.
proc check_effective_target_vect_bswap { } {
return [check_cached_effective_target_indexed vect_bswap {
expr { [istarget aarch64*-*-*] || [is-effective-target arm_neon] }}]
}
# Return 1 if the target supports hardware vector shift operation for char.
proc check_effective_target_vect_shift_char { } {
return [check_cached_effective_target_indexed vect_shift_char {
expr { ([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
|| [is-effective-target arm_neon]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports hardware vectors of long, 0 otherwise.
#
# This can change for different subtargets so do not cache the result.
proc check_effective_target_vect_long { } {
if { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| (([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
&& [check_effective_target_ilp32])
|| [is-effective-target arm_neon]
|| ([istarget sparc*-*-*] && [check_effective_target_ilp32])
|| [istarget aarch64*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) } {
set answer 1
} else {
set answer 0
}
verbose "check_effective_target_vect_long: returning $answer" 2
return $answer
}
# Return 1 if the target supports hardware vectors of float when
# -funsafe-math-optimizations is enabled, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_float { } {
return [check_cached_effective_target_indexed vect_float {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget powerpc*-*-*]
|| [istarget spu-*-*]
|| [istarget mips-sde-elf]
|| [istarget mipsisa64*-*-*]
|| [istarget ia64-*-*]
|| [istarget aarch64*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| [is-effective-target arm_neon]
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vxe]) }}]
}
# Return 1 if the target supports hardware vectors of float without
# -funsafe-math-optimizations being enabled, 0 otherwise.
proc check_effective_target_vect_float_strict { } {
return [expr { [check_effective_target_vect_float]
&& ![istarget arm*-*-*] }]
}
# Return 1 if the target supports hardware vectors of double, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_double { } {
return [check_cached_effective_target_indexed vect_double {
expr { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_no_compiler_messages vect_double assembly {
#ifdef __tune_atom__
# error No double vectorizer support.
#endif
}])
|| [istarget aarch64*-*-*]
|| [istarget spu-*-*]
|| ([istarget powerpc*-*-*] && [check_vsx_hw_available])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx])} }]
}
# Return 1 if the target supports conditional addition, subtraction,
# multiplication, division, minimum and maximum on vectors of double,
# via the cond_ optabs. Return 0 otherwise.
proc check_effective_target_vect_double_cond_arith { } {
return [check_effective_target_aarch64_sve]
}
# Return 1 if the target supports hardware vectors of long long, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_long_long { } {
return [check_cached_effective_target_indexed vect_long_long {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target plus current options does not support a vector
# max instruction on "int", 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_no_int_min_max { } {
return [check_cached_effective_target_indexed vect_no_int_min_max {
expr { [istarget sparc*-*-*]
|| [istarget spu-*-*]
|| [istarget alpha*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_loongson_mmi]) }}]
}
# Return 1 if the target plus current options does not support a vector
# add instruction on "int", 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_no_int_add { } {
# Alpha only supports vector add on V8QI and V4HI.
return [check_cached_effective_target_indexed vect_no_int_add {
expr { [istarget alpha*-*-*] }}]
}
# Return 1 if the target plus current options does not support vector
# bitwise instructions, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_no_bitwise { } {
return [check_cached_effective_target_indexed vect_no_bitwise { return 0 }]
}
# Return 1 if the target plus current options supports vector permutation,
# 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_perm { } {
return [check_cached_effective_target_indexed vect_perm {
expr { [is-effective-target arm_neon]
|| [istarget aarch64*-*-*]
|| [istarget powerpc*-*-*]
|| [istarget spu-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget mips*-*-*]
&& ([et-is-effective-target mpaired_single]
|| [et-is-effective-target mips_msa]))
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if, for some VF:
#
# - the target's default vector size is VF * ELEMENT_BITS bits
#
# - it is possible to implement the equivalent of:
#
# int_t s1[COUNT][COUNT * VF], s2[COUNT * VF];
# for (int i = 0; i < COUNT; ++i)
# for (int j = 0; j < COUNT * VF; ++j)
# s1[i][j] = s2[j - j % COUNT + i]
#
# using only a single 2-vector permute for each vector in s1.
#
# E.g. for COUNT == 3 and vector length 4, the two arrays would be:
#
# s2 | a0 a1 a2 a3 | b0 b1 b2 b3 | c0 c1 c2 c3
# ------+-------------+-------------+------------
# s1[0] | a0 a0 a0 a3 | a3 a3 b2 b2 | b2 c1 c1 c1
# s1[1] | a1 a1 a1 b0 | b0 b0 b3 b3 | b3 c2 c2 c2
# s1[2] | a2 a2 a2 b1 | b1 b1 c0 c0 | c0 c3 c3 c3
#
# Each s1 permute requires only two of a, b and c.
#
# The distance between the start of vector n in s1[0] and the start
# of vector n in s2 is:
#
# A = (n * VF) % COUNT
#
# The corresponding value for the end of vector n is:
#
# B = (n * VF + VF - 1) % COUNT
#
# Subtracting i from each value gives the corresponding difference
# for s1[i]. The condition being tested by this function is false
# iff A - i > 0 and B - i < 0 for some i and n, such that the first
# element for s1[i] comes from vector n - 1 of s2 and the last element
# comes from vector n + 1 of s2. The condition is therefore true iff
# A <= B for all n. This is turn means the condition is true iff:
#
# (n * VF) % COUNT + (VF - 1) % COUNT < COUNT
#
# for all n. COUNT - (n * VF) % COUNT is bounded by gcd (VF, COUNT),
# and will be that value for at least one n in [0, COUNT), so we want:
#
# (VF - 1) % COUNT < gcd (VF, COUNT)
proc vect_perm_supported { count element_bits } {
set vector_bits [lindex [available_vector_sizes] 0]
# The number of vectors has to be a power of 2 when permuting
# variable-length vectors.
if { $vector_bits <= 0 && ($count & -$count) != $count } {
return 0
}
set vf [expr { $vector_bits / $element_bits }]
# Compute gcd (VF, COUNT).
set gcd $vf
set temp1 $count
while { $temp1 > 0 } {
set temp2 [expr { $gcd % $temp1 }]
set gcd $temp1
set temp1 $temp2
}
return [expr { ($vf - 1) % $count < $gcd }]
}
# Return 1 if the target supports SLP permutation of 3 vectors when each
# element has 32 bits.
proc check_effective_target_vect_perm3_int { } {
return [expr { [check_effective_target_vect_perm]
&& [vect_perm_supported 3 32] }]
}
# Return 1 if the target plus current options supports vector permutation
# on byte-sized elements, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_perm_byte { } {
return [check_cached_effective_target_indexed vect_perm_byte {
expr { ([is-effective-target arm_neon]
&& [is-effective-target arm_little_endian])
|| ([istarget aarch64*-*-*]
&& [is-effective-target aarch64_little_endian])
|| [istarget powerpc*-*-*]
|| [istarget spu-*-*]
|| ([istarget mips-*.*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports SLP permutation of 3 vectors when each
# element has 8 bits.
proc check_effective_target_vect_perm3_byte { } {
return [expr { [check_effective_target_vect_perm_byte]
&& [vect_perm_supported 3 8] }]
}
# Return 1 if the target plus current options supports vector permutation
# on short-sized elements, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_perm_short { } {
return [check_cached_effective_target_indexed vect_perm_short {
expr { ([is-effective-target arm_neon]
&& [is-effective-target arm_little_endian])
|| ([istarget aarch64*-*-*]
&& [is-effective-target aarch64_little_endian])
|| [istarget powerpc*-*-*]
|| [istarget spu-*-*]
|| (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_ssse3_available])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports SLP permutation of 3 vectors when each
# element has 16 bits.
proc check_effective_target_vect_perm3_short { } {
return [expr { [check_effective_target_vect_perm_short]
&& [vect_perm_supported 3 16] }]
}
# Return 1 if the target plus current options supports folding of
# copysign into XORSIGN.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_xorsign { } {
return [check_cached_effective_target_indexed xorsign {
expr { [istarget aarch64*-*-*] || [istarget arm*-*-*] }}]
}
# Return 1 if the target plus current options supports a vector
# widening summation of *short* args into *int* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
return [check_cached_effective_target_indexed vect_widen_sum_hi_to_si_pattern {
expr { [istarget powerpc*-*-*]
|| ([istarget aarch64*-*-*]
&& ![check_effective_target_aarch64_sve])
|| [is-effective-target arm_neon]
|| [istarget ia64-*-*] }}]
}
# Return 1 if the target plus current options supports a vector
# widening summation of *short* args into *int* result, 0 otherwise.
# A target can also support this widening summation if it can support
# promotion (unpacking) from shorts to ints.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_sum_hi_to_si { } {
return [check_cached_effective_target_indexed vect_widen_sum_hi_to_si {
expr { [check_effective_target_vect_unpack]
|| [istarget powerpc*-*-*]
|| [istarget ia64-*-*] }}]
}
# Return 1 if the target plus current options supports a vector
# widening summation of *char* args into *short* result, 0 otherwise.
# A target can also support this widening summation if it can support
# promotion (unpacking) from chars to shorts.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_sum_qi_to_hi { } {
return [check_cached_effective_target_indexed vect_widen_sum_qi_to_hi {
expr { [check_effective_target_vect_unpack]
|| [is-effective-target arm_neon]
|| [istarget ia64-*-*] }}]
}
# Return 1 if the target plus current options supports a vector
# widening summation of *char* args into *int* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_sum_qi_to_si { } {
return [check_cached_effective_target_indexed vect_widen_sum_qi_to_si {
expr { [istarget powerpc*-*-*] }}]
}
# Return 1 if the target plus current options supports a vector
# widening multiplication of *char* args into *short* result, 0 otherwise.
# A target can also support this widening multplication if it can support
# promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
# multiplication of shorts).
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_mult_qi_to_hi { } {
return [check_cached_effective_target_indexed vect_widen_mult_qi_to_hi {
expr { ([check_effective_target_vect_unpack]
&& [check_effective_target_vect_short_mult])
|| ([istarget powerpc*-*-*]
|| ([istarget aarch64*-*-*]
&& ![check_effective_target_aarch64_sve])
|| [is-effective-target arm_neon]
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx])) }}]
}
# Return 1 if the target plus current options supports a vector
# widening multiplication of *short* args into *int* result, 0 otherwise.
# A target can also support this widening multplication if it can support
# promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
# multiplication of ints).
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_mult_hi_to_si { } {
return [check_cached_effective_target_indexed vect_widen_mult_hi_to_si {
expr { ([check_effective_target_vect_unpack]
&& [check_effective_target_vect_int_mult])
|| ([istarget powerpc*-*-*]
|| [istarget spu-*-*]
|| [istarget ia64-*-*]
|| ([istarget aarch64*-*-*]
&& ![check_effective_target_aarch64_sve])
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [is-effective-target arm_neon]
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx])) }}]
}
# Return 1 if the target plus current options supports a vector
# widening multiplication of *char* args into *short* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
return [check_cached_effective_target_indexed vect_widen_mult_qi_to_hi_pattern {
expr { [istarget powerpc*-*-*]
|| ([is-effective-target arm_neon]
&& [check_effective_target_arm_little_endian])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target plus current options supports a vector
# widening multiplication of *short* args into *int* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
return [check_cached_effective_target_indexed vect_widen_mult_hi_to_si_pattern {
expr { [istarget powerpc*-*-*]
|| [istarget spu-*-*]
|| [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([is-effective-target arm_neon]
&& [check_effective_target_arm_little_endian])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target plus current options supports a vector
# widening multiplication of *int* args into *long* result, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_mult_si_to_di_pattern { } {
return [check_cached_effective_target_indexed vect_widen_mult_si_to_di_pattern {
expr { [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target plus current options supports a vector
# widening shift, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_widen_shift { } {
return [check_cached_effective_target_indexed vect_widen_shift {
expr { [is-effective-target arm_neon] }}]
}
# Return 1 if the target plus current options supports a vector
# dot-product of signed chars, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_sdot_qi { } {
return [check_cached_effective_target_indexed vect_sdot_qi {
expr { [istarget ia64-*-*]
|| [istarget aarch64*-*-*]
|| [istarget arm*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target plus current options supports a vector
# dot-product of unsigned chars, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_udot_qi { } {
return [check_cached_effective_target_indexed vect_udot_qi {
expr { [istarget powerpc*-*-*]
|| [istarget aarch64*-*-*]
|| [istarget arm*-*-*]
|| [istarget ia64-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target plus current options supports a vector
# dot-product of signed shorts, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_sdot_hi { } {
return [check_cached_effective_target_indexed vect_sdot_hi {
expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|| [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target plus current options supports a vector
# dot-product of unsigned shorts, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_udot_hi { } {
return [check_cached_effective_target_indexed vect_udot_hi {
expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) }}]
}
# Return 1 if the target plus current options supports a vector
# sad operation of unsigned chars, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_usad_char { } {
return [check_cached_effective_target_indexed vect_usad_char {
expr { [istarget i?86-*-*]
|| [istarget x86_64-*-*]
|| ([istarget aarch64*-*-*]
&& ![check_effective_target_aarch64_sve])}}]
}
# Return 1 if the target plus current options supports both signed
# and unsigned average operations on vectors of bytes.
proc check_effective_target_vect_avg_qi {} {
return [expr { [istarget aarch64*-*-*]
&& ![check_effective_target_aarch64_sve] }]
}
# Return 1 if the target plus current options supports a vector
# demotion (packing) of shorts (to chars) and ints (to shorts)
# using modulo arithmetic, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_pack_trunc { } {
return [check_cached_effective_target_indexed vect_pack_trunc {
expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget aarch64*-*-*]
|| [istarget spu-*-*]
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
&& [check_effective_target_arm_little_endian])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target plus current options supports a vector
# promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_unpack { } {
return [check_cached_effective_target_indexed vect_unpack {
expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget spu-*-*]
|| [istarget ia64-*-*]
|| [istarget aarch64*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
&& [check_effective_target_arm_little_endian])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target plus current options does not guarantee
# that its STACK_BOUNDARY is >= the reguired vector alignment.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_unaligned_stack { } {
return [check_cached_effective_target_indexed unaligned_stack { expr 0 }]
}
# Return 1 if the target plus current options does not support a vector
# alignment mechanism, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_no_align { } {
return [check_cached_effective_target_indexed vect_no_align {
expr { [istarget mipsisa64*-*-*]
|| [istarget mips-sde-elf]
|| [istarget sparc*-*-*]
|| [istarget ia64-*-*]
|| [check_effective_target_arm_vect_no_misalign]
|| ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_loongson_mmi]) }}]
}
# Return 1 if the target supports a vector misalign access, 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_vect_hw_misalign { } {
return [check_cached_effective_target_indexed vect_hw_misalign {
if { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
|| [istarget aarch64*-*-*]
|| ([istarget mips*-*-*] && [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) } {
return 1
}
if { [istarget arm*-*-*]
&& ![check_effective_target_arm_vect_no_misalign] } {
return 1
}
return 0
}]
}
# Return 1 if arrays are aligned to the vector alignment
# boundary, 0 otherwise.
proc check_effective_target_vect_aligned_arrays { } {
set et_vect_aligned_arrays 0
if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& !([is-effective-target ia32]
|| ([check_avx_available] && ![check_prefer_avx128])))
|| [istarget spu-*-*] } {
set et_vect_aligned_arrays 1
}
verbose "check_effective_target_vect_aligned_arrays:\
returning $et_vect_aligned_arrays" 2
return $et_vect_aligned_arrays
}
# Return 1 if types of size 32 bit or less are naturally aligned
# (aligned to their type-size), 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_natural_alignment_32 { } {
# FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
return [check_cached_effective_target_indexed natural_alignment_32 {
if { ([istarget *-*-darwin*] && [is-effective-target lp64])
|| [istarget avr-*-*] } {
return 0
} else {
return 1
}
}]
}
# Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
# type-size), 0 otherwise.
#
# This won't change for different subtargets so cache the result.
proc check_effective_target_natural_alignment_64 { } {
return [check_cached_effective_target_indexed natural_alignment_64 {
expr { ([is-effective-target lp64] && ![istarget *-*-darwin*])
|| [istarget spu-*-*] }
}]
}
# Return 1 if all vector types are naturally aligned (aligned to their
# type-size), 0 otherwise.
proc check_effective_target_vect_natural_alignment { } {
set et_vect_natural_alignment 1
if { [check_effective_target_arm_eabi]
|| [istarget nvptx-*-*]
|| [istarget s390*-*-*] } {
set et_vect_natural_alignment 0
}
verbose "check_effective_target_vect_natural_alignment:\
returning $et_vect_natural_alignment" 2
return $et_vect_natural_alignment
}
# Return true if fully-masked loops are supported.
proc check_effective_target_vect_fully_masked { } {
return [check_effective_target_aarch64_sve]
}
# Return 1 if the target doesn't prefer any alignment beyond element
# alignment during vectorization.
proc check_effective_target_vect_element_align_preferred { } {
return [expr { [check_effective_target_aarch64_sve]
&& [check_effective_target_vect_variable_length] }]
}
# Return 1 if we can align stack data to the preferred vector alignment.
proc check_effective_target_vect_align_stack_vars { } {
if { [check_effective_target_aarch64_sve] } {
return [check_effective_target_vect_variable_length]
}
return 1
}
# Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
proc check_effective_target_vector_alignment_reachable { } {
set et_vector_alignment_reachable 0
if { [check_effective_target_vect_aligned_arrays]
|| [check_effective_target_natural_alignment_32] } {
set et_vector_alignment_reachable 1
}
verbose "check_effective_target_vector_alignment_reachable:\
returning $et_vector_alignment_reachable" 2
return $et_vector_alignment_reachable
}
# Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
proc check_effective_target_vector_alignment_reachable_for_64bit { } {
set et_vector_alignment_reachable_for_64bit 0
if { [check_effective_target_vect_aligned_arrays]
|| [check_effective_target_natural_alignment_64] } {
set et_vector_alignment_reachable_for_64bit 1
}
verbose "check_effective_target_vector_alignment_reachable_for_64bit:\
returning $et_vector_alignment_reachable_for_64bit" 2
return $et_vector_alignment_reachable_for_64bit
}
# Return 1 if the target only requires element alignment for vector accesses
proc check_effective_target_vect_element_align { } {
return [check_cached_effective_target_indexed vect_element_align {
expr { ([istarget arm*-*-*]
&& ![check_effective_target_arm_vect_no_misalign])
|| [check_effective_target_vect_hw_misalign] }}]
}
# Return 1 if we expect to see unaligned accesses in at least some
# vector dumps.
proc check_effective_target_vect_unaligned_possible { } {
return [expr { ![check_effective_target_vect_element_align_preferred]
&& (![check_effective_target_vect_no_align]
|| [check_effective_target_vect_hw_misalign]) }]
}
# Return 1 if the target supports vector LOAD_LANES operations, 0 otherwise.
proc check_effective_target_vect_load_lanes { } {
# We don't support load_lanes correctly on big-endian arm.
return [check_cached_effective_target vect_load_lanes {
expr { ([check_effective_target_arm_little_endian]
&& [check_effective_target_arm_neon_ok])
|| [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector masked stores.
proc check_effective_target_vect_masked_store { } {
return [check_effective_target_aarch64_sve]
}
# Return 1 if the target supports vector scatter stores.
proc check_effective_target_vect_scatter_store { } {
return [check_effective_target_aarch64_sve]
}
# Return 1 if the target supports vector conditional operations, 0 otherwise.
proc check_effective_target_vect_condition { } {
return [check_cached_effective_target_indexed vect_condition {
expr { [istarget aarch64*-*-*]
|| [istarget powerpc*-*-*]
|| [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget spu-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget arm*-*-*]
&& [check_effective_target_arm_neon_ok])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector conditional operations where
# the comparison has different type from the lhs, 0 otherwise.
proc check_effective_target_vect_cond_mixed { } {
return [check_cached_effective_target_indexed vect_cond_mixed {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget aarch64*-*-*]
|| [istarget powerpc*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector char multiplication, 0 otherwise.
proc check_effective_target_vect_char_mult { } {
return [check_cached_effective_target_indexed vect_char_mult {
expr { [istarget aarch64*-*-*]
|| [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [check_effective_target_arm32]
|| [check_effective_target_powerpc_altivec]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector short multiplication, 0 otherwise.
proc check_effective_target_vect_short_mult { } {
return [check_cached_effective_target_indexed vect_short_mult {
expr { [istarget ia64-*-*]
|| [istarget spu-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget powerpc*-*-*]
|| [istarget aarch64*-*-*]
|| [check_effective_target_arm32]
|| ([istarget mips*-*-*]
&& ([et-is-effective-target mips_msa]
|| [et-is-effective-target mips_loongson_mmi]))
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector int multiplication, 0 otherwise.
proc check_effective_target_vect_int_mult { } {
return [check_cached_effective_target_indexed vect_int_mult {
expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|| [istarget spu-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget ia64-*-*]
|| [istarget aarch64*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa])
|| [check_effective_target_arm32]
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports 64 bit hardware vector
# multiplication of long operands with a long result, 0 otherwise.
#
# This can change for different subtargets so do not cache the result.
proc check_effective_target_vect_long_mult { } {
if { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| (([istarget powerpc*-*-*]
&& ![istarget powerpc-*-linux*paired*])
&& [check_effective_target_ilp32])
|| [is-effective-target arm_neon]
|| ([istarget sparc*-*-*] && [check_effective_target_ilp32])
|| [istarget aarch64*-*-*]
|| ([istarget mips*-*-*]
&& [et-is-effective-target mips_msa]) } {
set answer 1
} else {
set answer 0
}
verbose "check_effective_target_vect_long_mult: returning $answer" 2
return $answer
}
# Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
proc check_effective_target_vect_extract_even_odd { } {
return [check_cached_effective_target_indexed extract_even_odd {
expr { [istarget aarch64*-*-*]
|| [istarget powerpc*-*-*]
|| [is-effective-target arm_neon]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget ia64-*-*]
|| [istarget spu-*-*]
|| ([istarget mips*-*-*]
&& ([et-is-effective-target mips_msa]
|| [et-is-effective-target mpaired_single]))
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector interleaving, 0 otherwise.
proc check_effective_target_vect_interleave { } {
return [check_cached_effective_target_indexed vect_interleave {
expr { [istarget aarch64*-*-*]
|| [istarget powerpc*-*-*]
|| [is-effective-target arm_neon]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget ia64-*-*]
|| [istarget spu-*-*]
|| ([istarget mips*-*-*]
&& ([et-is-effective-target mpaired_single]
|| [et-is-effective-target mips_msa]))
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
foreach N {2 3 4 8} {
eval [string map [list N $N] {
# Return 1 if the target supports 2-vector interleaving
proc check_effective_target_vect_stridedN { } {
return [check_cached_effective_target_indexed vect_stridedN {
if { (N & -N) == N
&& [check_effective_target_vect_interleave]
&& [check_effective_target_vect_extract_even_odd] } {
return 1
}
if { ([istarget arm*-*-*]
|| [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
return 1
}
return 0
}]
}
}]
}
# Return the list of vector sizes (in bits) that each target supports.
# A vector length of "0" indicates variable-length vectors.
proc available_vector_sizes { } {
set result {}
if { [istarget aarch64*-*-*] } {
if { [check_effective_target_aarch64_sve] } {
lappend result [aarch64_sve_bits]
}
lappend result 128 64
} elseif { [istarget arm*-*-*]
&& [check_effective_target_arm_neon_ok] } {
lappend result 128 64
} elseif { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& ([check_avx_available] && ![check_prefer_avx128])) } {
lappend result 256 128
} elseif { [istarget sparc*-*-*] } {
lappend result 64
} else {
# The traditional default asumption.
lappend result 128
}
return $result
}
# Return 1 if the target supports multiple vector sizes
proc check_effective_target_vect_multiple_sizes { } {
return [expr { [llength [available_vector_sizes]] > 1 }]
}
# Return true if variable-length vectors are supported.
proc check_effective_target_vect_variable_length { } {
return [expr { [lindex [available_vector_sizes] 0] == 0 }]
}
# Return 1 if the target supports vectors of 64 bits.
proc check_effective_target_vect64 { } {
return [expr { [lsearch -exact [available_vector_sizes] 64] >= 0 }]
}
# Return 1 if the target supports vector copysignf calls.
proc check_effective_target_vect_call_copysignf { } {
return [check_cached_effective_target_indexed vect_call_copysignf {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget powerpc*-*-*]
|| [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports hardware square root instructions.
proc check_effective_target_sqrt_insn { } {
return [check_cached_effective_target sqrt_insn {
expr { [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget powerpc*-*-*]
|| [istarget aarch64*-*-*]
|| ([istarget arm*-*-*] && [check_effective_target_arm_vfp_ok])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector sqrtf calls.
proc check_effective_target_vect_call_sqrtf { } {
return [check_cached_effective_target_indexed vect_call_sqrtf {
expr { [istarget aarch64*-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| ([istarget powerpc*-*-*] && [check_vsx_hw_available])
|| ([istarget s390*-*-*]
&& [check_effective_target_s390_vx]) }}]
}
# Return 1 if the target supports vector lrint calls.
proc check_effective_target_vect_call_lrint { } {
set et_vect_call_lrint 0
if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
&& [check_effective_target_ilp32]) } {
set et_vect_call_lrint 1
}
verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
return $et_vect_call_lrint
}
# Return 1 if the target supports vector btrunc calls.
proc check_effective_target_vect_call_btrunc { } {
return [check_cached_effective_target_indexed vect_call_btrunc {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector btruncf calls.
proc check_effective_target_vect_call_btruncf { } {
return [check_cached_effective_target_indexed vect_call_btruncf {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector ceil calls.
proc check_effective_target_vect_call_ceil { } {
return [check_cached_effective_target_indexed vect_call_ceil {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector ceilf calls.
proc check_effective_target_vect_call_ceilf { } {
return [check_cached_effective_target_indexed vect_call_ceilf {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector floor calls.
proc check_effective_target_vect_call_floor { } {
return [check_cached_effective_target_indexed vect_call_floor {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector floorf calls.
proc check_effective_target_vect_call_floorf { } {
return [check_cached_effective_target_indexed vect_call_floorf {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector lceil calls.
proc check_effective_target_vect_call_lceil { } {
return [check_cached_effective_target_indexed vect_call_lceil {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector lfloor calls.
proc check_effective_target_vect_call_lfloor { } {
return [check_cached_effective_target_indexed vect_call_lfloor {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector nearbyint calls.
proc check_effective_target_vect_call_nearbyint { } {
return [check_cached_effective_target_indexed vect_call_nearbyint {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector nearbyintf calls.
proc check_effective_target_vect_call_nearbyintf { } {
return [check_cached_effective_target_indexed vect_call_nearbyintf {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector round calls.
proc check_effective_target_vect_call_round { } {
return [check_cached_effective_target_indexed vect_call_round {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports vector roundf calls.
proc check_effective_target_vect_call_roundf { } {
return [check_cached_effective_target_indexed vect_call_roundf {
expr { [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports AND, OR and XOR reduction.
proc check_effective_target_vect_logical_reduc { } {
return [check_effective_target_aarch64_sve]
}
# Return 1 if the target supports the fold_extract_last optab.
proc check_effective_target_vect_fold_extract_last { } {
return [check_effective_target_aarch64_sve]
}
# Return 1 if the target supports section-anchors
proc check_effective_target_section_anchors { } {
return [check_cached_effective_target section_anchors {
expr { [istarget powerpc*-*-*]
|| [istarget arm*-*-*]
|| [istarget aarch64*-*-*] }}]
}
# Return 1 if the target supports atomic operations on "int_128" values.
proc check_effective_target_sync_int_128 { } {
if { [istarget spu-*-*] } {
return 1
} else {
return 0
}
}
# Return 1 if the target supports atomic operations on "int_128" values
# and can execute them.
# This requires support for both compare-and-swap and true atomic loads.
proc check_effective_target_sync_int_128_runtime { } {
if { [istarget spu-*-*] } {
return 1
} else {
return 0
}
}
# Return 1 if the target supports atomic operations on "long long".
#
# Note: 32bit x86 targets require -march=pentium in dg-options.
# Note: 32bit s390 targets require -mzarch in dg-options.
proc check_effective_target_sync_long_long { } {
if { [istarget i?86-*-*] || [istarget x86_64-*-*])
|| [istarget aarch64*-*-*]
|| [istarget arm*-*-*]
|| [istarget alpha*-*-*]
|| ([istarget sparc*-*-*] && [check_effective_target_lp64])
|| [istarget s390*-*-*]
|| [istarget spu-*-*] } {
return 1
} else {
return 0
}
}
# Return 1 if the target supports popcount on long.
proc check_effective_target_popcountl { } {
return [check_no_messages_and_pattern popcountl "!\\(call" rtl-expand {
int foo (long b)
{
return __builtin_popcountl (b);
}
} "" ]
}
# Return 1 if the target supports atomic operations on "long long"
# and can execute them.
#
# Note: 32bit x86 targets require -march=pentium in dg-options.
proc check_effective_target_sync_long_long_runtime { } {
if { (([istarget x86_64-*-*] || [istarget i?86-*-*])
&& [check_cached_effective_target sync_long_long_available {
check_runtime_nocache sync_long_long_available {
#include "cpuid.h"
int main ()
{
unsigned int eax, ebx, ecx, edx;
if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
return !(edx & bit_CMPXCHG8B);
return 1;
}
} ""
}])
|| [istarget aarch64*-*-*]
|| ([istarget arm*-*-linux-*]
&& [check_runtime sync_longlong_runtime {
#include
int main ()
{
long long l1;
if (sizeof (long long) != 8)
exit (1);
/* Just check for native;
checking for kernel fallback is tricky. */
asm volatile ("ldrexd r0,r1, [%0]"
: : "r" (&l1) : "r0", "r1");
exit (0);
}
} "" ])
|| [istarget alpha*-*-*]
|| ([istarget sparc*-*-*]
&& [check_effective_target_lp64]
&& [check_effective_target_ultrasparc_hw])
|| [istarget spu-*-*]
|| ([istarget powerpc*-*-*] && [check_effective_target_lp64]) } {
return 1
} else {
return 0
}
}
# Return 1 if the target supports byte swap instructions.
proc check_effective_target_bswap { } {
return [check_cached_effective_target bswap {
expr { [istarget aarch64*-*-*]
|| [istarget alpha*-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget m68k-*-*]
|| [istarget powerpc*-*-*]
|| [istarget rs6000-*-*]
|| [istarget s390*-*-*]
|| ([istarget arm*-*-*]
&& [check_no_compiler_messages_nocache arm_v6_or_later object {
#if __ARM_ARCH < 6
#error not armv6 or later
#endif
int i;
} ""]) }}]
}
# Return 1 if the target supports atomic operations on "int" and "long".
proc check_effective_target_sync_int_long { } {
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
# load-reserved/store-conditional instructions.
return [check_cached_effective_target sync_int_long {
expr { [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget aarch64*-*-*]
|| [istarget alpha*-*-*]
|| [istarget arm*-*-linux-*]
|| ([istarget arm*-*-*]
&& [check_effective_target_arm_acq_rel])
|| [istarget bfin*-*linux*]
|| [istarget hppa*-*linux*]
|| [istarget s390*-*-*]
|| [istarget powerpc*-*-*]
|| [istarget crisv32-*-*] || [istarget cris-*-*]
|| ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
|| [istarget spu-*-*]
|| ([istarget arc*-*-*] && [check_effective_target_arc_atomic])
|| [check_effective_target_mips_llsc] }}]
}
# Return 1 if the target supports atomic operations on "char" and "short".
proc check_effective_target_sync_char_short { } {
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
# load-reserved/store-conditional instructions.
return [check_cached_effective_target sync_char_short {
expr { [istarget aarch64*-*-*]
|| [istarget ia64-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget alpha*-*-*]
|| [istarget arm*-*-linux-*]
|| ([istarget arm*-*-*]
&& [check_effective_target_arm_acq_rel])
|| [istarget hppa*-*linux*]
|| [istarget s390*-*-*]
|| [istarget powerpc*-*-*]
|| [istarget crisv32-*-*] || [istarget cris-*-*]
|| ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
|| [istarget spu-*-*]
|| ([istarget arc*-*-*] && [check_effective_target_arc_atomic])
|| [check_effective_target_mips_llsc] }}]
}
# Return 1 if the target uses a ColdFire FPU.
proc check_effective_target_coldfire_fpu { } {
return [check_no_compiler_messages coldfire_fpu assembly {
#ifndef __mcffpu__
#error !__mcffpu__
#endif
}]
}
# Return true if this is a uClibc target.
proc check_effective_target_uclibc {} {
return [check_no_compiler_messages uclibc object {
#include
#if !defined (__UCLIBC__)
#error !__UCLIBC__
#endif
}]
}
# Return true if this is a uclibc target and if the uclibc feature
# described by __$feature__ is not present.
proc check_missing_uclibc_feature {feature} {
return [check_no_compiler_messages $feature object "
#include
#if !defined (__UCLIBC) || defined (__${feature}__)
#error FOO
#endif
"]
}
# Return true if this is a Newlib target.
proc check_effective_target_newlib {} {
return [check_no_compiler_messages newlib object {
#include
}]
}
# Return true if GCC was configured with --enable-newlib-nano-formatted-io
proc check_effective_target_newlib_nano_io { } {
return [check_configured_with "--enable-newlib-nano-formatted-io"]
}
# Some newlib versions don't provide a frexpl and instead depend
# on frexp to implement long double conversions in their printf-like
# functions. This leads to broken results. Detect such versions here.
proc check_effective_target_newlib_broken_long_double_io {} {
if { [is-effective-target newlib] && ![is-effective-target frexpl] } {
return 1
}
return 0
}
# Return true if this is NOT a Bionic target.
proc check_effective_target_non_bionic {} {
return [check_no_compiler_messages non_bionic object {
#include
#if defined (__BIONIC__)
#error FOO
#endif
}]
}
# Return true if this target has error.h header.
proc check_effective_target_error_h {} {
return [check_no_compiler_messages error_h object {
#include
}]
}
# Return true if this target has tgmath.h header.
proc check_effective_target_tgmath_h {} {
return [check_no_compiler_messages tgmath_h object {
#include
}]
}
# Return true if target's libc supports complex functions.
proc check_effective_target_libc_has_complex_functions {} {
return [check_no_compiler_messages libc_has_complex_functions object {
#include
}]
}
# Return 1 if
# (a) an error of a few ULP is expected in string to floating-point
# conversion functions; and
# (b) overflow is not always detected correctly by those functions.
proc check_effective_target_lax_strtofp {} {
# By default, assume that all uClibc targets suffer from this.
return [check_effective_target_uclibc]
}
# Return 1 if this is a target for which wcsftime is a dummy
# function that always returns 0.
proc check_effective_target_dummy_wcsftime {} {
# By default, assume that all uClibc targets suffer from this.
return [check_effective_target_uclibc]
}
# Return 1 if constructors with initialization priority arguments are
# supposed on this target.
proc check_effective_target_init_priority {} {
return [check_no_compiler_messages init_priority assembly "
void f() __attribute__((constructor (1000)));
void f() \{\}
"]
}
# Return 1 if the target matches the effective target 'arg', 0 otherwise.
# This can be used with any check_* proc that takes no argument and
# returns only 1 or 0. It could be used with check_* procs that take
# arguments with keywords that pass particular arguments.
proc is-effective-target { arg } {
global et_index
set selected 0
if { ![info exists et_index] } {
# Initialize the effective target index that is used in some
# check_effective_target_* procs.
set et_index 0
}
if { [info procs check_effective_target_${arg}] != [list] } {
set selected [check_effective_target_${arg}]
} else {
switch $arg {
"vmx_hw" { set selected [check_vmx_hw_available] }
"vsx_hw" { set selected [check_vsx_hw_available] }
"p8vector_hw" { set selected [check_p8vector_hw_available] }
"p9vector_hw" { set selected [check_p9vector_hw_available] }
"p9modulo_hw" { set selected [check_p9modulo_hw_available] }
"ppc_float128_sw" { set selected [check_ppc_float128_sw_available] }
"ppc_float128_hw" { set selected [check_ppc_float128_hw_available] }
"ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
"ppc_cpu_supports_hw" { set selected [check_ppc_cpu_supports_hw_available] }
"dfp_hw" { set selected [check_dfp_hw_available] }
"htm_hw" { set selected [check_htm_hw_available] }
"named_sections" { set selected [check_named_sections_available] }
"gc_sections" { set selected [check_gc_sections_available] }
"cxa_atexit" { set selected [check_cxa_atexit_available] }
default { error "unknown effective target keyword `$arg'" }
}
}
verbose "is-effective-target: $arg $selected" 2
return $selected
}
# Return 1 if the argument is an effective-target keyword, 0 otherwise.
proc is-effective-target-keyword { arg } {
if { [info procs check_effective_target_${arg}] != [list] } {
return 1
} else {
# These have different names for their check_* procs.
switch $arg {
"vmx_hw" { return 1 }
"vsx_hw" { return 1 }
"p8vector_hw" { return 1 }
"p9vector_hw" { return 1 }
"p9modulo_hw" { return 1 }
"ppc_float128_sw" { return 1 }
"ppc_float128_hw" { return 1 }
"ppc_recip_hw" { return 1 }
"dfp_hw" { return 1 }
"htm_hw" { return 1 }
"named_sections" { return 1 }
"gc_sections" { return 1 }
"cxa_atexit" { return 1 }
default { return 0 }
}
}
}
# Execute tests for all targets in EFFECTIVE_TARGETS list. Set et_index to
# indicate what target is currently being processed. This is for
# the vectorizer tests, e.g. vect_int, to keep track what target supports
# a given feature.
proc et-dg-runtest { runtest testcases flags default-extra-flags } {
global dg-do-what-default
global EFFECTIVE_TARGETS
global et_index
if { [llength $EFFECTIVE_TARGETS] > 0 } {
foreach target $EFFECTIVE_TARGETS {
set target_flags $flags
set dg-do-what-default compile
set et_index [lsearch -exact $EFFECTIVE_TARGETS $target]
if { [info procs add_options_for_${target}] != [list] } {
set target_flags [add_options_for_${target} "$flags"]
}
if { [info procs check_effective_target_${target}_runtime]
!= [list] && [check_effective_target_${target}_runtime] } {
set dg-do-what-default run
}
$runtest $testcases $target_flags ${default-extra-flags}
}
} else {
set et_index 0
$runtest $testcases $flags ${default-extra-flags}
}
}
# Return 1 if a target matches the target in EFFECTIVE_TARGETS at index
# et_index, 0 otherwise.
proc et-is-effective-target { target } {
global EFFECTIVE_TARGETS
global et_index
if { [llength $EFFECTIVE_TARGETS] > $et_index
&& [lindex $EFFECTIVE_TARGETS $et_index] == $target } {
return 1
}
return 0
}
# Return 1 if target default to short enums
proc check_effective_target_short_enums { } {
return [check_no_compiler_messages short_enums assembly {
enum foo { bar };
int s[sizeof (enum foo) == 1 ? 1 : -1];
}]
}
# Return 1 if target supports merging string constants at link time.
proc check_effective_target_string_merging { } {
return [check_no_messages_and_pattern string_merging \
"rodata\\.str" assembly {
const char *var = "String";
} {-O2}]
}
# Return 1 if target has the basic signed and unsigned types in
# , 0 otherwise. This will be obsolete when GCC ensures a
# working for all targets.
proc check_effective_target_stdint_types { } {
return [check_no_compiler_messages stdint_types assembly {
#include
int8_t a; int16_t b; int32_t c; int64_t d;
uint8_t e; uint16_t f; uint32_t g; uint64_t h;
}]
}
# Return 1 if target has the basic signed and unsigned types in
# , 0 otherwise. This is for tests that GCC's notions of
# these types agree with those in the header, as some systems have
# only .
proc check_effective_target_inttypes_types { } {
return [check_no_compiler_messages inttypes_types assembly {
#include
int8_t a; int16_t b; int32_t c; int64_t d;
uint8_t e; uint16_t f; uint32_t g; uint64_t h;
}]
}
# Return 1 if programs are intended to be run on a simulator
# (i.e. slowly) rather than hardware (i.e. fast).
proc check_effective_target_simulator { } {
# All "src/sim" simulators set this one.
if [board_info target exists is_simulator] {
return [board_info target is_simulator]
}
# The "sid" simulators don't set that one, but at least they set
# this one.
if [board_info target exists slow_simulator] {
return [board_info target slow_simulator]
}
return 0
}
# Return 1 if programs are intended to be run on hardware rather than
# on a simulator
proc check_effective_target_hw { } {
# All "src/sim" simulators set this one.
if [board_info target exists is_simulator] {
if [board_info target is_simulator] {
return 0
} else {
return 1
}
}
# The "sid" simulators don't set that one, but at least they set
# this one.
if [board_info target exists slow_simulator] {
if [board_info target slow_simulator] {
return 0
} else {
return 1
}
}
return 1
}
# Return 1 if the target is a VxWorks kernel.
proc check_effective_target_vxworks_kernel { } {
return [check_no_compiler_messages vxworks_kernel assembly {
#if !defined __vxworks || defined __RTP__
#error NO
#endif
}]
}
# Return 1 if the target is a VxWorks RTP.
proc check_effective_target_vxworks_rtp { } {
return [check_no_compiler_messages vxworks_rtp assembly {
#if !defined __vxworks || !defined __RTP__
#error NO
#endif
}]
}
# Return 1 if the target is expected to provide wide character support.
proc check_effective_target_wchar { } {
if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
return 0
}
return [check_no_compiler_messages wchar assembly {
#include
}]
}
# Return 1 if the target has .
proc check_effective_target_pthread_h { } {
return [check_no_compiler_messages pthread_h assembly {
#include
}]
}
# Return 1 if the target can truncate a file from a file-descriptor,
# as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
# chsize. We test for a trivially functional truncation; no stubs.
# As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
# different function to be used.
proc check_effective_target_fd_truncate { } {
set prog {
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
int main ()
{
FILE *f = fopen ("tst.tmp", "wb");
int fd;
const char t[] = "test writing more than ten characters";
char s[11];
int status = 0;
fd = fileno (f);
write (fd, t, sizeof (t) - 1);
lseek (fd, 0, 0);
if (ftruncate (fd, 10) != 0)
status = 1;
close (fd);
fclose (f);
if (status)
{
unlink ("tst.tmp");
exit (status);
}
f = fopen ("tst.tmp", "rb");
if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
status = 1;
fclose (f);
unlink ("tst.tmp");
exit (status);
}
}
if { [check_runtime ftruncate $prog] } {
return 1;
}
regsub "ftruncate" $prog "chsize" prog
return [check_runtime chsize $prog]
}
# Add to FLAGS all the target-specific flags needed to access the c99 runtime.
proc add_options_for_c99_runtime { flags } {
if { [istarget *-*-solaris2*] } {
return "$flags -std=c99"
}
if { [istarget powerpc-*-darwin*] } {
return "$flags -mmacosx-version-min=10.3"
}
return $flags
}
# Add to FLAGS all the target-specific flags needed to enable
# full IEEE compliance mode.
proc add_options_for_ieee { flags } {
if { [istarget alpha*-*-*]
|| [istarget sh*-*-*] } {
return "$flags -mieee"
}
if { [istarget rx-*-*] } {
return "$flags -mnofpu"
}
return $flags
}
if {![info exists flags_to_postpone]} {
set flags_to_postpone ""
}
# Add to FLAGS the flags needed to enable functions to bind locally
# when using pic/PIC passes in the testsuite.
proc add_options_for_bind_pic_locally { flags } {
global flags_to_postpone
# Instead of returning 'flags' with the -fPIE or -fpie appended, we save it
# in 'flags_to_postpone' and append it later in gcc_target_compile procedure in
# order to make sure that the multilib_flags doesn't override this.
if {[check_no_compiler_messages using_pic2 assembly {
#if __PIC__ != 2
#error __PIC__ != 2
#endif
}]} {
set flags_to_postpone "-fPIE"
return $flags
}
if {[check_no_compiler_messages using_pic1 assembly {
#if __PIC__ != 1
#error __PIC__ != 1
#endif
}]} {
set flags_to_postpone "-fpie"
return $flags
}
return $flags
}
# Add to FLAGS the flags needed to enable 64-bit vectors.
proc add_options_for_double_vectors { flags } {
if [is-effective-target arm_neon_ok] {
return "$flags -mvectorize-with-neon-double"
}
return $flags
}
# Add to FLAGS the flags needed to define the STACK_SIZE macro.
proc add_options_for_stack_size { flags } {
if [is-effective-target stack_size] {
set stack_size [dg-effective-target-value stack_size]
return "$flags -DSTACK_SIZE=$stack_size"
}
return $flags
}
# Return 1 if the target provides a full C99 runtime.
proc check_effective_target_c99_runtime { } {
return [check_cached_effective_target c99_runtime {
global srcdir
set file [open "$srcdir/gcc.dg/builtins-config.h"]
set contents [read $file]
close $file
append contents {
#ifndef HAVE_C99_RUNTIME
#error !HAVE_C99_RUNTIME
#endif
}
check_no_compiler_messages_nocache c99_runtime assembly \
$contents [add_options_for_c99_runtime ""]
}]
}
# Return 1 if the target provides the D runtime.
proc check_effective_target_d_runtime { } {
return [check_no_compiler_messages d_runtime executable {
// D
module mod;
extern(C) int main() {
return 0;
}
}]
}
# Return 1 if target wchar_t is at least 4 bytes.
proc check_effective_target_4byte_wchar_t { } {
return [check_no_compiler_messages 4byte_wchar_t object {
int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
}]
}
# Return 1 if the target supports automatic stack alignment.
proc check_effective_target_automatic_stack_alignment { } {
# Ordinarily x86 supports automatic stack alignment ...
if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
# ... except Win64 SEH doesn't. Succeed for Win32 though.
return [check_effective_target_ilp32];
}
return 1;
}
return 0;
}
# Return true if we are compiling for AVX target.
proc check_avx_available { } {
if { [check_no_compiler_messages avx_available assembly {
#ifndef __AVX__
#error unsupported
#endif
} ""] } {
return 1;
}
return 0;
}
# Return true if we are compiling for AVX2 target.
proc check_avx2_available { } {
if { [check_no_compiler_messages avx_available assembly {
#ifndef __AVX2__
#error unsupported
#endif
} ""] } {
return 1;
}
return 0;
}
# Return true if we are compiling for SSSE3 target.
proc check_ssse3_available { } {
if { [check_no_compiler_messages sse3a_available assembly {
#ifndef __SSSE3__
#error unsupported
#endif
} ""] } {
return 1;
}
return 0;
}
# Return true if 32- and 16-bytes vectors are available.
proc check_effective_target_vect_sizes_32B_16B { } {
return [expr { [available_vector_sizes] == [list 256 128] }]
}
# Return true if 16- and 8-bytes vectors are available.
proc check_effective_target_vect_sizes_16B_8B { } {
if { [check_avx_available]
|| [is-effective-target arm_neon]
|| [istarget aarch64*-*-*] } {
return 1;
} else {
return 0;
}
}
# Return true if 128-bits vectors are preferred even if 256-bits vectors
# are available.
proc check_prefer_avx128 { } {
if ![check_avx_available] {
return 0;
}
return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
float a[1024],b[1024],c[1024];
void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
} "-O2 -ftree-vectorize"]
}
# Return 1 if avx512f instructions can be compiled.
proc check_effective_target_avx512f { } {
return [check_no_compiler_messages avx512f object {
typedef double __m512d __attribute__ ((__vector_size__ (64)));
typedef double __m128d __attribute__ ((__vector_size__ (16)));
__m512d _mm512_add (__m512d a)
{
return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
}
__m128d _mm128_add (__m128d a)
{
return __builtin_ia32_addsd_round (a, a, 8);
}
__m128d _mm128_getmant (__m128d a)
{
return __builtin_ia32_getmantsd_round (a, a, 0, 8);
}
} "-O2 -mavx512f" ]
}
# Return 1 if avx instructions can be compiled.
proc check_effective_target_avx { } {
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
return 0
}
return [check_no_compiler_messages avx object {
void _mm256_zeroall (void)
{
__builtin_ia32_vzeroall ();
}
} "-O2 -mavx" ]
}
# Return 1 if avx2 instructions can be compiled.
proc check_effective_target_avx2 { } {
return [check_no_compiler_messages avx2 object {
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
__v4di
mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
{
return __builtin_ia32_andnotsi256 (__X, __Y);
}
} "-O0 -mavx2" ]
}
# Return 1 if sse instructions can be compiled.
proc check_effective_target_sse { } {
return [check_no_compiler_messages sse object {
int main ()
{
__builtin_ia32_stmxcsr ();
return 0;
}
} "-O2 -msse" ]
}
# Return 1 if sse2 instructions can be compiled.
proc check_effective_target_sse2 { } {
return [check_no_compiler_messages sse2 object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
__m128i _mm_srli_si128 (__m128i __A, int __N)
{
return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
}
} "-O2 -msse2" ]
}
# Return 1 if sse4.1 instructions can be compiled.
proc check_effective_target_sse4 { } {
return [check_no_compiler_messages sse4.1 object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef int __v4si __attribute__ ((__vector_size__ (16)));
__m128i _mm_mullo_epi32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pmulld128 ((__v4si)__X,
(__v4si)__Y);
}
} "-O2 -msse4.1" ]
}
# Return 1 if F16C instructions can be compiled.
proc check_effective_target_f16c { } {
return [check_no_compiler_messages f16c object {
#include "immintrin.h"
float
foo (unsigned short val)
{
return _cvtsh_ss (val);
}
} "-O2 -mf16c" ]
}
proc check_effective_target_ms_hook_prologue { } {
if { [check_no_compiler_messages ms_hook_prologue object {
void __attribute__ ((__ms_hook_prologue__)) foo ();
} ""] } {
return 1
} else {
return 0
}
}
# Return 1 if 3dnow instructions can be compiled.
proc check_effective_target_3dnow { } {
return [check_no_compiler_messages 3dnow object {
typedef int __m64 __attribute__ ((__vector_size__ (8)));
typedef float __v2sf __attribute__ ((__vector_size__ (8)));
__m64 _m_pfadd (__m64 __A, __m64 __B)
{
return (__m64) __builtin_ia32_pfadd ((__v2sf)__A, (__v2sf)__B);
}
} "-O2 -m3dnow" ]
}
# Return 1 if sse3 instructions can be compiled.
proc check_effective_target_sse3 { } {
return [check_no_compiler_messages sse3 object {
typedef double __m128d __attribute__ ((__vector_size__ (16)));
typedef double __v2df __attribute__ ((__vector_size__ (16)));
__m128d _mm_addsub_pd (__m128d __X, __m128d __Y)
{
return (__m128d) __builtin_ia32_addsubpd ((__v2df)__X, (__v2df)__Y);
}
} "-O2 -msse3" ]
}
# Return 1 if ssse3 instructions can be compiled.
proc check_effective_target_ssse3 { } {
return [check_no_compiler_messages ssse3 object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef int __v4si __attribute__ ((__vector_size__ (16)));
__m128i _mm_abs_epi32 (__m128i __X)
{
return (__m128i) __builtin_ia32_pabsd128 ((__v4si)__X);
}
} "-O2 -mssse3" ]
}
# Return 1 if aes instructions can be compiled.
proc check_effective_target_aes { } {
return [check_no_compiler_messages aes object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef long long __v2di __attribute__ ((__vector_size__ (16)));
__m128i _mm_aesimc_si128 (__m128i __X)
{
return (__m128i) __builtin_ia32_aesimc128 ((__v2di)__X);
}
} "-O2 -maes" ]
}
# Return 1 if vaes instructions can be compiled.
proc check_effective_target_vaes { } {
return [check_no_compiler_messages vaes object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef long long __v2di __attribute__ ((__vector_size__ (16)));
__m128i _mm_aesimc_si128 (__m128i __X)
{
return (__m128i) __builtin_ia32_aesimc128 ((__v2di)__X);
}
} "-O2 -maes -mavx" ]
}
# Return 1 if pclmul instructions can be compiled.
proc check_effective_target_pclmul { } {
return [check_no_compiler_messages pclmul object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef long long __v2di __attribute__ ((__vector_size__ (16)));
__m128i pclmulqdq_test (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pclmulqdq128 ((__v2di)__X,
(__v2di)__Y,
1);
}
} "-O2 -mpclmul" ]
}
# Return 1 if vpclmul instructions can be compiled.
proc check_effective_target_vpclmul { } {
return [check_no_compiler_messages vpclmul object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef long long __v2di __attribute__ ((__vector_size__ (16)));
__m128i pclmulqdq_test (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_pclmulqdq128 ((__v2di)__X,
(__v2di)__Y,
1);
}
} "-O2 -mpclmul -mavx" ]
}
# Return 1 if sse4a instructions can be compiled.
proc check_effective_target_sse4a { } {
return [check_no_compiler_messages sse4a object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef long long __v2di __attribute__ ((__vector_size__ (16)));
__m128i _mm_insert_si64 (__m128i __X,__m128i __Y)
{
return (__m128i) __builtin_ia32_insertq ((__v2di)__X, (__v2di)__Y);
}
} "-O2 -msse4a" ]
}
# Return 1 if fma4 instructions can be compiled.
proc check_effective_target_fma4 { } {
return [check_no_compiler_messages fma4 object {
typedef float __m128 __attribute__ ((__vector_size__ (16)));
typedef float __v4sf __attribute__ ((__vector_size__ (16)));
__m128 _mm_macc_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128) __builtin_ia32_vfmaddps ((__v4sf)__A,
(__v4sf)__B,
(__v4sf)__C);
}
} "-O2 -mfma4" ]
}
# Return 1 if fma instructions can be compiled.
proc check_effective_target_fma { } {
return [check_no_compiler_messages fma object {
typedef float __m128 __attribute__ ((__vector_size__ (16)));
typedef float __v4sf __attribute__ ((__vector_size__ (16)));
__m128 _mm_macc_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128) __builtin_ia32_vfmaddps ((__v4sf)__A,
(__v4sf)__B,
(__v4sf)__C);
}
} "-O2 -mfma" ]
}
# Return 1 if xop instructions can be compiled.
proc check_effective_target_xop { } {
return [check_no_compiler_messages xop object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef short __v8hi __attribute__ ((__vector_size__ (16)));
__m128i _mm_maccs_epi16(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i) __builtin_ia32_vpmacssww ((__v8hi)__A,
(__v8hi)__B,
(__v8hi)__C);
}
} "-O2 -mxop" ]
}
# Return 1 if lzcnt instruction can be compiled.
proc check_effective_target_lzcnt { } {
return [check_no_compiler_messages lzcnt object {
unsigned short _lzcnt (unsigned short __X)
{
return __builtin_clzs (__X);
}
} "-mlzcnt" ]
}
# Return 1 if bmi instructions can be compiled.
proc check_effective_target_bmi { } {
return [check_no_compiler_messages bmi object {
unsigned int __bextr_u32 (unsigned int __X, unsigned int __Y)
{
return __builtin_ia32_bextr_u32 (__X, __Y);
}
} "-mbmi" ]
}
# Return 1 if ADX instructions can be compiled.
proc check_effective_target_adx { } {
return [check_no_compiler_messages adx object {
unsigned char
_adxcarry_u32 (unsigned char __CF, unsigned int __X,
unsigned int __Y, unsigned int *__P)
{
return __builtin_ia32_addcarryx_u32 (__CF, __X, __Y, __P);
}
} "-madx" ]
}
# Return 1 if rtm instructions can be compiled.
proc check_effective_target_rtm { } {
return [check_no_compiler_messages rtm object {
void
_rtm_xend (void)
{
return __builtin_ia32_xend ();
}
} "-mrtm" ]
}
# Return 1 if avx512vl instructions can be compiled.
proc check_effective_target_avx512vl { } {
return [check_no_compiler_messages avx512vl object {
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
__v4di
mm256_and_epi64 (__v4di __X, __v4di __Y)
{
__v4di __W;
return __builtin_ia32_pandq256_mask (__X, __Y, __W, -1);
}
} "-mavx512vl" ]
}
# Return 1 if avx512cd instructions can be compiled.
proc check_effective_target_avx512cd { } {
return [check_no_compiler_messages avx512cd_trans object {
typedef long long __v8di __attribute__ ((__vector_size__ (64)));
__v8di
_mm512_conflict_epi64 (__v8di __W, __v8di __A)
{
return (__v8di) __builtin_ia32_vpconflictdi_512_mask ((__v8di) __A,
(__v8di) __W,
-1);
}
} "-Wno-psabi -mavx512cd" ]
}
# Return 1 if avx512er instructions can be compiled.
proc check_effective_target_avx512er { } {
return [check_no_compiler_messages avx512er_trans object {
typedef float __v16sf __attribute__ ((__vector_size__ (64)));
__v16sf
mm512_exp2a23_ps (__v16sf __X)
{
return __builtin_ia32_exp2ps_mask (__X, __X, -1, 4);
}
} "-Wno-psabi -mavx512er" ]
}
# Return 1 if sha instructions can be compiled.
proc check_effective_target_sha { } {
return [check_no_compiler_messages sha object {
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
typedef int __v4si __attribute__ ((__vector_size__ (16)));
__m128i _mm_sha1msg1_epu32 (__m128i __X, __m128i __Y)
{
return (__m128i) __builtin_ia32_sha1msg1 ((__v4si)__X,
(__v4si)__Y);
}
} "-O2 -msha" ]
}
# Return 1 if avx512dq instructions can be compiled.
proc check_effective_target_avx512dq { } {
return [check_no_compiler_messages avx512dq object {
typedef long long __v8di __attribute__ ((__vector_size__ (64)));
__v8di
_mm512_mask_mullo_epi64 (__v8di __W, __v8di __A, __v8di __B)
{
return (__v8di) __builtin_ia32_pmullq512_mask ((__v8di) __A,
(__v8di) __B,
(__v8di) __W,
-1);
}
} "-mavx512dq" ]
}
# Return 1 if avx512bw instructions can be compiled.
proc check_effective_target_avx512bw { } {
return [check_no_compiler_messages avx512bw object {
typedef short __v32hi __attribute__ ((__vector_size__ (64)));
__v32hi
_mm512_mask_mulhrs_epi16 (__v32hi __W, __v32hi __A, __v32hi __B)
{
return (__v32hi) __builtin_ia32_pmulhrsw512_mask ((__v32hi) __A,
(__v32hi) __B,
(__v32hi) __W,
-1);
}
} "-mavx512bw" ]
}
# Return 1 if avx512ifma instructions can be compiled.
proc check_effective_target_avx512ifma { } {
return [check_no_compiler_messages avx512ifma object {
typedef long long __v8di __attribute__ ((__vector_size__ (64)));
__v8di
_mm512_madd52lo_epu64 (__v8di __X, __v8di __Y, __v8di __Z)
{
return (__v8di) __builtin_ia32_vpmadd52luq512_mask ((__v8di) __X,
(__v8di) __Y,
(__v8di) __Z,
-1);
}
} "-mavx512ifma" ]
}
# Return 1 if avx512vbmi instructions can be compiled.
proc check_effective_target_avx512vbmi { } {
return [check_no_compiler_messages avx512vbmi object {
typedef char __v64qi __attribute__ ((__vector_size__ (64)));
__v64qi
_mm512_multishift_epi64_epi8 (__v64qi __X, __v64qi __Y)
{
return (__v64qi) __builtin_ia32_vpmultishiftqb512_mask ((__v64qi) __X,
(__v64qi) __Y,
(__v64qi) __Y,
-1);
}
} "-mavx512vbmi" ]
}
# Return 1 if avx512_4fmaps instructions can be compiled.
proc check_effective_target_avx5124fmaps { } {
return [check_no_compiler_messages avx5124fmaps object {
typedef float __v16sf __attribute__ ((__vector_size__ (64)));
typedef float __v4sf __attribute__ ((__vector_size__ (16)));
__v16sf
_mm512_mask_4fmadd_ps (__v16sf __DEST, __v16sf __A, __v16sf __B, __v16sf __C,
__v16sf __D, __v16sf __E, __v4sf *__F)
{
return (__v16sf) __builtin_ia32_4fmaddps_mask ((__v16sf) __A,
(__v16sf) __B,
(__v16sf) __C,
(__v16sf) __D,
(__v16sf) __E,
(const __v4sf *) __F,
(__v16sf) __DEST,
0xffff);
}
} "-mavx5124fmaps" ]
}
# Return 1 if avx512_4vnniw instructions can be compiled.
proc check_effective_target_avx5124vnniw { } {
return [check_no_compiler_messages avx5124vnniw object {
typedef int __v16si __attribute__ ((__vector_size__ (64)));
typedef int __v4si __attribute__ ((__vector_size__ (16)));
__v16si
_mm512_4dpwssd_epi32 (__v16si __A, __v16si __B, __v16si __C,
__v16si __D, __v16si __E, __v4si *__F)
{
return (__v16si) __builtin_ia32_vp4dpwssd ((__v16si) __B,
(__v16si) __C,
(__v16si) __D,
(__v16si) __E,
(__v16si) __A,
(const __v4si *) __F);
}
} "-mavx5124vnniw" ]
}
# Return 1 if avx512_vpopcntdq instructions can be compiled.
proc check_effective_target_avx512vpopcntdq { } {
return [check_no_compiler_messages avx512vpopcntdq object {
typedef int __v16si __attribute__ ((__vector_size__ (64)));
__v16si
_mm512_popcnt_epi32 (__v16si __A)
{
return (__v16si) __builtin_ia32_vpopcountd_v16si ((__v16si) __A);
}
} "-mavx512vpopcntdq" ]
}
# Return 1 if 128 or 256-bit avx512_vpopcntdq instructions can be compiled.
proc check_effective_target_avx512vpopcntdqvl { } {
return [check_no_compiler_messages avx512vpopcntdqvl object {
typedef int __v8si __attribute__ ((__vector_size__ (32)));
__v8si
_mm256_popcnt_epi32 (__v8si __A)
{
return (__v8si) __builtin_ia32_vpopcountd_v8si ((__v8si) __A);
}
} "-mavx512vpopcntdq -mavx512vl" ]
}
# Return 1 if gfni instructions can be compiled.
proc check_effective_target_gfni { } {
return [check_no_compiler_messages gfni object {
typedef char __v16qi __attribute__ ((__vector_size__ (16)));
__v16qi
_mm_gf2p8affineinv_epi64_epi8 (__v16qi __A, __v16qi __B, const int __C)
{
return (__v16qi) __builtin_ia32_vgf2p8affineinvqb_v16qi ((__v16qi) __A,
(__v16qi) __B,
0);
}
} "-mgfni" ]
}
# Return 1 if avx512vbmi2 instructions can be compiled.
proc check_effective_target_avx512vbmi2 { } {
return [check_no_compiler_messages avx512vbmi2 object {
typedef char __v16qi __attribute__ ((__vector_size__ (16)));
typedef unsigned long long __mmask16;
__v16qi
_mm_mask_compress_epi8 (__v16qi __A, __mmask16 __B, __v16qi __C)
{
return (__v16qi) __builtin_ia32_compressqi128_mask((__v16qi)__C,
(__v16qi)__A,
(__mmask16)__B);
}
} "-mavx512vbmi2 -mavx512vl" ]
}
# Return 1 if avx512vbmi2 instructions can be compiled.
proc check_effective_target_avx512vnni { } {
return [check_no_compiler_messages avx512vnni object {
typedef int __v16si __attribute__ ((__vector_size__ (64)));
__v16si
_mm_mask_compress_epi8 (__v16si __A, __v16si __B, __v16si __C)
{
return (__v16si) __builtin_ia32_vpdpbusd_v16si ((__v16si)__A,
(__v16si)__B,
(__v16si)__C);
}
} "-mavx512vnni -mavx512f" ]
}
# Return 1 if vaes instructions can be compiled.
proc check_effective_target_avx512vaes { } {
return [check_no_compiler_messages avx512vaes object {
typedef int __v16si __attribute__ ((__vector_size__ (64)));
__v32qi
_mm256_aesdec_epi128 (__v32qi __A, __v32qi __B)
{
return (__v32qi)__builtin_ia32_vaesdec_v32qi ((__v32qi) __A, (__v32qi) __B);
}
} "-mvaes" ]
}
# Return 1 if vpclmulqdq instructions can be compiled.
proc check_effective_target_vpclmulqdq { } {
return [check_no_compiler_messages vpclmulqdq object {
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
__v4di
_mm256_clmulepi64_epi128 (__v4di __A, __v4di __B)
{
return (__v4di) __builtin_ia32_vpclmulqdq_v4di (__A, __B, 0);
}
} "-mvpclmulqdq -mavx512vl" ]
}
# Return 1 if avx512_bitalg instructions can be compiled.
proc check_effective_target_avx512bitalg { } {
return [check_no_compiler_messages avx512bitalg object {
typedef short int __v32hi __attribute__ ((__vector_size__ (64)));
__v32hi
_mm512_popcnt_epi16 (__v32hi __A)
{
return (__v32hi) __builtin_ia32_vpopcountw_v32hi ((__v32hi) __A);
}
} "-mavx512bitalg" ]
}
# Return 1 if C wchar_t type is compatible with char16_t.
proc check_effective_target_wchar_t_char16_t_compatible { } {
return [check_no_compiler_messages wchar_t_char16_t object {
__WCHAR_TYPE__ wc;
__CHAR16_TYPE__ *p16 = &wc;
char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
}]
}
# Return 1 if C wchar_t type is compatible with char32_t.
proc check_effective_target_wchar_t_char32_t_compatible { } {
return [check_no_compiler_messages wchar_t_char32_t object {
__WCHAR_TYPE__ wc;
__CHAR32_TYPE__ *p32 = &wc;
char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
}]
}
# Return 1 if pow10 function exists.
proc check_effective_target_pow10 { } {
return [check_runtime pow10 {
#include
int main () {
double x;
x = pow10 (1);
return 0;
}
} "-lm" ]
}
# Return 1 if frexpl function exists.
proc check_effective_target_frexpl { } {
return [check_runtime frexpl {
#include
int main () {
long double x;
int y;
x = frexpl (5.0, &y);
return 0;
}
} "-lm" ]
}
# Return 1 if issignaling function exists.
proc check_effective_target_issignaling {} {
return [check_runtime issignaling {
#define _GNU_SOURCE
#include
int main ()
{
return issignaling (0.0);
}
} "-lm" ]
}
# Return 1 if current options generate DFP instructions, 0 otherwise.
proc check_effective_target_hard_dfp {} {
return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
typedef float d64 __attribute__((mode(DD)));
d64 x, y, z;
void foo (void) { z = x + y; }
}]
}
# Return 1 if string.h and wchar.h headers provide C++ requires overloads
# for strchr etc. functions.
proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
#include
#include
#if !defined(__cplusplus) \
|| !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
|| !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
ISO C++ correct string.h and wchar.h protos not supported.
#else
int i;
#endif
}]
}
# Return 1 if GNU as is used.
proc check_effective_target_gas { } {
global use_gas_saved
global tool
if {![info exists use_gas_saved]} {
# Check if the as used by gcc is GNU as.
set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
# Provide /dev/null as input, otherwise gas times out reading from
# stdin.
set status [remote_exec host "$gcc_as" "-v /dev/null"]
set as_output [lindex $status 1]
if { [ string first "GNU" $as_output ] >= 0 } {
set use_gas_saved 1
} else {
set use_gas_saved 0
}
}
return $use_gas_saved
}
# Return 1 if GNU ld is used.
proc check_effective_target_gld { } {
global use_gld_saved
global tool
if {![info exists use_gld_saved]} {
# Check if the ld used by gcc is GNU ld.
set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
set status [remote_exec host "$gcc_ld" "--version"]
set ld_output [lindex $status 1]
if { [ string first "GNU" $ld_output ] >= 0 } {
set use_gld_saved 1
} else {
set use_gld_saved 0
}
}
return $use_gld_saved
}
# Return 1 if the compiler has been configure with link-time optimization
# (LTO) support.
proc check_effective_target_lto { } {
if { [istarget nvptx-*-*] } {
return 0;
}
return [check_no_compiler_messages lto object {
void foo (void) { }
} "-flto"]
}
# Return 1 if the compiler and linker support incremental link-time
# optimization.
proc check_effective_target_lto_incremental { } {
if ![check_effective_target_lto] {
return 0
}
return [check_no_compiler_messages lto_incremental executable {
int main () { return 0; }
} "-flto -r -nostdlib"]
}
# Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
proc check_effective_target_maybe_x32 { } {
return [check_no_compiler_messages maybe_x32 object {
void foo (void) {}
} "-mx32 -maddress-mode=short"]
}
# Return 1 if this target supports the -fsplit-stack option, 0
# otherwise.
proc check_effective_target_split_stack {} {
return [check_no_compiler_messages split_stack object {
void foo (void) { }
} "-fsplit-stack"]
}
# Return 1 if this target supports the -masm=intel option, 0
# otherwise
proc check_effective_target_masm_intel {} {
return [check_no_compiler_messages masm_intel object {
extern void abort (void);
} "-masm=intel"]
}
# Return 1 if the language for the compiler under test is C.
proc check_effective_target_c { } {
global tool
if [string match $tool "gcc"] {
return 1
}
return 0
}
# Return 1 if the language for the compiler under test is C++.
proc check_effective_target_c++ { } {
global tool
if { [string match $tool "g++"] || [string match $tool "libstdc++"] } {
return 1
}
return 0
}
set cxx_default "c++14"
# Check whether the current active language standard supports the features
# of C++11/C++14 by checking for the presence of one of the -std flags.
# This assumes that the default for the compiler is $cxx_default, and that
# there will never be multiple -std= arguments on the command line.
proc check_effective_target_c++11_only { } {
global cxx_default
if ![check_effective_target_c++] {
return 0
}
if [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }] {
return 1
}
if { $cxx_default == "c++11" && [check-flags { { } { } { } { -std=* } }] } {
return 1
}
return 0
}
proc check_effective_target_c++11 { } {
if [check_effective_target_c++11_only] {
return 1
}
return [check_effective_target_c++14]
}
proc check_effective_target_c++11_down { } {
if ![check_effective_target_c++] {
return 0
}
return [expr ![check_effective_target_c++14] ]
}
proc check_effective_target_c++14_only { } {
global cxx_default
if ![check_effective_target_c++] {
return 0
}
if [check-flags { { } { } { -std=c++14 -std=gnu++14 -std=c++14 -std=gnu++14 } }] {
return 1
}
if { $cxx_default == "c++14" && [check-flags { { } { } { } { -std=* } }] } {
return 1
}
return 0
}
proc check_effective_target_c++14 { } {
if [check_effective_target_c++14_only] {
return 1
}
return [check_effective_target_c++17]
}
proc check_effective_target_c++14_down { } {
if ![check_effective_target_c++] {
return 0
}
return [expr ![check_effective_target_c++17] ]
}
proc check_effective_target_c++98_only { } {
global cxx_default
if ![check_effective_target_c++] {
return 0
}
if [check-flags { { } { } { -std=c++98 -std=gnu++98 -std=c++03 -std=gnu++03 } }] {
return 1
}
if { $cxx_default == "c++98" && [check-flags { { } { } { } { -std=* } }] } {
return 1
}
return 0
}
proc check_effective_target_c++17_only { } {
global cxx_default
if ![check_effective_target_c++] {
return 0
}
if [check-flags { { } { } { -std=c++17 -std=gnu++17 -std=c++1z -std=gnu++1z } }] {
return 1
}
if { $cxx_default == "c++17" && [check-flags { { } { } { } { -std=* } }] } {
return 1
}
return 0
}
proc check_effective_target_c++17 { } {
if [check_effective_target_c++17_only] {
return 1
}
return [check_effective_target_c++2a]
}
proc check_effective_target_c++17_down { } {
if ![check_effective_target_c++] {
return 0
}
return [expr ![check_effective_target_c++2a] ]
}
proc check_effective_target_c++2a_only { } {
global cxx_default
if ![check_effective_target_c++] {
return 0
}
if [check-flags { { } { } { -std=c++2a -std=gnu++2a } }] {
return 1
}
if { $cxx_default == "c++20" && [check-flags { { } { } { } { -std=* } }] } {
return 1
}
return 0
}
proc check_effective_target_c++2a { } {
return [check_effective_target_c++2a_only]
}
# Check for C++ Concepts TS support, i.e. -fconcepts flag.
proc check_effective_target_concepts { } {
return [check-flags { "" { } { -fconcepts } }]
}
# Return 1 if expensive testcases should be run.
proc check_effective_target_run_expensive_tests { } {
if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
return 1
}
return 0
}
# Returns 1 if "mempcpy" is available on the target system.
proc check_effective_target_mempcpy {} {
return [check_function_available "mempcpy"]
}
# Returns 1 if "stpcpy" is available on the target system.
proc check_effective_target_stpcpy {} {
return [check_function_available "stpcpy"]
}
# Check whether the vectorizer tests are supported by the target and
# append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
# If a port wants to execute the tests more than once it should append
# the supported target to EFFECTIVE_TARGETS instead, and the compile flags
# will be added by a call to add_options_for_.
# Set dg-do-what-default to either compile or run, depending on target
# capabilities. Do not set this if the supported target is appended to
# EFFECTIVE_TARGETS. Flags and this variable will be set by et-dg-runtest
# automatically. Return the number of effective targets if vectorizer tests
# are supported, 0 otherwise.
proc check_vect_support_and_set_flags { } {
global DEFAULT_VECTCFLAGS
global dg-do-what-default
global EFFECTIVE_TARGETS
if [istarget powerpc-*paired*] {
lappend DEFAULT_VECTCFLAGS "-mpaired"
if [check_750cl_hw_available] {
set dg-do-what-default run
} else {
set dg-do-what-default compile
}
} elseif [istarget powerpc*-*-*] {
# Skip targets not supporting -maltivec.
if ![is-effective-target powerpc_altivec_ok] {
return 0
}
lappend DEFAULT_VECTCFLAGS "-maltivec"
if [check_p9vector_hw_available] {
lappend DEFAULT_VECTCFLAGS "-mpower9-vector"
} elseif [check_p8vector_hw_available] {
lappend DEFAULT_VECTCFLAGS "-mpower8-vector"
} elseif [check_vsx_hw_available] {
lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
}
if [check_vmx_hw_available] {
set dg-do-what-default run
} else {
if [is-effective-target ilp32] {
# Specify a cpu that supports VMX for compile-only tests.
lappend DEFAULT_VECTCFLAGS "-mcpu=970"
}
set dg-do-what-default compile
}
} elseif { [istarget spu-*-*] } {
set dg-do-what-default run
} elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
lappend DEFAULT_VECTCFLAGS "-msse2"
if { [check_effective_target_sse2_runtime] } {
set dg-do-what-default run
} else {
set dg-do-what-default compile
}
} elseif { [istarget mips*-*-*]
&& [check_effective_target_nomips16] } {
if { [check_effective_target_mpaired_single] } {
lappend EFFECTIVE_TARGETS mpaired_single
}
if { [check_effective_target_mips_loongson_mmi] } {
lappend EFFECTIVE_TARGETS mips_loongson_mmi
}
if { [check_effective_target_mips_msa] } {
lappend EFFECTIVE_TARGETS mips_msa
}
return [llength $EFFECTIVE_TARGETS]
} elseif [istarget sparc*-*-*] {
lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
if [check_effective_target_ultrasparc_hw] {
set dg-do-what-default run
} else {
set dg-do-what-default compile
}
} elseif [istarget alpha*-*-*] {
# Alpha's vectorization capabilities are extremely limited.
# It's more effort than its worth disabling all of the tests
# that it cannot pass. But if you actually want to see what
# does work, command out the return.
return 0
lappend DEFAULT_VECTCFLAGS "-mmax"
if [check_alpha_max_hw_available] {
set dg-do-what-default run
} else {
set dg-do-what-default compile
}
} elseif [istarget ia64-*-*] {
set dg-do-what-default run
} elseif [is-effective-target arm_neon_ok] {
eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
# NEON does not support denormals, so is not used for vectorization by
# default to avoid loss of precision. We must pass -ffast-math to test
# vectorization of float operations.
lappend DEFAULT_VECTCFLAGS "-ffast-math"
if [is-effective-target arm_neon_hw] {
set dg-do-what-default run
} else {
set dg-do-what-default compile
}
} elseif [istarget "aarch64*-*-*"] {
set dg-do-what-default run
} elseif [istarget s390*-*-*] {
# The S/390 backend set a default of 2 for that value.
# Override it to have the same situation as with other
# targets.
lappend DEFAULT_VECTCFLAGS "--param" "min-vect-loop-bound=1"
lappend DEFAULT_VECTCFLAGS "--param" "max-unrolled-insns=200"
lappend DEFAULT_VECTCFLAGS "--param" "max-unroll-times=8"
lappend DEFAULT_VECTCFLAGS "--param" "max-completely-peeled-insns=200"
lappend DEFAULT_VECTCFLAGS "--param" "max-completely-peel-times=16"
if [check_effective_target_s390_vxe] {
lappend DEFAULT_VECTCFLAGS "-march=z14" "-mzarch"
set dg-do-what-default run
} elseif [check_effective_target_s390_vx] {
lappend DEFAULT_VECTCFLAGS "-march=z13" "-mzarch"
set dg-do-what-default run
} else {
lappend DEFAULT_VECTCFLAGS "-march=z14" "-mzarch"
set dg-do-what-default compile
}
} else {
return 0
}
return 1
}
# Return 1 if the target does *not* require strict alignment.
proc check_effective_target_non_strict_align {} {
# On ARM, the default is to use STRICT_ALIGNMENT, but there
# are interfaces defined for misaligned access and thus
# depending on the architecture levels unaligned access is
# available.
if [istarget "arm*-*-*"] {
return [check_effective_target_arm_unaligned]
}
return [check_no_compiler_messages non_strict_align assembly {
char *y;
typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
c *z;
void foo(void) { z = (c *) y; }
} "-Wcast-align"]
}
# Return 1 if the target has .
proc check_effective_target_ucontext_h { } {
return [check_no_compiler_messages ucontext_h assembly {
#include
}]
}
proc check_effective_target_aarch64_tiny { } {
if { [istarget aarch64*-*-*] } {
return [check_no_compiler_messages aarch64_tiny object {
#ifdef __AARCH64_CMODEL_TINY__
int dummy;
#else
#error target not AArch64 tiny code model
#endif
}]
} else {
return 0
}
}
# Create functions to check that the AArch64 assembler supports the
# various architecture extensions via the .arch_extension pseudo-op.
foreach { aarch64_ext } { "fp" "simd" "crypto" "crc" "lse" "dotprod" "sve"} {
eval [string map [list FUNC $aarch64_ext] {
proc check_effective_target_aarch64_asm_FUNC_ok { } {
if { [istarget aarch64*-*-*] } {
return [check_no_compiler_messages aarch64_FUNC_assembler object {
__asm__ (".arch_extension FUNC");
} "-march=armv8-a+FUNC"]
} else {
return 0
}
}
}]
}
proc check_effective_target_aarch64_small { } {
if { [istarget aarch64*-*-*] } {
return [check_no_compiler_messages aarch64_small object {
#ifdef __AARCH64_CMODEL_SMALL__
int dummy;
#else
#error target not AArch64 small code model
#endif
}]
} else {
return 0
}
}
proc check_effective_target_aarch64_large { } {
if { [istarget aarch64*-*-*] } {
return [check_no_compiler_messages aarch64_large object {
#ifdef __AARCH64_CMODEL_LARGE__
int dummy;
#else
#error target not AArch64 large code model
#endif
}]
} else {
return 0
}
}
# Return 1 if this is a reduced AVR Tiny core. Such cores have different
# register set, instruction set, addressing capabilities and ABI.
proc check_effective_target_avr_tiny { } {
if { [istarget avr*-*-*] } {
return [check_no_compiler_messages avr_tiny object {
#ifdef __AVR_TINY__
int dummy;
#else
#error target not a reduced AVR Tiny core
#endif
}]
} else {
return 0
}
}
# Return 1 if is available with all the standard IEEE
# exceptions and floating-point exceptions are raised by arithmetic
# operations. (If the target requires special options for "inexact"
# exceptions, those need to be specified in the testcases.)
proc check_effective_target_fenv_exceptions {} {
return [check_runtime fenv_exceptions {
#include
#include
#ifndef FE_DIVBYZERO
# error Missing FE_DIVBYZERO
#endif
#ifndef FE_INEXACT
# error Missing FE_INEXACT
#endif
#ifndef FE_INVALID
# error Missing FE_INVALID
#endif
#ifndef FE_OVERFLOW
# error Missing FE_OVERFLOW
#endif
#ifndef FE_UNDERFLOW
# error Missing FE_UNDERFLOW
#endif
volatile float a = 0.0f, r;
int
main (void)
{
r = a / a;
if (fetestexcept (FE_INVALID))
exit (0);
else
abort ();
}
} [add_options_for_ieee "-std=gnu99"]]
}
proc check_effective_target_tiny {} {
return [check_cached_effective_target tiny {
if { [istarget aarch64*-*-*]
&& [check_effective_target_aarch64_tiny] } {
return 1
}
if { [istarget avr-*-*]
&& [check_effective_target_avr_tiny] } {
return 1
}
return 0
}]
}
# Return 1 if the target supports -mbranch-cost=N option.
proc check_effective_target_branch_cost {} {
if { [ istarget arm*-*-*]
|| [istarget avr*-*-*]
|| [istarget csky*-*-*]
|| [istarget epiphany*-*-*]
|| [istarget frv*-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*]
|| [istarget mips*-*-*]
|| [istarget s390*-*-*]
|| [istarget riscv*-*-*]
|| [istarget sh*-*-*]
|| [istarget spu*-*-*] } {
return 1
}
return 0
}
# Record that dg-final test TEST requires convential compilation.
proc force_conventional_output_for { test } {
if { [info proc $test] == "" } {
perror "$test does not exist"
exit 1
}
proc ${test}_required_options {} {
global gcc_force_conventional_output
upvar 1 extra_tool_flags extra_tool_flags
if {[regexp -- "^scan-assembler" [info level 0]]
&& ![string match "*-fident*" $extra_tool_flags]} {
# Do not let .ident confuse assembler scan tests
return [list $gcc_force_conventional_output "-fno-ident"]
}
return $gcc_force_conventional_output
}
}
# Record that dg-final test scan-ltrans-tree-dump* requires -flto-partition=one
# in order to force a single partition, allowing scan-ltrans-tree-dump* to scan
# a dump file *.exe.ltrans0.*.
proc scan-ltrans-tree-dump_required_options {} {
return "-flto-partition=one"
}
proc scan-ltrans-tree-dump-times_required_options {} {
return "-flto-partition=one"
}
proc scan-ltrans-tree-dump-not_required_options {} {
return "-flto-partition=one"
}
proc scan-ltrans-tree-dump-dem_required_options {} {
return "-flto-partition=one"
}
proc scan-ltrans-tree-dump-dem-not_required_options {} {
return "-flto-partition=one"
}
# Return 1 if the x86-64 target supports PIE with copy reloc, 0
# otherwise. Cache the result.
proc check_effective_target_pie_copyreloc { } {
global tool
global GCC_UNDER_TEST
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
return 0
}
# Need auto-host.h to check linker support.
if { ![file exists ../../auto-host.h ] } {
return 0
}
return [check_cached_effective_target pie_copyreloc {
# Set up and compile to see if linker supports PIE with copy
# reloc. Include the current process ID in the file names to
# prevent conflicts with invocations for multiple testsuites.
set src pie[pid].c
set obj pie[pid].o
set f [open $src "w"]
puts $f "#include \"../../auto-host.h\""
puts $f "#if HAVE_LD_PIE_COPYRELOC == 0"
puts $f "# error Linker does not support PIE with copy reloc."
puts $f "#endif"
close $f
verbose "check_effective_target_pie_copyreloc compiling testfile $src" 2
set lines [${tool}_target_compile $src $obj object ""]
file delete $src
file delete $obj
if [string match "" $lines] then {
verbose "check_effective_target_pie_copyreloc testfile compilation passed" 2
return 1
} else {
verbose "check_effective_target_pie_copyreloc testfile compilation failed" 2
return 0
}
}]
}
# Return 1 if the x86 target supports R_386_GOT32X relocation, 0
# otherwise. Cache the result.
proc check_effective_target_got32x_reloc { } {
global tool
global GCC_UNDER_TEST
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
return 0
}
# Need auto-host.h to check linker support.
if { ![file exists ../../auto-host.h ] } {
return 0
}
return [check_cached_effective_target got32x_reloc {
# Include the current process ID in the file names to prevent
# conflicts with invocations for multiple testsuites.
set src got32x[pid].c
set obj got32x[pid].o
set f [open $src "w"]
puts $f "#include \"../../auto-host.h\""
puts $f "#if HAVE_AS_IX86_GOT32X == 0"
puts $f "# error Assembler does not support R_386_GOT32X."
puts $f "#endif"
close $f
verbose "check_effective_target_got32x_reloc compiling testfile $src" 2
set lines [${tool}_target_compile $src $obj object ""]
file delete $src
file delete $obj
if [string match "" $lines] then {
verbose "check_effective_target_got32x_reloc testfile compilation passed" 2
return 1
} else {
verbose "check_effective_target_got32x_reloc testfile compilation failed" 2
return 0
}
}]
return $got32x_reloc_available_saved
}
# Return 1 if the x86 target supports calling ___tls_get_addr via GOT,
# 0 otherwise. Cache the result.
proc check_effective_target_tls_get_addr_via_got { } {
global tool
global GCC_UNDER_TEST
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
return 0
}
# Need auto-host.h to check linker support.
if { ![file exists ../../auto-host.h ] } {
return 0
}
return [check_cached_effective_target tls_get_addr_via_got {
# Include the current process ID in the file names to prevent
# conflicts with invocations for multiple testsuites.
set src tls_get_addr_via_got[pid].c
set obj tls_get_addr_via_got[pid].o
set f [open $src "w"]
puts $f "#include \"../../auto-host.h\""
puts $f "#if HAVE_AS_IX86_TLS_GET_ADDR_GOT == 0"
puts $f "# error Assembler/linker do not support calling ___tls_get_addr via GOT."
puts $f "#endif"
close $f
verbose "check_effective_target_tls_get_addr_via_got compiling testfile $src" 2
set lines [${tool}_target_compile $src $obj object ""]
file delete $src
file delete $obj
if [string match "" $lines] then {
verbose "check_effective_target_tls_get_addr_via_got testfile compilation passed" 2
return 1
} else {
verbose "check_effective_target_tls_get_addr_via_got testfile compilation failed" 2
return 0
}
}]
}
# Return 1 if the target uses comdat groups.
proc check_effective_target_comdat_group {} {
return [check_no_messages_and_pattern comdat_group "\.section\[^\n\r]*,comdat|\.group\[^\n\r]*,#comdat" assembly {
// C++
inline int foo () { return 1; }
int (*fn) () = foo;
}]
}
# Return 1 if target supports __builtin_eh_return
proc check_effective_target_builtin_eh_return { } {
return [check_no_compiler_messages builtin_eh_return object {
void test (long l, void *p)
{
__builtin_eh_return (l, p);
}
} "" ]
}
# Return 1 if the target supports max reduction for vectors.
proc check_effective_target_vect_max_reduc { } {
if { [istarget aarch64*-*-*] || [is-effective-target arm_neon] } {
return 1
}
return 0
}
# Return 1 if there is an nvptx offload compiler.
proc check_effective_target_offload_nvptx { } {
return [check_no_compiler_messages offload_nvptx object {
int main () {return 0;}
} "-foffload=nvptx-none" ]
}
# Return 1 if the compiler has been configured with hsa offloading.
proc check_effective_target_offload_hsa { } {
return [check_no_compiler_messages offload_hsa assembly {
int main () {return 0;}
} "-foffload=hsa" ]
}
# Return 1 if the target support -fprofile-update=atomic
proc check_effective_target_profile_update_atomic {} {
return [check_no_compiler_messages profile_update_atomic assembly {
int main (void) { return 0; }
} "-fprofile-update=atomic -fprofile-generate"]
}
# Return 1 if vector (va - vector add) instructions are understood by
# the assembler and can be executed. This also covers checking for
# the VX kernel feature. A kernel without that feature does not
# enable the vector facility and the following check will die with a
# signal.
proc check_effective_target_s390_vx { } {
if ![istarget s390*-*-*] then {
return 0;
}
return [check_runtime s390_check_vx {
int main (void)
{
asm ("va %%v24, %%v26, %%v28, 3" : : : "v24", "v26", "v28");
return 0;
}
} "-march=z13 -mzarch" ]
}
# Same as above but for the z14 vector enhancement facility. Test
# is performed with the vector nand instruction.
proc check_effective_target_s390_vxe { } {
if ![istarget s390*-*-*] then {
return 0;
}
return [check_runtime s390_check_vxe {
int main (void)
{
asm ("vnn %%v24, %%v26, %%v28" : : : "v24", "v26", "v28");
return 0;
}
} "-march=z14 -mzarch" ]
}
#For versions of ARM architectures that have hardware div insn,
#disable the divmod transform
proc check_effective_target_arm_divmod_simode { } {
return [check_no_compiler_messages arm_divmod assembly {
#ifdef __ARM_ARCH_EXT_IDIV__
#error has div insn
#endif
int i;
}]
}
# Return 1 if target supports divmod hardware insn or divmod libcall.
proc check_effective_target_divmod { } {
#TODO: Add checks for all targets that have either hardware divmod insn
# or define libfunc for divmod.
if { [istarget arm*-*-*]
|| [istarget i?86-*-*] || [istarget x86_64-*-*] } {
return 1
}
return 0
}
# Return 1 if target supports divmod for SImode. The reason for
# separating this from check_effective_target_divmod is that
# some versions of ARM architecture define div instruction
# only for simode, and for these archs, we do not want to enable
# divmod transform for simode.
proc check_effective_target_divmod_simode { } {
if { [istarget arm*-*-*] } {
return [check_effective_target_arm_divmod_simode]
}
return [check_effective_target_divmod]
}
# Return 1 if store merging optimization is applicable for target.
# Store merging is not profitable for targets like the avr which
# can load/store only one byte at a time. Use int size as a proxy
# for the number of bytes the target can write, and skip for targets
# with a smallish (< 32) size.
proc check_effective_target_store_merge { } {
if { [is-effective-target non_strict_align ] && [is-effective-target int32plus] } {
return 1
}
return 0
}
# Return 1 if we're able to assemble rdrand
proc check_effective_target_rdrand { } {
return [check_no_compiler_messages_nocache rdrand object {
unsigned int
__foo(void)
{
unsigned int val;
__builtin_ia32_rdrand32_step(&val);
return val;
}
} "-mrdrnd" ]
}
# Return 1 if the target supports coprocessor instructions: cdp, ldc, ldcl,
# stc, stcl, mcr and mrc.
proc check_effective_target_arm_coproc1_ok_nocache { } {
if { ![istarget arm*-*-*] } {
return 0
}
return [check_no_compiler_messages_nocache arm_coproc1_ok assembly {
#if (__thumb__ && !__thumb2__) || __ARM_ARCH < 4
#error FOO
#endif
}]
}
proc check_effective_target_arm_coproc1_ok { } {
return [check_cached_effective_target arm_coproc1_ok \
check_effective_target_arm_coproc1_ok_nocache]
}
# Return 1 if the target supports all coprocessor instructions checked by
# check_effective_target_arm_coproc1_ok in addition to the following: cdp2,
# ldc2, ldc2l, stc2, stc2l, mcr2 and mrc2.
proc check_effective_target_arm_coproc2_ok_nocache { } {
if { ![check_effective_target_arm_coproc1_ok] } {
return 0
}
return [check_no_compiler_messages_nocache arm_coproc2_ok assembly {
#if (__thumb__ && !__thumb2__) || __ARM_ARCH < 5
#error FOO
#endif
}]
}
proc check_effective_target_arm_coproc2_ok { } {
return [check_cached_effective_target arm_coproc2_ok \
check_effective_target_arm_coproc2_ok_nocache]
}
# Return 1 if the target supports all coprocessor instructions checked by
# check_effective_target_arm_coproc2_ok in addition the following: mcrr and
# mrrc.
proc check_effective_target_arm_coproc3_ok_nocache { } {
if { ![check_effective_target_arm_coproc2_ok] } {
return 0
}
return [check_no_compiler_messages_nocache arm_coproc3_ok assembly {
#if (__thumb__ && !__thumb2__) \
|| (__ARM_ARCH < 6 && !defined (__ARM_ARCH_5TE__))
#error FOO
#endif
}]
}
proc check_effective_target_arm_coproc3_ok { } {
return [check_cached_effective_target arm_coproc3_ok \
check_effective_target_arm_coproc3_ok_nocache]
}
# Return 1 if the target supports all coprocessor instructions checked by
# check_effective_target_arm_coproc3_ok in addition the following: mcrr2 and
# mrcc2.
proc check_effective_target_arm_coproc4_ok_nocache { } {
if { ![check_effective_target_arm_coproc3_ok] } {
return 0
}
return [check_no_compiler_messages_nocache arm_coproc4_ok assembly {
#if (__thumb__ && !__thumb2__) || __ARM_ARCH < 6
#error FOO
#endif
}]
}
proc check_effective_target_arm_coproc4_ok { } {
return [check_cached_effective_target arm_coproc4_ok \
check_effective_target_arm_coproc4_ok_nocache]
}
# Return 1 if the target supports the auto_inc_dec optimization pass.
proc check_effective_target_autoincdec { } {
if { ![check_no_compiler_messages auto_incdec assembly { void f () { }
} "-O2 -fdump-rtl-auto_inc_dec" ] } {
return 0
}
set dumpfile [glob -nocomplain "auto_incdec[pid].c.\[0-9\]\[0-9\]\[0-9\]r.auto_inc_dec"]
if { [file exists $dumpfile ] } {
file delete $dumpfile
return 1
}
return 0
}
# Return 1 if the target has support for stack probing designed
# to avoid stack-clash style attacks.
#
# This is used to restrict the stack-clash mitigation tests to
# just those targets that have been explicitly supported.
#
# In addition to the prologue work on those targets, each target's
# properties should be described in the functions below so that
# tests do not become a mess of unreadable target conditions.
#
proc check_effective_target_supports_stack_clash_protection { } {
if { [istarget x86_64-*-*] || [istarget i?86-*-*]
|| [istarget powerpc*-*-*] || [istarget rs6000*-*-*]
|| [istarget aarch64*-**] || [istarget s390*-*-*] } {
return 1
}
return 0
}
# Return 1 if the target creates a frame pointer for non-leaf functions
# Note we ignore cases where we apply tail call optimization here.
proc check_effective_target_frame_pointer_for_non_leaf { } {
# Solaris/x86 defaults to -fno-omit-frame-pointer.
if { [istarget i?86-*-solaris*] || [istarget x86_64-*-solaris*] } {
return 1
}
return 0
}
# Return 1 if the target's calling sequence or its ABI
# create implicit stack probes at or prior to function entry.
proc check_effective_target_caller_implicit_probes { } {
# On x86/x86_64 the call instruction itself pushes the return
# address onto the stack. That is an implicit probe of *sp.
if { [istarget x86_64-*-*] || [istarget i?86-*-*] } {
return 1
}
# On PPC, the ABI mandates that the address of the outer
# frame be stored at *sp. Thus each allocation of stack
# space is itself an implicit probe of *sp.
if { [istarget powerpc*-*-*] || [istarget rs6000*-*-*] } {
return 1
}
# s390's ABI has a register save area allocated by the
# caller for use by the callee. The mere existence does
# not constitute a probe by the caller, but when the slots
# used by the callee those stores are implicit probes.
if { [istarget s390*-*-*] } {
return 1
}
# Not strictly true on aarch64, but we have agreed that we will
# consider any function that pushes SP more than 3kbytes into
# the guard page as broken. This essentially means that we can
# consider the aarch64 as having a caller implicit probe at
# *(sp + 1k).
if { [istarget aarch64*-*-*] } {
return 1;
}
return 0
}
# Targets that potentially realign the stack pointer often cause residual
# stack allocations and make it difficult to elimination loops or residual
# allocations for dynamic stack allocations
proc check_effective_target_callee_realigns_stack { } {
if { [istarget x86_64-*-*] || [istarget i?86-*-*] } {
return 1
}
return 0
}
# Return 1 if CET instructions can be compiled.
proc check_effective_target_cet { } {
if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
return 0
}
return [check_no_compiler_messages cet object {
void foo (void)
{
asm ("setssbsy");
}
} "-O2" ]
}
# Return 1 if target supports floating point "infinite"
proc check_effective_target_inf { } {
return [check_no_compiler_messages supports_inf assembly {
const double pinf = __builtin_inf ();
}]
}