# Copyright (C) 1999-2019 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GCC; see the file COPYING3. If not see # . # Please email any bugs, comments, and/or additions to this file to: # gcc-patches@gcc.gnu.org # This file defines procs for determining features supported by the target. # Try to compile the code given by CONTENTS into an output file of # type TYPE, where TYPE is as for target_compile. Return a list # whose first element contains the compiler messages and whose # second element is the name of the output file. # # BASENAME is a prefix to use for source and output files. # If ARGS is not empty, its first element is a string that # should be added to the command line. # # Assume by default that CONTENTS is C code. # Otherwise, code should contain: # "// C++" for c++, # "// D" for D, # "! Fortran" for Fortran code, # "/* ObjC", for ObjC # "// ObjC++" for ObjC++ # and "// Go" for Go # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to # allow for ObjC/ObjC++ specific flags. proc check_compile {basename type contents args} { global tool verbose "check_compile tool: $tool for $basename" # Save additional_sources to avoid compiling testsuite's sources # against check_compile's source. global additional_sources if [info exists additional_sources] { set tmp_additional_sources "$additional_sources" set additional_sources "" } if { [llength $args] > 0 } { set options [list "additional_flags=[lindex $args 0]"] } else { set options "" } switch -glob -- $contents { "*! Fortran*" { set src ${basename}[pid].f90 } "*// C++*" { set src ${basename}[pid].cc } "*// D*" { set src ${basename}[pid].d } "*// ObjC++*" { set src ${basename}[pid].mm } "*/* ObjC*" { set src ${basename}[pid].m } "*// Go*" { set src ${basename}[pid].go } default { switch -- $tool { "objc" { set src ${basename}[pid].m } "obj-c++" { set src ${basename}[pid].mm } default { set src ${basename}[pid].c } } } } set compile_type $type switch -glob $type { assembly { set output ${basename}[pid].s } object { set output ${basename}[pid].o } executable { set output ${basename}[pid].exe } "rtl-*" { set output ${basename}[pid].s lappend options "additional_flags=-fdump-$type" set compile_type assembly } } set f [open $src "w"] puts $f $contents close $f set lines [${tool}_target_compile $src $output $compile_type "$options"] file delete $src set scan_output $output # Don't try folding this into the switch above; calling "glob" before the # file is created won't work. if [regexp "rtl-(.*)" $type dummy rtl_type] { set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]" file delete $output } # Restore additional_sources. if [info exists additional_sources] { set additional_sources "$tmp_additional_sources" } return [list $lines $scan_output] } proc current_target_name { } { global target_info if [info exists target_info(target,name)] { set answer $target_info(target,name) } else { set answer "" } return $answer } # Implement an effective-target check for property PROP by invoking # the Tcl command ARGS and seeing if it returns true. proc check_cached_effective_target { prop args } { global et_cache set target [current_target_name] if {![info exists et_cache($prop,$target)]} { verbose "check_cached_effective_target $prop: checking $target" 2 if {[string is true -strict $args] || [string is false -strict $args]} { error {check_cached_effective_target condition already evaluated; did you pass [...] instead of the expected {...}?} } else { set code [catch {uplevel eval $args} result] if {$code != 0 && $code != 2} { return -code $code $result } set et_cache($prop,$target) $result } } set value $et_cache($prop,$target) verbose "check_cached_effective_target $prop: returning $value for $target" 2 return $value } # Implements a version of check_cached_effective_target that also takes et_index # into account when creating the key for the cache. proc check_cached_effective_target_indexed { prop args } { global et_index set key "$et_index $prop" verbose "check_cached_effective_target_index $prop: returning $key" 2 return [check_cached_effective_target $key [list uplevel eval $args]] } # Clear effective-target cache. This is useful after testing # effective-target features and overriding TEST_ALWAYS_FLAGS and/or # ALWAYS_CXXFLAGS. # If one changes ALWAYS_CXXFLAGS or TEST_ALWAYS_FLAGS then they should # do a clear_effective_target_cache at the end as the target cache can # make decisions based upon the flags, and those decisions need to be # redone when the flags change. An example of this is the # asan_init/asan_finish pair. proc clear_effective_target_cache { } { global et_cache array unset et_cache } # Like check_compile, but delete the output file and return true if the # compiler printed no messages. proc check_no_compiler_messages_nocache {args} { set result [eval check_compile $args] set lines [lindex $result 0] set output [lindex $result 1] remote_file build delete $output return [string match "" $lines] } # Like check_no_compiler_messages_nocache, but cache the result. # PROP is the property we're checking, and doubles as a prefix for # temporary filenames. proc check_no_compiler_messages {prop args} { return [check_cached_effective_target $prop { eval [list check_no_compiler_messages_nocache $prop] $args }] } # Like check_compile, but return true if the compiler printed no # messages and if the contents of the output file satisfy PATTERN. # If PATTERN has the form "!REGEXP", the contents satisfy it if they # don't match regular expression REGEXP, otherwise they satisfy it # if they do match regular expression PATTERN. (PATTERN can start # with something like "[!]" if the regular expression needs to match # "!" as the first character.) # # Delete the output file before returning. The other arguments are # as for check_compile. proc check_no_messages_and_pattern_nocache {basename pattern args} { global tool set result [eval [list check_compile $basename] $args] set lines [lindex $result 0] set output [lindex $result 1] set ok 0 if { [string match "" $lines] } { set chan [open "$output"] set invert [regexp {^!(.*)} $pattern dummy pattern] set ok [expr { [regexp $pattern [read $chan]] != $invert }] close $chan } remote_file build delete $output return $ok } # Like check_no_messages_and_pattern_nocache, but cache the result. # PROP is the property we're checking, and doubles as a prefix for # temporary filenames. proc check_no_messages_and_pattern {prop pattern args} { return [check_cached_effective_target $prop { eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args }] } # Try to compile and run an executable from code CONTENTS. Return true # if the compiler reports no messages and if execution "passes" in the # usual DejaGNU sense. The arguments are as for check_compile, with # TYPE implicitly being "executable". proc check_runtime_nocache {basename contents args} { global tool set result [eval [list check_compile $basename executable $contents] $args] set lines [lindex $result 0] set output [lindex $result 1] set ok 0 if { [string match "" $lines] } { # No error messages, everything is OK. set result [remote_load target "./$output" "" ""] set status [lindex $result 0] verbose "check_runtime_nocache $basename: status is <$status>" 2 if { $status == "pass" } { set ok 1 } } remote_file build delete $output return $ok } # Like check_runtime_nocache, but cache the result. PROP is the # property we're checking, and doubles as a prefix for temporary # filenames. proc check_runtime {prop args} { global tool return [check_cached_effective_target $prop { eval [list check_runtime_nocache $prop] $args }] } # Return 1 if GCC was configured with $pattern. proc check_configured_with { pattern } { global tool set gcc_output [${tool}_target_compile "-v" "" "none" ""] if { [ regexp "Configured with: \[^\n\]*$pattern" $gcc_output ] } { verbose "Matched: $pattern" 2 return 1 } verbose "Failed to match: $pattern" 2 return 0 } ############################### # proc check_weak_available { } ############################### # weak symbols are only supported in some configs/object formats # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure proc check_weak_available { } { global target_cpu # All mips targets should support it if { [ string first "mips" $target_cpu ] >= 0 } { return 1 } # All AIX targets should support it if { [istarget *-*-aix*] } { return 1 } # All solaris2 targets should support it if { [istarget *-*-solaris2*] } { return 1 } # Windows targets Cygwin and MingW32 support it if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } { return 1 } # HP-UX 10.X doesn't support it if { [istarget hppa*-*-hpux10*] } { return 0 } # nvptx (nearly) supports it if { [istarget nvptx-*-*] } { return 1 } # pdp11 doesn't support it if { [istarget pdp11*-*-*] } { return 0 } # ELF and ECOFF support it. a.out does with gas/gld but may also with # other linkers, so we should try it set objformat [gcc_target_object_format] switch $objformat { elf { return 1 } ecoff { return 1 } a.out { return 1 } mach-o { return 1 } som { return 1 } unknown { return -1 } default { return 0 } } } # return 1 if weak undefined symbols are supported. proc check_effective_target_weak_undefined { } { return [check_runtime weak_undefined { extern void foo () __attribute__((weak)); int main (void) { if (foo) return 1; return 0; } } ""] } ############################### # proc check_weak_override_available { } ############################### # Like check_weak_available, but return 0 if weak symbol definitions # cannot be overridden. proc check_weak_override_available { } { if { [istarget *-*-mingw*] } { return 0 } return [check_weak_available] } ############################### # proc check_visibility_available { what_kind } ############################### # The visibility attribute is only support in some object formats # This proc returns 1 if it is supported, 0 if not. # The argument is the kind of visibility, default/protected/hidden/internal. proc check_visibility_available { what_kind } { if [string match "" $what_kind] { set what_kind "hidden" } return [check_no_compiler_messages visibility_available_$what_kind object " void f() __attribute__((visibility(\"$what_kind\"))); void f() {} "] } ############################### # proc check_alias_available { } ############################### # Determine if the target toolchain supports the alias attribute. # Returns 2 if the target supports aliases. Returns 1 if the target # only supports weak aliased. Returns 0 if the target does not # support aliases at all. Returns -1 if support for aliases could not # be determined. proc check_alias_available { } { global tool return [check_cached_effective_target alias_available { set src alias[pid].c set obj alias[pid].o verbose "check_alias_available compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. The definition of "g" is # necessary to keep the Solaris assembler from complaining # about the program. puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n" puts $f "void g() {} void f() __attribute__((alias(\"g\")));" close $f set lines [${tool}_target_compile $src $obj object ""] file delete $src remote_file build delete $obj if [string match "" $lines] then { # No error messages, everything is OK. return 2 } else { if [regexp "alias definitions not supported" $lines] { verbose "check_alias_available target does not support aliases" 2 set objformat [gcc_target_object_format] if { $objformat == "elf" } { verbose "check_alias_available but target uses ELF format, so it ought to" 2 return -1 } else { return 0 } } else { if [regexp "only weak aliases are supported" $lines] { verbose "check_alias_available target supports only weak aliases" 2 return 1 } else { return -1 } } } }] } # Returns 1 if the target toolchain supports strong aliases, 0 otherwise. proc check_effective_target_alias { } { if { [check_alias_available] < 2 } { return 0 } else { return 1 } } # Returns 1 if the target toolchain supports ifunc, 0 otherwise. proc check_ifunc_available { } { return [check_no_compiler_messages ifunc_available object { #ifdef __cplusplus extern "C" { #endif extern void f_ (); typedef void F (void); F* g (void) { return &f_; } void f () __attribute__ ((ifunc ("g"))); #ifdef __cplusplus } #endif }] } # Returns true if --gc-sections is supported on the target. proc check_gc_sections_available { } { global tool return [check_cached_effective_target gc_sections_available { # Some targets don't support gc-sections despite whatever's # advertised by ld's options. if { [istarget alpha*-*-*] || [istarget ia64-*-*] } { return 0 } # elf2flt uses -q (--emit-relocs), which is incompatible with # --gc-sections. if { [board_info target exists ldflags] && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } { return 0 } # VxWorks kernel modules are relocatable objects linked with -r, # while RTP executables are linked with -q (--emit-relocs). # Both of these options are incompatible with --gc-sections. if { [istarget *-*-vxworks*] } { return 0 } # Check if the ld used by gcc supports --gc-sections. set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0] set ld_output [remote_exec host "$gcc_ld" "--help"] if { [ string first "--gc-sections" $ld_output ] >= 0 } { return 1 } else { return 0 } }] } # Return 1 if according to target_info struct and explicit target list # target is supposed to support trampolines. proc check_effective_target_trampolines { } { if [target_info exists gcc,no_trampolines] { return 0 } if { [istarget avr-*-*] || [istarget msp430-*-*] || [istarget nvptx-*-*] || [istarget hppa2.0w-hp-hpux11.23] || [istarget hppa64-hp-hpux11.23] } { return 0; } return 1 } # Return 1 if target has limited stack size. proc check_effective_target_stack_size { } { if [target_info exists gcc,stack_size] { return 1 } return 0 } # Return the value attribute of an effective target, otherwise return 0. proc dg-effective-target-value { effective_target } { if { "$effective_target" == "stack_size" } { if [check_effective_target_stack_size] { return [target_info gcc,stack_size] } } return 0 } # Return 1 if signal.h is supported. proc check_effective_target_signal { } { if [target_info exists gcc,signal_suppress] { return 0 } return 1 } # Return 1 if according to target_info struct and explicit target list # target disables -fdelete-null-pointer-checks. Targets should return 0 # if they simply default to -fno-delete-null-pointer-checks but obey # -fdelete-null-pointer-checks when passed explicitly (and tests that # depend on this option should do that). proc check_effective_target_keeps_null_pointer_checks { } { if [target_info exists keeps_null_pointer_checks] { return 1 } if { [istarget msp430-*-*] } { return 1; } return 0 } # Return the autofdo profile wrapper # Linux by default allows 516KB of perf event buffers # in /proc/sys/kernel/perf_event_mlock_kb # Each individual perf tries to grab it # This causes problems with parallel test suite runs. Instead # limit us to 8 pages (32K), which should be good enough # for the small test programs. With the default settings # this allows parallelism of 16 and higher of parallel gcc-auto-profile proc profopt-perf-wrapper { } { global srcdir return "$srcdir/../config/i386/gcc-auto-profile -o perf.data -m8 " } # Return true if profiling is supported on the target. proc check_profiling_available { test_what } { verbose "Profiling argument is <$test_what>" 1 # These conditions depend on the argument so examine them before # looking at the cache variable. # Tree profiling requires TLS runtime support. if { $test_what == "-fprofile-generate" } { if { ![check_effective_target_tls_runtime] } { return 0 } } if { $test_what == "-fauto-profile" } { if { !([istarget i?86-*-linux*] || [istarget x86_64-*-linux*]) } { verbose "autofdo only supported on linux" return 0 } # not cross compiling? if { ![isnative] } { verbose "autofdo not supported for non native builds" return 0 } set event [profopt-perf-wrapper] if {$event == "" } { verbose "autofdo not supported" return 0 } global srcdir set status [remote_exec host "$srcdir/../config/i386/gcc-auto-profile" "true -v >/dev/null"] if { [lindex $status 0] != 0 } { verbose "autofdo not supported because perf does not work" return 0 } # no good way to check this in advance -- check later instead. #set status [remote_exec host "create_gcov" "2>/dev/null"] #if { [lindex $status 0] != 255 } { # verbose "autofdo not supported due to missing create_gcov" # return 0 #} } # Support for -p on solaris2 relies on mcrt1.o which comes with the # vendor compiler. We cannot reliably predict the directory where the # vendor compiler (and thus mcrt1.o) is installed so we can't # necessarily find mcrt1.o even if we have it. if { [istarget *-*-solaris2*] && $test_what == "-p" } { return 0 } # We don't yet support profiling for MIPS16. if { [istarget mips*-*-*] && ![check_effective_target_nomips16] && ($test_what == "-p" || $test_what == "-pg") } { return 0 } # MinGW does not support -p. if { [istarget *-*-mingw*] && $test_what == "-p" } { return 0 } # cygwin does not support -p. if { [istarget *-*-cygwin*] && $test_what == "-p" } { return 0 } # uClibc does not have gcrt1.o. if { [check_effective_target_uclibc] && ($test_what == "-p" || $test_what == "-pg") } { return 0 } # Now examine the cache variable. set profiling_working \ [check_cached_effective_target profiling_available { # Some targets don't have any implementation of __bb_init_func or are # missing other needed machinery. if {[istarget aarch64*-*-elf] || [istarget am3*-*-linux*] || [istarget arm*-*-eabi*] || [istarget arm*-*-elf] || [istarget arm*-*-symbianelf*] || [istarget avr-*-*] || [istarget bfin-*-*] || [istarget cris-*-*] || [istarget crisv32-*-*] || [istarget csky-*-elf] || [istarget fido-*-elf] || [istarget h8300-*-*] || [istarget lm32-*-*] || [istarget m32c-*-elf] || [istarget m68k-*-elf] || [istarget m68k-*-uclinux*] || [istarget mips*-*-elf*] || [istarget mmix-*-*] || [istarget mn10300-*-elf*] || [istarget moxie-*-elf*] || [istarget msp430-*-*] || [istarget nds32*-*-elf] || [istarget nios2-*-elf] || [istarget nvptx-*-*] || [istarget powerpc-*-eabi*] || [istarget powerpc-*-elf] || [istarget rx-*-*] || [istarget tic6x-*-elf] || [istarget visium-*-*] || [istarget xstormy16-*] || [istarget xtensa*-*-elf] || [istarget *-*-rtems*] || [istarget *-*-vxworks*] } { return 0 } else { return 1 } }] # -pg link test result can't be cached since it may change between # runs. if { $profiling_working == 1 && ![check_no_compiler_messages_nocache profiling executable { int main() { return 0; } } "-pg"] } { set profiling_working 0 } return $profiling_working } # Check to see if a target is "freestanding". This is as per the definition # in Section 4 of C99 standard. Effectively, it is a target which supports no # extra headers or libraries other than what is considered essential. proc check_effective_target_freestanding { } { if { [istarget nvptx-*-*] } { return 1 } return 0 } # Return 1 if target has packed layout of structure members by # default, 0 otherwise. Note that this is slightly different than # whether the target has "natural alignment": both attributes may be # false. proc check_effective_target_default_packed { } { return [check_no_compiler_messages default_packed assembly { struct x { char a; long b; } c; int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1]; }] } # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See # documentation, where the test also comes from. proc check_effective_target_pcc_bitfield_type_matters { } { # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty # bitfields, but let's stick to the example code from the docs. return [check_no_compiler_messages pcc_bitfield_type_matters assembly { struct foo1 { char x; char :0; char y; }; struct foo2 { char x; int :0; char y; }; int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1]; }] } # Add to FLAGS all the target-specific flags needed to use thread-local storage. proc add_options_for_tls { flags } { # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in # libthread, so always pass -pthread for native TLS. Same for AIX. # Need to duplicate native TLS check from # check_effective_target_tls_native to avoid recursion. if { ([istarget powerpc-ibm-aix*]) && [check_no_messages_and_pattern tls_native "!emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } { return "-pthread [g++_link_flags [get_multilibs "-pthread"] ] $flags " } return $flags } # Return 1 if indirect jumps are supported, 0 otherwise. proc check_effective_target_indirect_jumps {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if nonlocal goto is supported, 0 otherwise. proc check_effective_target_nonlocal_goto {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if global constructors are supported, 0 otherwise. proc check_effective_target_global_constructor {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if taking label values is supported, 0 otherwise. proc check_effective_target_label_values {} { if { [istarget nvptx-*-*] || [target_info exists gcc,no_label_values] } { return 0 } return 1 } # Return 1 if builtin_return_address and builtin_frame_address are # supported, 0 otherwise. proc check_effective_target_return_address {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if the assembler does not verify function types against # calls, 0 otherwise. Such verification will typically show up problems # with K&R C function declarations. proc check_effective_target_untyped_assembly {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if alloca is supported, 0 otherwise. proc check_effective_target_alloca {} { if { [istarget nvptx-*-*] } { return [check_no_compiler_messages alloca assembly { void f (void*); void g (int n) { f (__builtin_alloca (n)); } }] } return 1 } # Return 1 if thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls {} { return [check_no_compiler_messages tls assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls_native {} { # VxWorks uses emulated TLS machinery, but with non-standard helper # functions, so we fail to automatically detect it. if { [istarget *-*-vxworks*] } { return 0 } return [check_no_messages_and_pattern tls_native "!emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls_emulated {} { # VxWorks uses emulated TLS machinery, but with non-standard helper # functions, so we fail to automatically detect it. if { [istarget *-*-vxworks*] } { return 1 } return [check_no_messages_and_pattern tls_emulated "emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if TLS executables can run correctly, 0 otherwise. proc check_effective_target_tls_runtime {} { return [check_runtime tls_runtime { __thread int thr __attribute__((tls_model("global-dynamic"))) = 0; int main (void) { return thr; } } [add_options_for_tls ""]] } # Return 1 if atomic compare-and-swap is supported on 'int' proc check_effective_target_cas_char {} { return [check_no_compiler_messages cas_char assembly { #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1 #error unsupported #endif } ""] } proc check_effective_target_cas_int {} { return [check_no_compiler_messages cas_int assembly { #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 /* ok */ #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 /* ok */ #else #error unsupported #endif } ""] } # Return 1 if -ffunction-sections is supported, 0 otherwise. proc check_effective_target_function_sections {} { # Darwin has its own scheme and silently accepts -ffunction-sections. if { [istarget *-*-darwin*] } { return 0 } return [check_no_compiler_messages functionsections assembly { void foo (void) { } } "-ffunction-sections"] } # Return 1 if instruction scheduling is available, 0 otherwise. proc check_effective_target_scheduling {} { return [check_no_compiler_messages scheduling object { void foo (void) { } } "-fschedule-insns"] } # Return 1 if trapping arithmetic is available, 0 otherwise. proc check_effective_target_trapping {} { return [check_no_compiler_messages trapping object { int add (int a, int b) { return a + b; } } "-ftrapv"] } # Return 1 if compilation with -fgraphite is error-free for trivial # code, 0 otherwise. proc check_effective_target_fgraphite {} { return [check_no_compiler_messages fgraphite object { void foo (void) { } } "-O1 -fgraphite"] } # Return 1 if compilation with -fopenacc is error-free for trivial # code, 0 otherwise. proc check_effective_target_fopenacc {} { # nvptx can be built with the device-side bits of openacc, but it # does not make sense to test it as an openacc host. if [istarget nvptx-*-*] { return 0 } return [check_no_compiler_messages fopenacc object { void foo (void) { } } "-fopenacc"] } # Return 1 if compilation with -fopenmp is error-free for trivial # code, 0 otherwise. proc check_effective_target_fopenmp {} { # nvptx can be built with the device-side bits of libgomp, but it # does not make sense to test it as an openmp host. if [istarget nvptx-*-*] { return 0 } return [check_no_compiler_messages fopenmp object { void foo (void) { } } "-fopenmp"] } # Return 1 if compilation with -fgnu-tm is error-free for trivial # code, 0 otherwise. proc check_effective_target_fgnu_tm {} { return [check_no_compiler_messages fgnu_tm object { void foo (void) { } } "-fgnu-tm"] } # Return 1 if the target supports mmap, 0 otherwise. proc check_effective_target_mmap {} { return [check_function_available "mmap"] } # Return 1 if the target supports dlopen, 0 otherwise. proc check_effective_target_dlopen {} { return [check_no_compiler_messages dlopen executable { #include int main(void) { dlopen ("dummy.so", RTLD_NOW); } } [add_options_for_dlopen ""]] } proc add_options_for_dlopen { flags } { return "$flags -ldl" } # Return 1 if the target supports clone, 0 otherwise. proc check_effective_target_clone {} { return [check_function_available "clone"] } # Return 1 if the target supports setrlimit, 0 otherwise. proc check_effective_target_setrlimit {} { # Darwin has non-posix compliant RLIMIT_AS if { [istarget *-*-darwin*] } { return 0 } return [check_function_available "setrlimit"] } # Return 1 if the target supports gettimeofday, 0 otherwise. proc check_effective_target_gettimeofday {} { return [check_function_available "gettimeofday"] } # Return 1 if the target supports swapcontext, 0 otherwise. proc check_effective_target_swapcontext {} { return [check_no_compiler_messages swapcontext executable { #include int main (void) { ucontext_t orig_context,child_context; if (swapcontext(&child_context, &orig_context) < 0) { } } }] } # Return 1 if compilation with -pthread is error-free for trivial # code, 0 otherwise. proc check_effective_target_pthread {} { return [check_no_compiler_messages pthread object { void foo (void) { } } "-pthread"] } # Return 1 if compilation with -gstabs is error-free for trivial # code, 0 otherwise. proc check_effective_target_stabs {} { return [check_no_compiler_messages stabs object { void foo (void) { } } "-gstabs"] } # Return 1 if compilation with -mpe-aligned-commons is error-free # for trivial code, 0 otherwise. proc check_effective_target_pe_aligned_commons {} { if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } { return [check_no_compiler_messages pe_aligned_commons object { int foo; } "-mpe-aligned-commons"] } return 0 } # Return 1 if the target supports -static proc check_effective_target_static {} { return [check_no_compiler_messages static executable { int main (void) { return 0; } } "-static"] } # Return 1 if the target supports -fstack-protector proc check_effective_target_fstack_protector {} { return [check_runtime fstack_protector { #include int main (int argc, char *argv[]) { char buf[64]; return !strcpy (buf, strrchr (argv[0], '/')); } } "-fstack-protector"] } # Return 1 if the target supports -fstack-check or -fstack-check=$stack_kind proc check_stack_check_available { stack_kind } { if [string match "" $stack_kind] then { set stack_opt "-fstack-check" } else { set stack_opt "-fstack-check=$stack_kind" } return [check_no_compiler_messages stack_check_$stack_kind executable { int main (void) { return 0; } } "$stack_opt"] } # Return 1 if compilation with -freorder-blocks-and-partition is error-free # for trivial code, 0 otherwise. As some targets (ARM for example) only # warn when -fprofile-use is also supplied we test that combination too. proc check_effective_target_freorder {} { if { [check_no_compiler_messages freorder object { void foo (void) { } } "-freorder-blocks-and-partition"] && [check_no_compiler_messages fprofile_use_freorder object { void foo (void) { } } "-fprofile-use -freorder-blocks-and-partition -Wno-missing-profile"] } { return 1 } return 0 } # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors # emitted, 0 otherwise. Whether a shared library can actually be built is # out of scope for this test. proc check_effective_target_fpic { } { # Note that M68K has a multilib that supports -fpic but not # -fPIC, so we need to check both. We test with a program that # requires GOT references. foreach arg {fpic fPIC} { if [check_no_compiler_messages $arg object { extern int foo (void); extern int bar; int baz (void) { return foo () + bar; } } "-$arg"] { return 1 } } return 0 } # On AArch64, if -fpic is not supported, then we will fall back to -fPIC # silently. So, we can't rely on above "check_effective_target_fpic" as it # assumes compiler will give warning if -fpic not supported. Here we check # whether binutils supports those new -fpic relocation modifiers, and assume # -fpic is supported if there is binutils support. GCC configuration will # enable -fpic for AArch64 in this case. # # "check_effective_target_aarch64_small_fpic" is dedicated for checking small # memory model -fpic relocation types. proc check_effective_target_aarch64_small_fpic { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_small_fpic object { void foo (void) { asm ("ldr x0, [x2, #:gotpage_lo15:globalsym]"); } }] } else { return 0 } } # On AArch64, instruction sequence for TLS LE under -mtls-size=32 will utilize # the relocation modifier "tprel_g0_nc" together with MOVK, it's only supported # in binutils since 2015-03-04 as PR gas/17843. # # This test directive make sure binutils support all features needed by TLS LE # under -mtls-size=32 on AArch64. proc check_effective_target_aarch64_tlsle32 { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_tlsle32 object { void foo (void) { asm ("movk x1,#:tprel_g0_nc:t1"); } }] } else { return 0 } } # Return 1 if -shared is supported, as in no warnings or errors # emitted, 0 otherwise. proc check_effective_target_shared { } { # Note that M68K has a multilib that supports -fpic but not # -fPIC, so we need to check both. We test with a program that # requires GOT references. return [check_no_compiler_messages shared executable { extern int foo (void); extern int bar; int baz (void) { return foo () + bar; } } "-shared -fpic"] } # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise. proc check_effective_target_pie { } { if { [istarget *-*-darwin\[912\]*] || [istarget *-*-dragonfly*] || [istarget *-*-freebsd*] || [istarget *-*-linux*] || [istarget *-*-gnu*] } { return 1; } if { [istarget *-*-solaris2.1\[1-9\]*] } { # Full PIE support was added in Solaris 11.3, but gcc errors out # if missing, so check for that. return [check_no_compiler_messages pie executable { int main (void) { return 0; } } "-pie -fpie"] } return 0 } # Return true if the target supports -mpaired-single (as used on MIPS). proc check_effective_target_mpaired_single { } { return [check_no_compiler_messages mpaired_single object { void foo (void) { } } "-mpaired-single"] } # Return true if the target has access to FPU instructions. proc check_effective_target_hard_float { } { if { [istarget mips*-*-*] } { return [check_no_compiler_messages hard_float assembly { #if (defined __mips_soft_float || defined __mips16) #error __mips_soft_float || __mips16 #endif }] } # This proc is actually checking the availabilty of FPU # support for doubles, so on the RX we must fail if the # 64-bit double multilib has been selected. if { [istarget rx-*-*] } { return 0 # return [check_no_compiler_messages hard_float assembly { #if defined __RX_64_BIT_DOUBLES__ #error __RX_64_BIT_DOUBLES__ #endif # }] } # The generic test doesn't work for C-SKY because some cores have # hard float for single precision only. if { [istarget csky*-*-*] } { return [check_no_compiler_messages hard_float assembly { #if defined __csky_soft_float__ #error __csky_soft_float__ #endif }] } # The generic test equates hard_float with "no call for adding doubles". return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand { double a (double b, double c) { return b + c; } }] } # Return true if the target is a 64-bit MIPS target. proc check_effective_target_mips64 { } { return [check_no_compiler_messages mips64 assembly { #ifndef __mips64 #error !__mips64 #endif }] } # Return true if the target is a MIPS target that does not produce # MIPS16 code. proc check_effective_target_nomips16 { } { return [check_no_compiler_messages nomips16 object { #ifndef __mips #error !__mips #else /* A cheap way of testing for -mflip-mips16. */ void foo (void) { asm ("addiu $20,$20,1"); } void bar (void) { asm ("addiu $20,$20,1"); } #endif }] } # Add the options needed for MIPS16 function attributes. At the moment, # we don't support MIPS16 PIC. proc add_options_for_mips16_attribute { flags } { return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))" } # Return true if we can force a mode that allows MIPS16 code generation. # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float # for o32 and o64. proc check_effective_target_mips16_attribute { } { return [check_no_compiler_messages mips16_attribute assembly { #ifdef PIC #error PIC #endif #if defined __mips_hard_float \ && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \ && (!defined _ABIO64 || _MIPS_SIM != _ABIO64) #error __mips_hard_float && (!_ABIO32 || !_ABIO64) #endif } [add_options_for_mips16_attribute ""]] } # Return 1 if the target supports long double larger than double when # using the new ABI, 0 otherwise. proc check_effective_target_mips_newabi_large_long_double { } { return [check_no_compiler_messages mips_newabi_large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; } "-mabi=64"] } # Return true if the target is a MIPS target that has access # to the LL and SC instructions. proc check_effective_target_mips_llsc { } { if { ![istarget mips*-*-*] } { return 0 } # Assume that these instructions are always implemented for # non-elf* targets, via emulation if necessary. if { ![istarget *-*-elf*] } { return 1 } # Otherwise assume LL/SC support for everything but MIPS I. return [check_no_compiler_messages mips_llsc assembly { #if __mips == 1 #error __mips == 1 #endif }] } # Return true if the target is a MIPS target that uses in-place relocations. proc check_effective_target_mips_rel { } { if { ![istarget mips*-*-*] } { return 0 } return [check_no_compiler_messages mips_rel object { #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \ || (defined _ABI64 && _MIPS_SIM == _ABI64) #error _ABIN32 && (_ABIN32 || _ABI64) #endif }] } # Return true if the target is a MIPS target that uses the EABI. proc check_effective_target_mips_eabi { } { if { ![istarget mips*-*-*] } { return 0 } return [check_no_compiler_messages mips_eabi object { #ifndef __mips_eabi #error !__mips_eabi #endif }] } # Return 1 if the current multilib does not generate PIC by default. proc check_effective_target_nonpic { } { return [check_no_compiler_messages nonpic assembly { #if __PIC__ #error __PIC__ #endif }] } # Return 1 if the current multilib generates PIE by default. proc check_effective_target_pie_enabled { } { return [check_no_compiler_messages pie_enabled assembly { #ifndef __PIE__ #error unsupported #endif }] } # Return 1 if the target generates -fstack-protector by default. proc check_effective_target_fstack_protector_enabled {} { return [ check_no_compiler_messages fstack_protector_enabled assembly { #if !defined(__SSP__) && !defined(__SSP_ALL__) && \ !defined(__SSP_STRONG__) && !defined(__SSP_EXPICIT__) #error unsupported #endif }] } # Return 1 if the target does not use a status wrapper. proc check_effective_target_unwrapped { } { if { [target_info needs_status_wrapper] != "" \ && [target_info needs_status_wrapper] != "0" } { return 0 } return 1 } # Return true if iconv is supported on the target. In particular IBM1047. proc check_iconv_available { test_what } { global libiconv # If the tool configuration file has not set libiconv, try "-liconv" if { ![info exists libiconv] } { set libiconv "-liconv" } set test_what [lindex $test_what 1] return [check_runtime_nocache $test_what [subst { #include int main (void) { iconv_t cd; cd = iconv_open ("$test_what", "UTF-8"); if (cd == (iconv_t) -1) return 1; return 0; } }] $libiconv] } # Return true if the atomic library is supported on the target. proc check_effective_target_libatomic_available { } { return [check_no_compiler_messages libatomic_available executable { int main (void) { return 0; } } "-latomic"] } # Return 1 if an ASCII locale is supported on this host, 0 otherwise. proc check_ascii_locale_available { } { return 1 } # Return true if named sections are supported on this target. proc check_named_sections_available { } { return [check_no_compiler_messages named_sections assembly { int __attribute__ ((section("whatever"))) foo; }] } # Return true if the "naked" function attribute is supported on this target. proc check_effective_target_naked_functions { } { return [check_no_compiler_messages naked_functions assembly { void f() __attribute__((naked)); }] } # Return 1 if the target supports Fortran real kinds larger than real(8), # 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_real { } { return [check_no_compiler_messages fortran_large_real executable { ! Fortran integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1) real(kind=k) :: x x = cos (x) end }] } # Return 1 if the target supports Fortran real kind real(16), # 0 otherwise. Contrary to check_effective_target_fortran_large_real # this checks for Real(16) only; the other returned real(10) if # both real(10) and real(16) are available. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_real_16 { } { return [check_no_compiler_messages fortran_real_16 executable { ! Fortran real(kind=16) :: x x = cos (x) end }] } # Return 1 if the target supports Fortran real kind 10, # 0 otherwise. Contrary to check_effective_target_fortran_large_real # this checks for real(10) only. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_real_10 { } { return [check_no_compiler_messages fortran_real_10 executable { ! Fortran real(kind=10) :: x x = cos (x) end }] } # Return 1 if the target supports Fortran's IEEE modules, # 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_ieee { flags } { return [check_no_compiler_messages fortran_ieee executable { ! Fortran use, intrinsic :: ieee_features end } $flags ] } # Return 1 if the target supports SQRT for the largest floating-point # type. (Some targets lack the libm support for this FP type.) # On most targets, this check effectively checks either whether sqrtl is # available or on __float128 systems whether libquadmath is installed, # which provides sqrtq. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_largest_fp_has_sqrt { } { return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable { ! Fortran use iso_fortran_env, only: real_kinds integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1)) real(kind=maxFP), volatile :: x x = 2.0_maxFP x = sqrt (x) end }] } # Return 1 if the target supports Fortran integer kinds larger than # integer(8), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_int { } { return [check_no_compiler_messages fortran_large_int executable { ! Fortran integer,parameter :: k = selected_int_kind (range (0_8) + 1) integer(kind=k) :: i end }] } # Return 1 if the target supports Fortran integer(16), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_integer_16 { } { return [check_no_compiler_messages fortran_integer_16 executable { ! Fortran integer(16) :: i end }] } # Return 1 if we can statically link libgfortran, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_static_libgfortran { } { return [check_no_compiler_messages static_libgfortran executable { ! Fortran print *, 'test' end } "-static"] } # Return 1 if we can use the -rdynamic option, 0 otherwise. proc check_effective_target_rdynamic { } { return [check_no_compiler_messages rdynamic executable { int main() { return 0; } } "-rdynamic"] } proc check_linker_plugin_available { } { return [check_no_compiler_messages_nocache linker_plugin executable { int main() { return 0; } } "-flto -fuse-linker-plugin"] } # Return 1 if the target OS supports running SSE executables, 0 # otherwise. Cache the result. proc check_sse_os_support_available { } { return [check_cached_effective_target sse_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } elseif { [istarget i?86-*-solaris2*] } { # The Solaris 2 kernel doesn't save and restore SSE registers # before Solaris 9 4/04. Before that, executables die with SIGILL. check_runtime_nocache sse_os_support_available { int main () { asm volatile ("movaps %xmm0,%xmm0"); return 0; } } "-msse" } else { expr 1 } }] } # Return 1 if the target OS supports running AVX executables, 0 # otherwise. Cache the result. proc check_avx_os_support_available { } { return [check_cached_effective_target avx_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } else { # Check that OS has AVX and SSE saving enabled. check_runtime_nocache avx_os_support_available { int main () { unsigned int eax, edx; asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0)); return (eax & 0x06) != 0x06; } } "" } }] } # Return 1 if the target OS supports running AVX executables, 0 # otherwise. Cache the result. proc check_avx512_os_support_available { } { return [check_cached_effective_target avx512_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } else { # Check that OS has AVX512, AVX and SSE saving enabled. check_runtime_nocache avx512_os_support_available { int main () { unsigned int eax, edx; asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0)); return (eax & 0xe6) != 0xe6; } } "" } }] } # Return 1 if the target supports executing SSE instructions, 0 # otherwise. Cache the result. proc check_sse_hw_available { } { return [check_cached_effective_target sse_hw_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } else { check_runtime_nocache sse_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return 1; return !(edx & bit_SSE); } } "" } }] } # Return 1 if the target supports executing SSE2 instructions, 0 # otherwise. Cache the result. proc check_sse2_hw_available { } { return [check_cached_effective_target sse2_hw_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } else { check_runtime_nocache sse2_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return 1; return !(edx & bit_SSE2); } } "" } }] } # Return 1 if the target supports executing SSE4 instructions, 0 # otherwise. Cache the result. proc check_sse4_hw_available { } { return [check_cached_effective_target sse4_hw_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } else { check_runtime_nocache sse4_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return 1; return !(ecx & bit_SSE4_2); } } "" } }] } # Return 1 if the target supports executing AVX instructions, 0 # otherwise. Cache the result. proc check_avx_hw_available { } { return [check_cached_effective_target avx_hw_available { # If this is not the right target then we can skip the test. if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { expr 0 } else { check_runtime_nocache avx_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return 1; return ((ecx & (bit_AVX | bit_OSXSAVE)) != (bit_AVX | bit_OSXSAVE)); } } "" } }] } # Return 1 if the target supports executing AVX2 instructions, 0 # otherwise. Cache the result. proc check_avx2_hw_available { } { return [check_cached_effective_target avx2_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache avx2_hw_available { #include #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid_max (0, NULL) < 7) return 1; __cpuid (1, eax, ebx, ecx, edx); if (!(ecx & bit_OSXSAVE)) return 1; __cpuid_count (7, 0, eax, ebx, ecx, edx); return !(ebx & bit_AVX2); } } "" } }] } # Return 1 if the target supports executing AVX512 foundation instructions, 0 # otherwise. Cache the result. proc check_avx512f_hw_available { } { return [check_cached_effective_target avx512f_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache avx512f_hw_available { #include #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid_max (0, NULL) < 7) return 1; __cpuid (1, eax, ebx, ecx, edx); if (!(ecx & bit_OSXSAVE)) return 1; __cpuid_count (7, 0, eax, ebx, ecx, edx); return !(ebx & bit_AVX512F); } } "" } }] } # Return 1 if the target supports running SSE executables, 0 otherwise. proc check_effective_target_sse_runtime { } { if { [check_effective_target_sse] && [check_sse_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running SSE2 executables, 0 otherwise. proc check_effective_target_sse2_runtime { } { if { [check_effective_target_sse2] && [check_sse2_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running SSE4 executables, 0 otherwise. proc check_effective_target_sse4_runtime { } { if { [check_effective_target_sse4] && [check_sse4_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running AVX executables, 0 otherwise. proc check_effective_target_avx_runtime { } { if { [check_effective_target_avx] && [check_avx_hw_available] && [check_avx_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running AVX2 executables, 0 otherwise. proc check_effective_target_avx2_runtime { } { if { [check_effective_target_avx2] && [check_avx2_hw_available] && [check_avx_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running AVX512f executables, 0 otherwise. proc check_effective_target_avx512f_runtime { } { if { [check_effective_target_avx512f] && [check_avx512f_hw_available] && [check_avx512_os_support_available] } { return 1 } return 0 } # Return 1 if bmi2 instructions can be compiled. proc check_effective_target_bmi2 { } { if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { return 0 } return [check_no_compiler_messages bmi2 object { unsigned int _bzhi_u32 (unsigned int __X, unsigned int __Y) { return __builtin_ia32_bzhi_si (__X, __Y); } } "-mbmi2" ] } # Return 1 if the target supports executing MIPS Paired-Single instructions, # 0 otherwise. Cache the result. proc check_mpaired_single_hw_available { } { return [check_cached_effective_target mpaired_single_hw_available { # If this is not the right target then we can skip the test. if { !([istarget mips*-*-*]) } { expr 0 } else { check_runtime_nocache mpaired_single_hw_available { int main() { asm volatile ("pll.ps $f2,$f4,$f6"); return 0; } } "" } }] } # Return 1 if the target supports executing Loongson vector instructions, # 0 otherwise. Cache the result. proc check_mips_loongson_mmi_hw_available { } { return [check_cached_effective_target mips_loongson_mmi_hw_available { # If this is not the right target then we can skip the test. if { !([istarget mips*-*-*]) } { expr 0 } else { check_runtime_nocache mips_loongson_mmi_hw_available { #include int main() { asm volatile ("paddw $f2,$f4,$f6"); return 0; } } "-mloongson-mmi" } }] } # Return 1 if the target supports executing MIPS MSA instructions, 0 # otherwise. Cache the result. proc check_mips_msa_hw_available { } { return [check_cached_effective_target mips_msa_hw_available { # If this is not the right target then we can skip the test. if { !([istarget mips*-*-*]) } { expr 0 } else { check_runtime_nocache mips_msa_hw_available { #if !defined(__mips_msa) #error "MSA NOT AVAIL" #else #if !(((__mips == 64) || (__mips == 32)) && (__mips_isa_rev >= 2)) #error "MSA NOT AVAIL FOR ISA REV < 2" #endif #if !defined(__mips_hard_float) #error "MSA HARD_FLOAT REQUIRED" #endif #if __mips_fpr != 64 #error "MSA 64-bit FPR REQUIRED" #endif #include int main() { v8i16 v = __builtin_msa_ldi_h (0); v[0] = 0; return v[0]; } #endif } "-mmsa" } }] } # Return 1 if the target supports running MIPS Paired-Single # executables, 0 otherwise. proc check_effective_target_mpaired_single_runtime { } { if { [check_effective_target_mpaired_single] && [check_mpaired_single_hw_available] } { return 1 } return 0 } # Return 1 if the target supports running Loongson executables, 0 otherwise. proc check_effective_target_mips_loongson_mmi_runtime { } { if { [check_effective_target_mips_loongson_mmi] && [check_mips_loongson_mmi_hw_available] } { return 1 } return 0 } # Return 1 if the target supports running MIPS MSA executables, 0 otherwise. proc check_effective_target_mips_msa_runtime { } { if { [check_effective_target_mips_msa] && [check_mips_msa_hw_available] } { return 1 } return 0 } # Return 1 if we are compiling for 64-bit PowerPC but we do not use direct # move instructions for moves from GPR to FPR. proc check_effective_target_powerpc64_no_dm { } { # The "mulld" checks if we are generating PowerPC64 code. The "lfd" # checks if we do not use direct moves, but use the old-fashioned # slower move-via-the-stack. return [check_no_messages_and_pattern powerpc64_no_dm \ {\mmulld\M.*\mlfd} assembly { double f(long long x) { return x*x; } } {-O2}] } # Return 1 if the target supports the __builtin_cpu_supports built-in, # including having a new enough library to support the test. Cache the result. # Require at least a power7 to run on. proc check_ppc_cpu_supports_hw_available { } { return [check_cached_effective_target ppc_cpu_supports_hw_available { # Some simulators are known to not support VSX/power8 instructions. # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mvsx" check_runtime_nocache ppc_cpu_supports_hw_available { int main() { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif if (!__builtin_cpu_supports ("vsx")) return 1; return 0; } } $options } }] } # Return 1 if the target supports executing 750CL paired-single instructions, 0 # otherwise. Cache the result. proc check_750cl_hw_available { } { return [check_cached_effective_target 750cl_hw_available { # If this is not the right target then we can skip the test. if { ![istarget powerpc-*paired*] } { expr 0 } else { check_runtime_nocache 750cl_hw_available { int main() { #ifdef __MACH__ asm volatile ("ps_mul v0,v0,v0"); #else asm volatile ("ps_mul 0,0,0"); #endif return 0; } } "-mpaired" } }] } # Return 1 if the target supports executing power8 vector instructions, 0 # otherwise. Cache the result. proc check_p8vector_hw_available { } { return [check_cached_effective_target p8vector_hw_available { # Some simulators are known to not support VSX/power8 instructions. # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpower8-vector" check_runtime_nocache p8vector_hw_available { int main() { #ifdef __MACH__ asm volatile ("xxlorc vs0,vs0,vs0"); #else asm volatile ("xxlorc 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing power9 vector instructions, 0 # otherwise. Cache the result. proc check_p9vector_hw_available { } { return [check_cached_effective_target p9vector_hw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpower9-vector" check_runtime_nocache p9vector_hw_available { int main() { long e = -1; vector double v = (vector double) { 0.0, 0.0 }; asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v)); return e; } } $options } }] } # Return 1 if the target supports executing power9 modulo instructions, 0 # otherwise. Cache the result. proc check_p9modulo_hw_available { } { return [check_cached_effective_target p9modulo_hw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mmodulo" check_runtime_nocache p9modulo_hw_available { int main() { int i = 5, j = 3, r = -1; asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j)); return (r == 2); } } $options } }] } # Return 1 if the target supports executing __float128 on PowerPC via software # emulation, 0 otherwise. Cache the result. proc check_ppc_float128_sw_available { } { return [check_cached_effective_target ppc_float128_sw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mfloat128 -mvsx" check_runtime_nocache ppc_float128_sw_available { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z = x + y; return (z != 3.0q); } } $options } }] } # Return 1 if the target supports executing __float128 on PowerPC via power9 # hardware instructions, 0 otherwise. Cache the result. proc check_ppc_float128_hw_available { } { return [check_cached_effective_target ppc_float128_hw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mfloat128 -mvsx -mfloat128-hardware -mpower9-vector" check_runtime_nocache ppc_float128_hw_available { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z = x + y; __float128 w = -1.0q; __asm__ ("xsaddqp %0,%1,%2" : "+v" (w) : "v" (x), "v" (y)); return ((z != 3.0q) || (z != w)); } } $options } }] } # Return 1 if the target supports executing VSX instructions, 0 # otherwise. Cache the result. proc check_vsx_hw_available { } { return [check_cached_effective_target vsx_hw_available { # Some simulators are known to not support VSX instructions. # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mvsx" check_runtime_nocache vsx_hw_available { int main() { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing AltiVec instructions, 0 # otherwise. Cache the result. proc check_vmx_hw_available { } { return [check_cached_effective_target vmx_hw_available { # Some simulators are known to not support VMX instructions. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } { expr 0 } else { # Most targets don't require special flags for this test case, but # Darwin does. Just to be sure, make sure VSX is not enabled for # the altivec tests. if { [istarget *-*-darwin*] || [istarget *-*-aix*] } { set options "-maltivec -mno-vsx" } else { set options "-mno-vsx" } check_runtime_nocache vmx_hw_available { int main() { #ifdef __MACH__ asm volatile ("vor v0,v0,v0"); #else asm volatile ("vor 0,0,0"); #endif return 0; } } $options } }] } proc check_ppc_recip_hw_available { } { return [check_cached_effective_target ppc_recip_hw_available { # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb" check_runtime_nocache ppc_recip_hw_available { volatile double d_recip, d_rsqrt, d_four = 4.0; volatile float f_recip, f_rsqrt, f_four = 4.0f; int main() { asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four)); asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four)); asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four)); asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four)); return 0; } } $options } }] } # Return 1 if the target supports executing AltiVec and Cell PPU # instructions, 0 otherwise. Cache the result. proc check_effective_target_cell_hw { } { return [check_cached_effective_target cell_hw_available { # Some simulators are known to not support VMX and PPU instructions. if { [istarget powerpc-*-eabi*] } { expr 0 } else { # Most targets don't require special flags for this test # case, but Darwin and AIX do. if { [istarget *-*-darwin*] || [istarget *-*-aix*] } { set options "-maltivec -mcpu=cell" } else { set options "-mcpu=cell" } check_runtime_nocache cell_hw_available { int main() { #ifdef __MACH__ asm volatile ("vor v0,v0,v0"); asm volatile ("lvlx v0,r0,r0"); #else asm volatile ("vor 0,0,0"); asm volatile ("lvlx 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing 64-bit instructions, 0 # otherwise. Cache the result. proc check_effective_target_powerpc64 { } { global powerpc64_available_saved global tool if [info exists powerpc64_available_saved] { verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2 } else { set powerpc64_available_saved 0 # Some simulators are known to not support powerpc64 instructions. if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } { verbose "check_effective_target_powerpc64 returning 0" 2 return $powerpc64_available_saved } # Set up, compile, and execute a test program containing a 64-bit # instruction. Include the current process ID in the file # names to prevent conflicts with invocations for multiple # testsuites. set src ppc[pid].c set exe ppc[pid].x set f [open $src "w"] puts $f "int main() {" puts $f "#ifdef __MACH__" puts $f " asm volatile (\"extsw r0,r0\");" puts $f "#else" puts $f " asm volatile (\"extsw 0,0\");" puts $f "#endif" puts $f " return 0; }" close $f set opts "additional_flags=-mcpu=G5" verbose "check_effective_target_powerpc64 compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable "$opts"] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_effective_target_powerpc64 testfile status is <$status>" 2 if { $status == "pass" } then { set powerpc64_available_saved 1 } } else { verbose "check_effective_target_powerpc64 testfile compilation failed" 2 } } return $powerpc64_available_saved } # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing # complex float arguments. This affects gfortran tests that call cabsf # in libm built by an earlier compiler. Return 0 if libm uses the same # argument passing as the compiler under test, 1 otherwise. proc check_effective_target_broken_cplxf_arg { } { # Skip the work for targets known not to be affected. if { ![istarget powerpc*-*-linux*] || ![is-effective-target lp64] } { return 0 } return [check_cached_effective_target broken_cplxf_arg { check_runtime_nocache broken_cplxf_arg { #include extern void abort (void); float fabsf (float); float cabsf (_Complex float); int main () { _Complex float cf; float f; cf = 3 + 4.0fi; f = cabsf (cf); if (fabsf (f - 5.0) > 0.0001) /* Yes, it's broken. */ return 0; /* All fine, not broken. */ return 1; } } "-lm" }] } # Return 1 is this is a TI C6X target supporting C67X instructions proc check_effective_target_ti_c67x { } { return [check_no_compiler_messages ti_c67x assembly { #if !defined(_TMS320C6700) #error !_TMS320C6700 #endif }] } # Return 1 is this is a TI C6X target supporting C64X+ instructions proc check_effective_target_ti_c64xp { } { return [check_no_compiler_messages ti_c64xp assembly { #if !defined(_TMS320C6400_PLUS) #error !_TMS320C6400_PLUS #endif }] } proc check_alpha_max_hw_available { } { return [check_runtime alpha_max_hw_available { int main() { return __builtin_alpha_amask(1<<8) != 0; } }] } # Returns true iff the FUNCTION is available on the target system. # (This is essentially a Tcl implementation of Autoconf's # AC_CHECK_FUNC.) proc check_function_available { function } { return [check_no_compiler_messages ${function}_available \ executable [subst { #ifdef __cplusplus extern "C" #endif char $function (); int main () { $function (); } }] "-fno-builtin" ] } # Returns true iff "fork" is available on the target system. proc check_fork_available {} { return [check_function_available "fork"] } # Returns true iff "mkfifo" is available on the target system. proc check_mkfifo_available {} { if { [istarget *-*-cygwin*] } { # Cygwin has mkfifo, but support is incomplete. return 0 } return [check_function_available "mkfifo"] } # Returns true iff "__cxa_atexit" is used on the target system. proc check_cxa_atexit_available { } { return [check_cached_effective_target cxa_atexit_available { if { [istarget hppa*-*-hpux10*] } { # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes. expr 0 } elseif { [istarget *-*-vxworks] } { # vxworks doesn't have __cxa_atexit but subsequent test passes. expr 0 } else { check_runtime_nocache cxa_atexit_available { // C++ #include static unsigned int count; struct X { X() { count = 1; } ~X() { if (count != 3) exit(1); count = 4; } }; void f() { static X x; } struct Y { Y() { f(); count = 2; } ~Y() { if (count != 2) exit(1); count = 3; } }; Y y; int main() { return 0; } } } }] } proc check_effective_target_objc2 { } { return [check_no_compiler_messages objc2 object { #ifdef __OBJC2__ int dummy[1]; #else #error !__OBJC2__ #endif }] } proc check_effective_target_next_runtime { } { return [check_no_compiler_messages objc2 object { #ifdef __NEXT_RUNTIME__ int dummy[1]; #else #error !__NEXT_RUNTIME__ #endif }] } # Return 1 if we're generating code for big-endian memory order. proc check_effective_target_be { } { return [check_no_compiler_messages be object { int dummy[__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ? 1 : -1]; }] } # Return 1 if we're generating code for little-endian memory order. proc check_effective_target_le { } { return [check_no_compiler_messages le object { int dummy[__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ? 1 : -1]; }] } # Return 1 if we're generating 32-bit code using default options, 0 # otherwise. proc check_effective_target_ilp32 { } { return [check_no_compiler_messages ilp32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if we're generating ia32 code using default options, 0 # otherwise. proc check_effective_target_ia32 { } { return [check_no_compiler_messages ia32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1] = { __i386__ }; }] } # Return 1 if we're generating x32 code using default options, 0 # otherwise. proc check_effective_target_x32 { } { return [check_no_compiler_messages x32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ }; }] } # Return 1 if we're generating 32-bit integers using default # options, 0 otherwise. proc check_effective_target_int32 { } { return [check_no_compiler_messages int32 object { int dummy[sizeof (int) == 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger integers using default # options, 0 otherwise. proc check_effective_target_int32plus { } { return [check_no_compiler_messages int32plus object { int dummy[sizeof (int) >= 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger pointers using default # options, 0 otherwise. proc check_effective_target_ptr32plus { } { # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it # cannot really hold a 32-bit address, so we always return false here. if { [istarget msp430-*-*] } { return 0 } return [check_no_compiler_messages ptr32plus object { int dummy[sizeof (void *) >= 4 ? 1 : -1]; }] } # Return 1 if we support 16-bit or larger array and structure sizes # using default options, 0 otherwise. # This implies at least a 20-bit address space, as no targets have an address # space between 16 and 20 bits. proc check_effective_target_size20plus { } { return [check_no_compiler_messages size20plus object { char dummy[65537L]; }] } # Return 1 if we support 24-bit or larger array and structure sizes # using default options, 0 otherwise. # This implies at least a 32-bit address space, as no targets have an address # space between 24 and 32 bits. proc check_effective_target_size32plus { } { return [check_no_compiler_messages size32plus object { char dummy[16777217L]; }] } # Returns 1 if we're generating 16-bit or smaller integers with the # default options, 0 otherwise. proc check_effective_target_int16 { } { return [check_no_compiler_messages int16 object { int dummy[sizeof (int) < 4 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default options, 0 # otherwise. proc check_effective_target_lp64 { } { return [check_no_compiler_messages lp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long) == 8 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default llp64 options, # 0 otherwise. proc check_effective_target_llp64 { } { return [check_no_compiler_messages llp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long long) == 8 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if long and int have different sizes, # 0 otherwise. proc check_effective_target_long_neq_int { } { return [check_no_compiler_messages long_ne_int object { int dummy[sizeof (int) != sizeof (long) ? 1 : -1]; }] } # Return 1 if int size is equal to float size, # 0 otherwise. proc check_effective_target_int_eq_float { } { return [check_no_compiler_messages int_eq_float object { int dummy[sizeof (int) >= sizeof (float) ? 1 : -1]; }] } # Return 1 if pointer size is equal to long size, # 0 otherwise. proc check_effective_target_ptr_eq_long { } { # sizeof (void *) == 4 for msp430-elf -mlarge which is equal to # sizeof (long). Avoid false positive. if { [istarget msp430-*-*] } { return 0 } return [check_no_compiler_messages ptr_eq_long object { int dummy[sizeof (void *) == sizeof (long) ? 1 : -1]; }] } # Return 1 if the target supports long double larger than double, # 0 otherwise. proc check_effective_target_large_long_double { } { return [check_no_compiler_messages large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; }] } # Return 1 if the target supports double larger than float, # 0 otherwise. proc check_effective_target_large_double { } { return [check_no_compiler_messages large_double object { int dummy[sizeof(double) > sizeof(float) ? 1 : -1]; }] } # Return 1 if the target supports long double of 128 bits, # 0 otherwise. proc check_effective_target_longdouble128 { } { return [check_no_compiler_messages longdouble128 object { int dummy[sizeof(long double) == 16 ? 1 : -1]; }] } # Return 1 if the target supports long double of 64 bits, # 0 otherwise. proc check_effective_target_longdouble64 { } { return [check_no_compiler_messages longdouble64 object { int dummy[sizeof(long double) == 8 ? 1 : -1]; }] } # Return 1 if the target supports double of 64 bits, # 0 otherwise. proc check_effective_target_double64 { } { return [check_no_compiler_messages double64 object { int dummy[sizeof(double) == 8 ? 1 : -1]; }] } # Return 1 if the target supports double of at least 64 bits, # 0 otherwise. proc check_effective_target_double64plus { } { return [check_no_compiler_messages double64plus object { int dummy[sizeof(double) >= 8 ? 1 : -1]; }] } # Return 1 if the target supports 'w' suffix on floating constant # 0 otherwise. proc check_effective_target_has_w_floating_suffix { } { set opts "" if [check_effective_target_c++] { append opts "-std=gnu++03" } return [check_no_compiler_messages w_fp_suffix object { float dummy = 1.0w; } "$opts"] } # Return 1 if the target supports 'q' suffix on floating constant # 0 otherwise. proc check_effective_target_has_q_floating_suffix { } { set opts "" if [check_effective_target_c++] { append opts "-std=gnu++03" } return [check_no_compiler_messages q_fp_suffix object { float dummy = 1.0q; } "$opts"] } # Return 1 if the target supports the _FloatN / _FloatNx type # indicated in the function name, 0 otherwise. proc check_effective_target_float16 {} { return [check_no_compiler_messages_nocache float16 object { _Float16 x; } [add_options_for_float16 ""]] } proc check_effective_target_float32 {} { return [check_no_compiler_messages_nocache float32 object { _Float32 x; } [add_options_for_float32 ""]] } proc check_effective_target_float64 {} { return [check_no_compiler_messages_nocache float64 object { _Float64 x; } [add_options_for_float64 ""]] } proc check_effective_target_float128 {} { return [check_no_compiler_messages_nocache float128 object { _Float128 x; } [add_options_for_float128 ""]] } proc check_effective_target_float32x {} { return [check_no_compiler_messages_nocache float32x object { _Float32x x; } [add_options_for_float32x ""]] } proc check_effective_target_float64x {} { return [check_no_compiler_messages_nocache float64x object { _Float64x x; } [add_options_for_float64x ""]] } proc check_effective_target_float128x {} { return [check_no_compiler_messages_nocache float128x object { _Float128x x; } [add_options_for_float128x ""]] } # Likewise, but runtime support for any special options used as well # as compile-time support is required. proc check_effective_target_float16_runtime {} { return [check_effective_target_float16] } proc check_effective_target_float32_runtime {} { return [check_effective_target_float32] } proc check_effective_target_float64_runtime {} { return [check_effective_target_float64] } proc check_effective_target_float128_runtime {} { if { ![check_effective_target_float128] } { return 0 } if { [istarget powerpc*-*-*] } { return [check_effective_target_base_quadfloat_support] } return 1 } proc check_effective_target_float32x_runtime {} { return [check_effective_target_float32x] } proc check_effective_target_float64x_runtime {} { if { ![check_effective_target_float64x] } { return 0 } if { [istarget powerpc*-*-*] } { return [check_effective_target_base_quadfloat_support] } return 1 } proc check_effective_target_float128x_runtime {} { return [check_effective_target_float128x] } # Return 1 if the target hardware supports any options added for # _FloatN and _FloatNx types, 0 otherwise. proc check_effective_target_floatn_nx_runtime {} { if { [istarget powerpc*-*-aix*] } { return 0 } if { [istarget powerpc*-*-*] } { return [check_effective_target_base_quadfloat_support] } return 1 } # Add options needed to use the _FloatN / _FloatNx type indicated in # the function name. proc add_options_for_float16 { flags } { if { [istarget arm*-*-*] } { return "$flags -mfp16-format=ieee" } return "$flags" } proc add_options_for_float32 { flags } { return "$flags" } proc add_options_for_float64 { flags } { return "$flags" } proc add_options_for_float128 { flags } { return [add_options_for___float128 "$flags"] } proc add_options_for_float32x { flags } { return "$flags" } proc add_options_for_float64x { flags } { return [add_options_for___float128 "$flags"] } proc add_options_for_float128x { flags } { return "$flags" } # Return 1 if the target supports __float128, # 0 otherwise. proc check_effective_target___float128 { } { if { [istarget powerpc*-*-*] } { return [check_ppc_float128_sw_available] } if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { return 1 } return 0 } proc add_options_for___float128 { flags } { if { [istarget powerpc*-*-*] } { return "$flags -mfloat128 -mvsx" } return "$flags" } # Return 1 if the target supports any special run-time requirements # for __float128 or _Float128, # 0 otherwise. proc check_effective_target_base_quadfloat_support { } { if { [istarget powerpc*-*-*] } { return [check_vsx_hw_available] } return 1 } # Return 1 if the target supports all four forms of fused multiply-add # (fma, fms, fnma, and fnms) for both float and double. proc check_effective_target_scalar_all_fma { } { return [istarget aarch64*-*-*] } # Return 1 if the target supports compiling fixed-point, # 0 otherwise. proc check_effective_target_fixed_point { } { return [check_no_compiler_messages fixed_point object { _Sat _Fract x; _Sat _Accum y; }] } # Return 1 if the target supports compiling decimal floating point, # 0 otherwise. proc check_effective_target_dfp_nocache { } { verbose "check_effective_target_dfp_nocache: compiling source" 2 set ret [check_no_compiler_messages_nocache dfp object { float x __attribute__((mode(DD))); }] verbose "check_effective_target_dfp_nocache: returning $ret" 2 return $ret } proc check_effective_target_dfprt_nocache { } { return [check_runtime_nocache dfprt { typedef float d64 __attribute__((mode(DD))); d64 x = 1.2df, y = 2.3dd, z; int main () { z = x + y; return 0; } }] } # Return 1 if the target supports compiling Decimal Floating Point, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfp { } { return [check_cached_effective_target dfp { check_effective_target_dfp_nocache }] } # Return 1 if the target supports linking and executing Decimal Floating # Point, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfprt { } { return [check_cached_effective_target dfprt { check_effective_target_dfprt_nocache }] } proc check_effective_target_powerpc_popcntb_ok { } { return [check_cached_effective_target powerpc_popcntb_ok { # Disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { check_runtime_nocache powerpc_popcntb_ok { volatile int r; volatile int a = 0x12345678; int main() { asm volatile ("popcntb %0,%1" : "=r" (r) : "r" (a)); return 0; } } "-mcpu=power5" } }] } # Return 1 if the target supports executing DFP hardware instructions, # 0 otherwise. Cache the result. proc check_dfp_hw_available { } { return [check_cached_effective_target dfp_hw_available { # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { check_runtime_nocache dfp_hw_available { volatile _Decimal64 r; volatile _Decimal64 a = 4.0DD; volatile _Decimal64 b = 2.0DD; int main() { asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); return 0; } } "-mcpu=power6 -mhard-float" } }] } # Return 1 if the target supports compiling and assembling UCN, 0 otherwise. proc check_effective_target_ucn_nocache { } { # -std=c99 is only valid for C if [check_effective_target_c] { set ucnopts "-std=c99" } else { set ucnopts "" } verbose "check_effective_target_ucn_nocache: compiling source" 2 set ret [check_no_compiler_messages_nocache ucn object { int \u00C0; } $ucnopts] verbose "check_effective_target_ucn_nocache: returning $ret" 2 return $ret } # Return 1 if the target supports compiling and assembling UCN, 0 otherwise. # # This won't change for different subtargets, so cache the result. proc check_effective_target_ucn { } { return [check_cached_effective_target ucn { check_effective_target_ucn_nocache }] } # Return 1 if the target needs a command line argument to enable a SIMD # instruction set. proc check_effective_target_vect_cmdline_needed { } { global et_vect_cmdline_needed_target_name if { ![info exists et_vect_cmdline_needed_target_name] } { set et_vect_cmdline_needed_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_vect_cmdline_needed_target_name } { verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2 set et_vect_cmdline_needed_target_name $current_target if { [info exists et_vect_cmdline_needed_saved] } { verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2 unset et_vect_cmdline_needed_saved } } return [check_cached_effective_target vect_cmdline_needed { if { [istarget alpha*-*-*] || [istarget ia64-*-*] || (([istarget i?86-*-*] || [istarget x86_64-*-*]) && ![is-effective-target ia32]) || ([istarget powerpc*-*-*] && ([check_effective_target_powerpc_spe] || [check_effective_target_powerpc_altivec])) || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis]) || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) || [istarget aarch64*-*-*] } { return 0 } else { return 1 }}] } # Return 1 if the target supports hardware vectors of int, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_int { } { return [check_cached_effective_target_indexed vect_int { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget spu-*-*] || [istarget sparc*-*-*] || [istarget alpha*-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [is-effective-target arm_neon] || ([istarget mips*-*-*] && ([et-is-effective-target mips_loongson_mmi] || [et-is-effective-target mips_msa])) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports signed int->float conversion # proc check_effective_target_vect_intfloat_cvt { } { return [check_cached_effective_target_indexed vect_intfloat_cvt { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [is-effective-target arm_neon] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target supports signed double->int conversion # proc check_effective_target_vect_doubleint_cvt { } { return [check_cached_effective_target_indexed vect_doubleint_cvt { expr { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_no_compiler_messages vect_doubleint_cvt assembly { #ifdef __tune_atom__ # error No double vectorizer support. #endif }]) || [istarget aarch64*-*-*] || [istarget spu-*-*] || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target supports signed int->double conversion # proc check_effective_target_vect_intdouble_cvt { } { return [check_cached_effective_target_indexed vect_intdouble_cvt { expr { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_no_compiler_messages vect_intdouble_cvt assembly { #ifdef __tune_atom__ # error No double vectorizer support. #endif }]) || [istarget aarch64*-*-*] || [istarget spu-*-*] || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } #Return 1 if we're supporting __int128 for target, 0 otherwise. proc check_effective_target_int128 { } { return [check_no_compiler_messages int128 object { int dummy[ #ifndef __SIZEOF_INT128__ -1 #else 1 #endif ]; }] } # Return 1 if the target supports unsigned int->float conversion # proc check_effective_target_vect_uintfloat_cvt { } { return [check_cached_effective_target_indexed vect_uintfloat_cvt { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget aarch64*-*-*] || [is-effective-target arm_neon] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target supports signed float->int conversion # proc check_effective_target_vect_floatint_cvt { } { return [check_cached_effective_target_indexed vect_floatint_cvt { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [is-effective-target arm_neon] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target supports unsigned float->int conversion # proc check_effective_target_vect_floatuint_cvt { } { return [check_cached_effective_target_indexed vect_floatuint_cvt { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [is-effective-target arm_neon] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if peeling for alignment might be profitable on the target # proc check_effective_target_vect_peeling_profitable { } { return [check_cached_effective_target_indexed vect_peeling_profitable { expr { ([istarget s390*-*-*] && [check_effective_target_s390_vx]) || [check_effective_target_vect_element_align_preferred] }}] } # Return 1 if the target supports #pragma omp declare simd, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_simd_clones { } { # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx, # avx2 and avx512f clone. Only the right clone for the # specified arch will be chosen, but still we need to at least # be able to assemble avx512f. return [check_cached_effective_target_indexed vect_simd_clones { expr { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_avx512f]) }}] } # Return 1 if this is a AArch64 target supporting big endian proc check_effective_target_aarch64_big_endian { } { return [check_no_compiler_messages aarch64_big_endian assembly { #if !defined(__aarch64__) || !defined(__AARCH64EB__) #error !__aarch64__ || !__AARCH64EB__ #endif }] } # Return 1 if this is a AArch64 target supporting little endian proc check_effective_target_aarch64_little_endian { } { if { ![istarget aarch64*-*-*] } { return 0 } return [check_no_compiler_messages aarch64_little_endian assembly { #if !defined(__aarch64__) || defined(__AARCH64EB__) #error FOO #endif }] } # Return 1 if this is an AArch64 target supporting SVE. proc check_effective_target_aarch64_sve { } { if { ![istarget aarch64*-*-*] } { return 0 } return [check_no_compiler_messages aarch64_sve assembly { #if !defined (__ARM_FEATURE_SVE) #error FOO #endif }] } # Return the size in bits of an SVE vector, or 0 if the size is variable. proc aarch64_sve_bits { } { return [check_cached_effective_target aarch64_sve_bits { global tool set src dummy[pid].c set f [open $src "w"] puts $f "int bits = __ARM_FEATURE_SVE_BITS;" close $f set output [${tool}_target_compile $src "" preprocess ""] file delete $src regsub {.*bits = ([^;]*);.*} $output {\1} bits expr { $bits } }] } # Return 1 if this is a compiler supporting ARC atomic operations proc check_effective_target_arc_atomic { } { return [check_no_compiler_messages arc_atomic assembly { #if !defined(__ARC_ATOMIC__) #error FOO #endif }] } # Return 1 if this is an arm target using 32-bit instructions proc check_effective_target_arm32 { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm32 assembly { #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__)) #error !__arm || __thumb__ && !__thumb2__ #endif }] } # Return 1 if this is an arm target not using Thumb proc check_effective_target_arm_nothumb { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_nothumb assembly { #if !defined(__arm__) || (defined(__thumb__) || defined(__thumb2__)) #error !__arm__ || __thumb || __thumb2__ #endif }] } # Return 1 if this is a little-endian ARM target proc check_effective_target_arm_little_endian { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_little_endian assembly { #if !defined(__arm__) || !defined(__ARMEL__) #error !__arm__ || !__ARMEL__ #endif }] } # Return 1 if this is an ARM target that only supports aligned vector accesses proc check_effective_target_arm_vect_no_misalign { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_vect_no_misalign assembly { #if !defined(__arm__) \ || (defined(__ARM_FEATURE_UNALIGNED) \ && defined(__ARMEL__)) #error !__arm__ || (__ARMEL__ && __ARM_FEATURE_UNALIGNED) #endif }] } # Return 1 if this is an ARM target supporting -mfloat-abi=soft. Some # multilibs may be incompatible with this option. proc check_effective_target_arm_soft_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_soft_ok executable { int main() { return 0;} } "-mfloat-abi=soft"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=softfp. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_vfp_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_vfp_ok object { int dummy; } "-mfpu=vfp -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=vfp3 # -mfloat-abi=softfp. proc check_effective_target_arm_vfp3_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_vfp3_ok object { int dummy; } "-mfpu=vfp3 -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=fp-armv8 # -mfloat-abi=softfp. proc check_effective_target_arm_v8_vfp_ok {} { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_v8_vfp_ok object { int foo (void) { __asm__ volatile ("vrinta.f32.f32 s0, s0"); return 0; } } "-mfpu=fp-armv8 -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=hard. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_hard_vfp_ok { } { if { [check_effective_target_arm32] && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } { return [check_no_compiler_messages arm_hard_vfp_ok executable { int main() { return 0;} } "-mfpu=vfp -mfloat-abi=hard"] } else { return 0 } } # Return 1 if this is an ARM target defining __ARM_FP. We may need # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_fp_flags to the # best options to add. proc check_effective_target_arm_fp_ok_nocache { } { global et_arm_fp_flags set et_arm_fp_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfloat-abi=hard"} { if { [check_no_compiler_messages_nocache arm_fp_ok object { #ifndef __ARM_FP #error __ARM_FP not defined #endif } "$flags"] } { set et_arm_fp_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_fp_ok { } { return [check_cached_effective_target arm_fp_ok \ check_effective_target_arm_fp_ok_nocache] } # Add the options needed to define __ARM_FP. We need either # -mfloat-abi=softfp or -mfloat-abi=hard, but if one is already # specified by the multilib, use it. proc add_options_for_arm_fp { flags } { if { ! [check_effective_target_arm_fp_ok] } { return "$flags" } global et_arm_fp_flags return "$flags $et_arm_fp_flags" } # Return 1 if this is an ARM target that supports DSP multiply with # current multilib flags. proc check_effective_target_arm_dsp { } { return [check_no_compiler_messages arm_dsp assembly { #ifndef __ARM_FEATURE_DSP #error not DSP #endif int i; }] } # Return 1 if this is an ARM target that supports unaligned word/halfword # load/store instructions. proc check_effective_target_arm_unaligned { } { return [check_no_compiler_messages arm_unaligned assembly { #ifndef __ARM_FEATURE_UNALIGNED #error no unaligned support #endif int i; }] } # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_crypto_flags to the # best options to add. proc check_effective_target_arm_crypto_ok_nocache { } { global et_arm_crypto_flags set et_arm_crypto_flags "" if { [check_effective_target_arm_v8_neon_ok] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_crypto_ok object { #include "arm_neon.h" uint8x16_t foo (uint8x16_t a, uint8x16_t b) { return vaeseq_u8 (a, b); } } "$flags"] } { set et_arm_crypto_flags $flags return 1 } } } return 0 } # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8 proc check_effective_target_arm_crypto_ok { } { return [check_cached_effective_target arm_crypto_ok \ check_effective_target_arm_crypto_ok_nocache] } # Add options for crypto extensions. proc add_options_for_arm_crypto { flags } { if { ! [check_effective_target_arm_crypto_ok] } { return "$flags" } global et_arm_crypto_flags return "$flags $et_arm_crypto_flags" } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. Similarly, if a -mfpu option already enables # NEON, do not add -mfpu=neon. proc add_options_for_arm_neon { flags } { if { ! [check_effective_target_arm_neon_ok] } { return "$flags" } global et_arm_neon_flags return "$flags $et_arm_neon_flags" } proc add_options_for_arm_v8_vfp { flags } { if { ! [check_effective_target_arm_v8_vfp_ok] } { return "$flags" } return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp" } proc add_options_for_arm_v8_neon { flags } { if { ! [check_effective_target_arm_v8_neon_ok] } { return "$flags" } global et_arm_v8_neon_flags return "$flags $et_arm_v8_neon_flags -march=armv8-a" } # Add the options needed for ARMv8.1 Adv.SIMD. Also adds the ARMv8 NEON # options for AArch64 and for ARM. proc add_options_for_arm_v8_1a_neon { flags } { if { ! [check_effective_target_arm_v8_1a_neon_ok] } { return "$flags" } global et_arm_v8_1a_neon_flags return "$flags $et_arm_v8_1a_neon_flags" } # Add the options needed for ARMv8.2 with the scalar FP16 extension. # Also adds the ARMv8 FP options for ARM and for AArch64. proc add_options_for_arm_v8_2a_fp16_scalar { flags } { if { ! [check_effective_target_arm_v8_2a_fp16_scalar_ok] } { return "$flags" } global et_arm_v8_2a_fp16_scalar_flags return "$flags $et_arm_v8_2a_fp16_scalar_flags" } # Add the options needed for ARMv8.2 with the FP16 extension. Also adds # the ARMv8 NEON options for ARM and for AArch64. proc add_options_for_arm_v8_2a_fp16_neon { flags } { if { ! [check_effective_target_arm_v8_2a_fp16_neon_ok] } { return "$flags" } global et_arm_v8_2a_fp16_neon_flags return "$flags $et_arm_v8_2a_fp16_neon_flags" } proc add_options_for_arm_crc { flags } { if { ! [check_effective_target_arm_crc_ok] } { return "$flags" } global et_arm_crc_flags return "$flags $et_arm_crc_flags" } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. Similarly, if a -mfpu option already enables # NEON, do not add -mfpu=neon. proc add_options_for_arm_neonv2 { flags } { if { ! [check_effective_target_arm_neonv2_ok] } { return "$flags" } global et_arm_neonv2_flags return "$flags $et_arm_neonv2_flags" } # Add the options needed for vfp3. proc add_options_for_arm_vfp3 { flags } { if { ! [check_effective_target_arm_vfp3_ok] } { return "$flags" } return "$flags -mfpu=vfp3 -mfloat-abi=softfp" } # Return 1 if this is an ARM target supporting -mfpu=neon # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neon_flags to the # best options to add. proc check_effective_target_arm_neon_ok_nocache { } { global et_arm_neon_flags set et_arm_neon_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp" "-mfpu=neon -mfloat-abi=softfp -march=armv7-a" "-mfloat-abi=hard" "-mfpu=neon -mfloat-abi=hard" "-mfpu=neon -mfloat-abi=hard -march=armv7-a"} { if { [check_no_compiler_messages_nocache arm_neon_ok object { #include int dummy; #ifndef __ARM_NEON__ #error not NEON #endif /* Avoid the case where a test adds -mfpu=neon, but the toolchain is configured for -mcpu=arm926ej-s, for example. */ #if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M' #error Architecture does not support NEON. #endif } "$flags"] } { set et_arm_neon_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_neon_ok { } { return [check_cached_effective_target arm_neon_ok \ check_effective_target_arm_neon_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon without any # -mfloat-abi= option. Useful in tests where add_options is not # supported (such as lto tests). proc check_effective_target_arm_neon_ok_no_float_abi_nocache { } { if { [check_effective_target_arm32] } { foreach flags {"-mfpu=neon"} { if { [check_no_compiler_messages_nocache arm_neon_ok_no_float_abi object { #include int dummy; #ifndef __ARM_NEON__ #error not NEON #endif /* Avoid the case where a test adds -mfpu=neon, but the toolchain is configured for -mcpu=arm926ej-s, for example. */ #if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M' #error Architecture does not support NEON. #endif } "$flags"] } { return 1 } } } return 0 } proc check_effective_target_arm_neon_ok_no_float_abi { } { return [check_cached_effective_target arm_neon_ok_no_float_abi \ check_effective_target_arm_neon_ok_no_float_abi_nocache] } proc check_effective_target_arm_crc_ok_nocache { } { global et_arm_crc_flags set et_arm_crc_flags "-march=armv8-a+crc" return [check_no_compiler_messages_nocache arm_crc_ok object { #if !defined (__ARM_FEATURE_CRC32) #error FOO #endif } "$et_arm_crc_flags"] } proc check_effective_target_arm_crc_ok { } { return [check_cached_effective_target arm_crc_ok \ check_effective_target_arm_crc_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon-fp16 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neon_fp16_flags to # the best options to add. proc check_effective_target_arm_neon_fp16_ok_nocache { } { global et_arm_neon_fp16_flags global et_arm_neon_flags set et_arm_neon_fp16_flags "" if { [check_effective_target_arm32] && [check_effective_target_arm_neon_ok] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16" "-mfpu=neon-fp16 -mfloat-abi=softfp" "-mfp16-format=ieee" "-mfloat-abi=softfp -mfp16-format=ieee" "-mfpu=neon-fp16 -mfp16-format=ieee" "-mfpu=neon-fp16 -mfloat-abi=softfp -mfp16-format=ieee"} { if { [check_no_compiler_messages_nocache arm_neon_fp16_ok object { #include "arm_neon.h" float16x4_t foo (float32x4_t arg) { return vcvt_f16_f32 (arg); } } "$et_arm_neon_flags $flags"] } { set et_arm_neon_fp16_flags [concat $et_arm_neon_flags $flags] return 1 } } } return 0 } proc check_effective_target_arm_neon_fp16_ok { } { return [check_cached_effective_target arm_neon_fp16_ok \ check_effective_target_arm_neon_fp16_ok_nocache] } proc check_effective_target_arm_neon_fp16_hw { } { if {! [check_effective_target_arm_neon_fp16_ok] } { return 0 } global et_arm_neon_fp16_flags check_runtime_nocache arm_neon_fp16_hw { int main (int argc, char **argv) { asm ("vcvt.f32.f16 q1, d0"); return 0; } } $et_arm_neon_fp16_flags } proc add_options_for_arm_neon_fp16 { flags } { if { ! [check_effective_target_arm_neon_fp16_ok] } { return "$flags" } global et_arm_neon_fp16_flags return "$flags $et_arm_neon_fp16_flags" } # Return 1 if this is an ARM target supporting the FP16 alternative # format. Some multilibs may be incompatible with the options needed. Also # set et_arm_neon_fp16_flags to the best options to add. proc check_effective_target_arm_fp16_alternative_ok_nocache { } { global et_arm_neon_fp16_flags set et_arm_neon_fp16_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16" "-mfpu=neon-fp16 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache \ arm_fp16_alternative_ok object { #if !defined (__ARM_FP16_FORMAT_ALTERNATIVE) #error __ARM_FP16_FORMAT_ALTERNATIVE not defined #endif } "$flags -mfp16-format=alternative"] } { set et_arm_neon_fp16_flags "$flags -mfp16-format=alternative" return 1 } } } return 0 } proc check_effective_target_arm_fp16_alternative_ok { } { return [check_cached_effective_target arm_fp16_alternative_ok \ check_effective_target_arm_fp16_alternative_ok_nocache] } # Return 1 if this is an ARM target supports specifying the FP16 none # format. Some multilibs may be incompatible with the options needed. proc check_effective_target_arm_fp16_none_ok_nocache { } { if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16" "-mfpu=neon-fp16 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache \ arm_fp16_none_ok object { #if defined (__ARM_FP16_FORMAT_ALTERNATIVE) #error __ARM_FP16_FORMAT_ALTERNATIVE defined #endif #if defined (__ARM_FP16_FORMAT_IEEE) #error __ARM_FP16_FORMAT_IEEE defined #endif } "$flags -mfp16-format=none"] } { return 1 } } } return 0 } proc check_effective_target_arm_fp16_none_ok { } { return [check_cached_effective_target arm_fp16_none_ok \ check_effective_target_arm_fp16_none_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_v8_neon_flags to the # best options to add. proc check_effective_target_arm_v8_neon_ok_nocache { } { global et_arm_v8_neon_flags set et_arm_v8_neon_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_v8_neon_ok object { #if __ARM_ARCH < 8 #error not armv8 or later #endif #include "arm_neon.h" void foo () { __asm__ volatile ("vrintn.f32 q0, q0"); } } "$flags -march=armv8-a"] } { set et_arm_v8_neon_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_v8_neon_ok { } { return [check_cached_effective_target arm_v8_neon_ok \ check_effective_target_arm_v8_neon_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neonv2_flags to the # best options to add. proc check_effective_target_arm_neonv2_ok_nocache { } { global et_arm_neonv2_flags global et_arm_neon_flags set et_arm_neonv2_flags "" if { [check_effective_target_arm32] && [check_effective_target_arm_neon_ok] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_neonv2_ok object { #include "arm_neon.h" float32x2_t foo (float32x2_t a, float32x2_t b, float32x2_t c) { return vfma_f32 (a, b, c); } } "$et_arm_neon_flags $flags"] } { set et_arm_neonv2_flags [concat $et_arm_neon_flags $flags] return 1 } } } return 0 } proc check_effective_target_arm_neonv2_ok { } { return [check_cached_effective_target arm_neonv2_ok \ check_effective_target_arm_neonv2_ok_nocache] } # Add the options needed for VFP FP16 support. We need either # -mfloat-abi=softfp or -mfloat-abi=hard. If one is already specified by # the multilib, use it. proc add_options_for_arm_fp16 { flags } { if { ! [check_effective_target_arm_fp16_ok] } { return "$flags" } global et_arm_fp16_flags return "$flags $et_arm_fp16_flags" } # Add the options needed to enable support for IEEE format # half-precision support. This is valid for ARM targets. proc add_options_for_arm_fp16_ieee { flags } { if { ! [check_effective_target_arm_fp16_ok] } { return "$flags" } global et_arm_fp16_flags return "$flags $et_arm_fp16_flags -mfp16-format=ieee" } # Add the options needed to enable support for ARM Alternative format # half-precision support. This is valid for ARM targets. proc add_options_for_arm_fp16_alternative { flags } { if { ! [check_effective_target_arm_fp16_ok] } { return "$flags" } global et_arm_fp16_flags return "$flags $et_arm_fp16_flags -mfp16-format=alternative" } # Return 1 if this is an ARM target that can support a VFP fp16 variant. # Skip multilibs that are incompatible with these options and set # et_arm_fp16_flags to the best options to add. This test is valid for # ARM only. proc check_effective_target_arm_fp16_ok_nocache { } { global et_arm_fp16_flags set et_arm_fp16_flags "" if { ! [check_effective_target_arm32] } { return 0; } if [check-flags \ [list "" { *-*-* } { "-mfpu=*" } \ { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" \ "-mfpu=*fpv[1-9][0-9]*" "-mfpu=*fp-armv8*" } ]] { # Multilib flags would override -mfpu. return 0 } if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] { # Must generate floating-point instructions. return 0 } if [check_effective_target_arm_hf_eabi] { # Use existing float-abi and force an fpu which supports fp16 set et_arm_fp16_flags "-mfpu=vfpv4" return 1; } if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] { # The existing -mfpu value is OK; use it, but add softfp. set et_arm_fp16_flags "-mfloat-abi=softfp" return 1; } # Add -mfpu for a VFP fp16 variant since there is no preprocessor # macro to check for this support. set flags "-mfpu=vfpv4 -mfloat-abi=softfp" if { [check_no_compiler_messages_nocache arm_fp16_ok assembly { int dummy; } "$flags"] } { set et_arm_fp16_flags "$flags" return 1 } return 0 } proc check_effective_target_arm_fp16_ok { } { return [check_cached_effective_target arm_fp16_ok \ check_effective_target_arm_fp16_ok_nocache] } # Return 1 if the target supports executing VFP FP16 instructions, 0 # otherwise. This test is valid for ARM only. proc check_effective_target_arm_fp16_hw { } { if {! [check_effective_target_arm_fp16_ok] } { return 0 } global et_arm_fp16_flags check_runtime_nocache arm_fp16_hw { int main (int argc, char **argv) { __fp16 a = 1.0; float r; asm ("vcvtb.f32.f16 %0, %1" : "=w" (r) : "w" (a) : /* No clobbers. */); return (r == 1.0) ? 0 : 1; } } "$et_arm_fp16_flags -mfp16-format=ieee" } # Creates a series of routines that return 1 if the given architecture # can be selected and a routine to give the flags to select that architecture # Note: Extra flags may be added to disable options from newer compilers # (Thumb in particular - but others may be added in the future). # Warning: Do not use check_effective_target_arm_arch_*_ok for architecture # extension (eg. ARMv8.1-A) since there is no macro defined for them. See # how only __ARM_ARCH_8A__ is checked for ARMv8.1-A. # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */ # /* { dg-add-options arm_arch_v5t } */ # /* { dg-require-effective-target arm_arch_v5t_multilib } */ foreach { armfunc armflag armdefs } { v4 "-march=armv4 -marm" __ARM_ARCH_4__ v4t "-march=armv4t" __ARM_ARCH_4T__ v5t "-march=armv5t" __ARM_ARCH_5T__ v5te "-march=armv5te" __ARM_ARCH_5TE__ v6 "-march=armv6" __ARM_ARCH_6__ v6k "-march=armv6k" __ARM_ARCH_6K__ v6t2 "-march=armv6t2" __ARM_ARCH_6T2__ v6z "-march=armv6z" __ARM_ARCH_6Z__ v6m "-march=armv6-m -mthumb -mfloat-abi=soft" __ARM_ARCH_6M__ v7a "-march=armv7-a" __ARM_ARCH_7A__ v7r "-march=armv7-r" __ARM_ARCH_7R__ v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__ v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__ v7ve "-march=armv7ve -marm" "__ARM_ARCH_7A__ && __ARM_FEATURE_IDIV" v8a "-march=armv8-a" __ARM_ARCH_8A__ v8_1a "-march=armv8.1-a" __ARM_ARCH_8A__ v8_2a "-march=armv8.2-a" __ARM_ARCH_8A__ v8m_base "-march=armv8-m.base -mthumb -mfloat-abi=soft" __ARM_ARCH_8M_BASE__ v8m_main "-march=armv8-m.main -mthumb" __ARM_ARCH_8M_MAIN__ v8r "-march=armv8-r" __ARM_ARCH_8R__ } { eval [string map [list FUNC $armfunc FLAG $armflag DEFS $armdefs ] { proc check_effective_target_arm_arch_FUNC_ok { } { if { [ string match "*-marm*" "FLAG" ] && ![check_effective_target_arm_arm_ok] } { return 0 } return [check_no_compiler_messages arm_arch_FUNC_ok assembly { #if !(DEFS) #error !(DEFS) #endif int main (void) { return 0; } } "FLAG" ] } proc add_options_for_arm_arch_FUNC { flags } { return "$flags FLAG" } proc check_effective_target_arm_arch_FUNC_multilib { } { return [check_runtime arm_arch_FUNC_multilib { int main (void) { return 0; } } [add_options_for_arm_arch_FUNC ""]] } }] } # Return 1 if GCC was configured with --with-mode= proc check_effective_target_default_mode { } { return [check_configured_with "with-mode="] } # Return 1 if this is an ARM target where -marm causes ARM to be # used (not Thumb) proc check_effective_target_arm_arm_ok { } { return [check_no_compiler_messages arm_arm_ok assembly { #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__) #error !__arm__ || __thumb__ || __thumb2__ #endif } "-marm"] } # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be # used. proc check_effective_target_arm_thumb1_ok { } { return [check_no_compiler_messages arm_thumb1_ok assembly { #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__) #error !__arm__ || !__thumb__ || __thumb2__ #endif int foo (int i) { return i; } } "-mthumb"] } # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be # used. proc check_effective_target_arm_thumb2_ok { } { return [check_no_compiler_messages arm_thumb2_ok assembly { #if !defined(__thumb2__) #error !__thumb2__ #endif int foo (int i) { return i; } } "-mthumb"] } # Return 1 if this is an ARM target where Thumb-1 is used without options # added by the test. proc check_effective_target_arm_thumb1 { } { return [check_no_compiler_messages arm_thumb1 assembly { #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__) #error !__arm__ || !__thumb__ || __thumb2__ #endif int i; } ""] } # Return 1 if this is an ARM target where Thumb-2 is used without options # added by the test. proc check_effective_target_arm_thumb2 { } { return [check_no_compiler_messages arm_thumb2 assembly { #if !defined(__thumb2__) #error !__thumb2__ #endif int i; } ""] } # Return 1 if this is an ARM target where conditional execution is available. proc check_effective_target_arm_cond_exec { } { return [check_no_compiler_messages arm_cond_exec assembly { #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__) #error FOO #endif int i; } ""] } # Return 1 if this is an ARM cortex-M profile cpu proc check_effective_target_arm_cortex_m { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_cortex_m assembly { #if defined(__ARM_ARCH_ISA_ARM) #error __ARM_ARCH_ISA_ARM is defined #endif int i; } "-mthumb"] } # Return 1 if this is an ARM target where -mthumb causes Thumb-1 to be # used and MOVT/MOVW instructions to be available. proc check_effective_target_arm_thumb1_movt_ok {} { if [check_effective_target_arm_thumb1_ok] { return [check_no_compiler_messages arm_movt object { int foo (void) { asm ("movt r0, #42"); } } "-mthumb"] } else { return 0 } } # Return 1 if this is an ARM target where -mthumb causes Thumb-1 to be # used and CBZ and CBNZ instructions are available. proc check_effective_target_arm_thumb1_cbz_ok {} { if [check_effective_target_arm_thumb1_ok] { return [check_no_compiler_messages arm_movt object { int foo (void) { asm ("cbz r0, 2f\n2:"); } } "-mthumb"] } else { return 0 } } # Return 1 if this is an ARM target where ARMv8-M Security Extensions is # available. proc check_effective_target_arm_cmse_ok {} { return [check_no_compiler_messages arm_cmse object { int foo (void) { asm ("bxns r0"); } } "-mcmse"]; } # Return 1 if this compilation turns on string_ops_prefer_neon on. proc check_effective_target_arm_tune_string_ops_prefer_neon { } { return [check_no_messages_and_pattern arm_tune_string_ops_prefer_neon "@string_ops_prefer_neon:\t1" assembly { int foo (void) { return 0; } } "-O2 -mprint-tune-info" ] } # Return 1 if the target supports executing NEON instructions, 0 # otherwise. Cache the result. proc check_effective_target_arm_neon_hw { } { return [check_runtime arm_neon_hw_available { int main (void) { long long a = 0, b = 1; asm ("vorr %P0, %P1, %P2" : "=w" (a) : "0" (a), "w" (b)); return (a != 1); } } [add_options_for_arm_neon ""]] } # Return true if this is an AArch64 target that can run SVE code. proc check_effective_target_aarch64_sve_hw { } { if { ![istarget aarch64*-*-*] } { return 0 } return [check_runtime aarch64_sve_hw_available { int main (void) { asm volatile ("ptrue p0.b"); return 0; } }] } # Return true if this is an AArch64 target that can run SVE code and # if its SVE vectors have exactly BITS bits. proc aarch64_sve_hw_bits { bits } { if { ![check_effective_target_aarch64_sve_hw] } { return 0 } return [check_runtime aarch64_sve${bits}_hw [subst { int main (void) { int res; asm volatile ("cntd %0" : "=r" (res)); if (res * 64 != $bits) __builtin_abort (); return 0; } }]] } # Return true if this is an AArch64 target that can run SVE code and # if its SVE vectors have exactly 256 bits. proc check_effective_target_aarch64_sve256_hw { } { return [aarch64_sve_hw_bits 256] } proc check_effective_target_arm_neonv2_hw { } { return [check_runtime arm_neon_hwv2_available { #include "arm_neon.h" int main (void) { float32x2_t a, b, c; asm ("vfma.f32 %P0, %P1, %P2" : "=w" (a) : "w" (b), "w" (c)); return 0; } } [add_options_for_arm_neonv2 ""]] } # Return 1 if the target supports the ARMv8.1 Adv.SIMD extension, 0 # otherwise. The test is valid for AArch64 and ARM. Record the command # line options needed. proc check_effective_target_arm_v8_1a_neon_ok_nocache { } { global et_arm_v8_1a_neon_flags set et_arm_v8_1a_neon_flags "" if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } { return 0; } # Iterate through sets of options to find the compiler flags that # need to be added to the -march option. Start with the empty set # since AArch64 only needs the -march setting. foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \ "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} { foreach arches { "-march=armv8-a+rdma" "-march=armv8.1-a" } { if { [check_no_compiler_messages_nocache arm_v8_1a_neon_ok object { #if !defined (__ARM_FEATURE_QRDMX) #error "__ARM_FEATURE_QRDMX not defined" #endif } "$flags $arches"] } { set et_arm_v8_1a_neon_flags "$flags $arches" return 1 } } } return 0; } proc check_effective_target_arm_v8_1a_neon_ok { } { return [check_cached_effective_target arm_v8_1a_neon_ok \ check_effective_target_arm_v8_1a_neon_ok_nocache] } # Return 1 if the target supports ARMv8.2 scalar FP16 arithmetic # instructions, 0 otherwise. The test is valid for ARM and for AArch64. # Record the command line options needed. proc check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache { } { global et_arm_v8_2a_fp16_scalar_flags set et_arm_v8_2a_fp16_scalar_flags "" if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } { return 0; } # Iterate through sets of options to find the compiler flags that # need to be added to the -march option. foreach flags {"" "-mfpu=fp-armv8" "-mfloat-abi=softfp" \ "-mfpu=fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache \ arm_v8_2a_fp16_scalar_ok object { #if !defined (__ARM_FEATURE_FP16_SCALAR_ARITHMETIC) #error "__ARM_FEATURE_FP16_SCALAR_ARITHMETIC not defined" #endif } "$flags -march=armv8.2-a+fp16"] } { set et_arm_v8_2a_fp16_scalar_flags "$flags -march=armv8.2-a+fp16" return 1 } } return 0; } proc check_effective_target_arm_v8_2a_fp16_scalar_ok { } { return [check_cached_effective_target arm_v8_2a_fp16_scalar_ok \ check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache] } # Return 1 if the target supports ARMv8.2 Adv.SIMD FP16 arithmetic # instructions, 0 otherwise. The test is valid for ARM and for AArch64. # Record the command line options needed. proc check_effective_target_arm_v8_2a_fp16_neon_ok_nocache { } { global et_arm_v8_2a_fp16_neon_flags set et_arm_v8_2a_fp16_neon_flags "" if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } { return 0; } # Iterate through sets of options to find the compiler flags that # need to be added to the -march option. foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \ "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache \ arm_v8_2a_fp16_neon_ok object { #if !defined (__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) #error "__ARM_FEATURE_FP16_VECTOR_ARITHMETIC not defined" #endif } "$flags -march=armv8.2-a+fp16"] } { set et_arm_v8_2a_fp16_neon_flags "$flags -march=armv8.2-a+fp16" return 1 } } return 0; } proc check_effective_target_arm_v8_2a_fp16_neon_ok { } { return [check_cached_effective_target arm_v8_2a_fp16_neon_ok \ check_effective_target_arm_v8_2a_fp16_neon_ok_nocache] } # Return 1 if the target supports ARMv8.2 Adv.SIMD Dot Product # instructions, 0 otherwise. The test is valid for ARM and for AArch64. # Record the command line options needed. proc check_effective_target_arm_v8_2a_dotprod_neon_ok_nocache { } { global et_arm_v8_2a_dotprod_neon_flags set et_arm_v8_2a_dotprod_neon_flags "" if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } { return 0; } # Iterate through sets of options to find the compiler flags that # need to be added to the -march option. foreach flags {"" "-mfloat-abi=softfp -mfpu=neon-fp-armv8" "-mfloat-abi=hard -mfpu=neon-fp-armv8"} { if { [check_no_compiler_messages_nocache \ arm_v8_2a_dotprod_neon_ok object { #include #if !defined (__ARM_FEATURE_DOTPROD) #error "__ARM_FEATURE_DOTPROD not defined" #endif } "$flags -march=armv8.2-a+dotprod"] } { set et_arm_v8_2a_dotprod_neon_flags "$flags -march=armv8.2-a+dotprod" return 1 } } return 0; } proc check_effective_target_arm_v8_2a_dotprod_neon_ok { } { return [check_cached_effective_target arm_v8_2a_dotprod_neon_ok \ check_effective_target_arm_v8_2a_dotprod_neon_ok_nocache] } proc add_options_for_arm_v8_2a_dotprod_neon { flags } { if { ! [check_effective_target_arm_v8_2a_dotprod_neon_ok] } { return "$flags" } global et_arm_v8_2a_dotprod_neon_flags return "$flags $et_arm_v8_2a_dotprod_neon_flags" } # Return 1 if the target supports FP16 VFMAL and VFMSL # instructions, 0 otherwise. # Record the command line options needed. proc check_effective_target_arm_fp16fml_neon_ok_nocache { } { global et_arm_fp16fml_neon_flags set et_arm_fp16fml_neon_flags "" if { ![istarget arm*-*-*] } { return 0; } # Iterate through sets of options to find the compiler flags that # need to be added to the -march option. foreach flags {"" "-mfloat-abi=softfp -mfpu=neon-fp-armv8" "-mfloat-abi=hard -mfpu=neon-fp-armv8"} { if { [check_no_compiler_messages_nocache \ arm_fp16fml_neon_ok assembly { #include float32x2_t foo (float32x2_t r, float16x4_t a, float16x4_t b) { return vfmlal_high_u32 (r, a, b); } } "$flags -march=armv8.2-a+fp16fml"] } { set et_arm_fp16fml_neon_flags "$flags -march=armv8.2-a+fp16fml" return 1 } } return 0; } proc check_effective_target_arm_fp16fml_neon_ok { } { return [check_cached_effective_target arm_fp16fml_neon_ok \ check_effective_target_arm_fp16fml_neon_ok_nocache] } proc add_options_for_arm_fp16fml_neon { flags } { if { ! [check_effective_target_arm_fp16fml_neon_ok] } { return "$flags" } global et_arm_fp16fml_neon_flags return "$flags $et_arm_fp16fml_neon_flags" } # Return 1 if the target supports executing ARMv8 NEON instructions, 0 # otherwise. proc check_effective_target_arm_v8_neon_hw { } { return [check_runtime arm_v8_neon_hw_available { #include "arm_neon.h" int main (void) { float32x2_t a = { 1.0f, 2.0f }; #ifdef __ARM_ARCH_ISA_A64 asm ("frinta %0.2s, %1.2s" : "=w" (a) : "w" (a)); #else asm ("vrinta.f32 %P0, %P1" : "=w" (a) : "0" (a)); #endif return a[0] == 2.0f; } } [add_options_for_arm_v8_neon ""]] } # Return 1 if the target supports executing the ARMv8.1 Adv.SIMD extension, 0 # otherwise. The test is valid for AArch64 and ARM. proc check_effective_target_arm_v8_1a_neon_hw { } { if { ![check_effective_target_arm_v8_1a_neon_ok] } { return 0; } return [check_runtime arm_v8_1a_neon_hw_available { int main (void) { #ifdef __ARM_ARCH_ISA_A64 __Int32x2_t a = {0, 1}; __Int32x2_t b = {0, 2}; __Int32x2_t result; asm ("sqrdmlah %0.2s, %1.2s, %2.2s" : "=w"(result) : "w"(a), "w"(b) : /* No clobbers. */); #else __simd64_int32_t a = {0, 1}; __simd64_int32_t b = {0, 2}; __simd64_int32_t result; asm ("vqrdmlah.s32 %P0, %P1, %P2" : "=w"(result) : "w"(a), "w"(b) : /* No clobbers. */); #endif return result[0]; } } [add_options_for_arm_v8_1a_neon ""]] } # Return 1 if the target supports executing floating point instructions from # ARMv8.2 with the FP16 extension, 0 otherwise. The test is valid for ARM and # for AArch64. proc check_effective_target_arm_v8_2a_fp16_scalar_hw { } { if { ![check_effective_target_arm_v8_2a_fp16_scalar_ok] } { return 0; } return [check_runtime arm_v8_2a_fp16_scalar_hw_available { int main (void) { __fp16 a = 1.0; __fp16 result; #ifdef __ARM_ARCH_ISA_A64 asm ("fabs %h0, %h1" : "=w"(result) : "w"(a) : /* No clobbers. */); #else asm ("vabs.f16 %0, %1" : "=w"(result) : "w"(a) : /* No clobbers. */); #endif return (result == 1.0) ? 0 : 1; } } [add_options_for_arm_v8_2a_fp16_scalar ""]] } # Return 1 if the target supports executing Adv.SIMD instructions from ARMv8.2 # with the FP16 extension, 0 otherwise. The test is valid for ARM and for # AArch64. proc check_effective_target_arm_v8_2a_fp16_neon_hw { } { if { ![check_effective_target_arm_v8_2a_fp16_neon_ok] } { return 0; } return [check_runtime arm_v8_2a_fp16_neon_hw_available { int main (void) { #ifdef __ARM_ARCH_ISA_A64 __Float16x4_t a = {1.0, -1.0, 1.0, -1.0}; __Float16x4_t result; asm ("fabs %0.4h, %1.4h" : "=w"(result) : "w"(a) : /* No clobbers. */); #else __simd64_float16_t a = {1.0, -1.0, 1.0, -1.0}; __simd64_float16_t result; asm ("vabs.f16 %P0, %P1" : "=w"(result) : "w"(a) : /* No clobbers. */); #endif return (result[0] == 1.0) ? 0 : 1; } } [add_options_for_arm_v8_2a_fp16_neon ""]] } # Return 1 if the target supports executing AdvSIMD instructions from ARMv8.2 # with the Dot Product extension, 0 otherwise. The test is valid for ARM and for # AArch64. proc check_effective_target_arm_v8_2a_dotprod_neon_hw { } { if { ![check_effective_target_arm_v8_2a_dotprod_neon_ok] } { return 0; } return [check_runtime arm_v8_2a_dotprod_neon_hw_available { #include "arm_neon.h" int main (void) { uint32x2_t results = {0,0}; uint8x8_t a = {1,1,1,1,2,2,2,2}; uint8x8_t b = {2,2,2,2,3,3,3,3}; #ifdef __ARM_ARCH_ISA_A64 asm ("udot %0.2s, %1.8b, %2.8b" : "=w"(results) : "w"(a), "w"(b) : /* No clobbers. */); #else asm ("vudot.u8 %P0, %P1, %P2" : "=w"(results) : "w"(a), "w"(b) : /* No clobbers. */); #endif return (results[0] == 8 && results[1] == 24) ? 1 : 0; } } [add_options_for_arm_v8_2a_dotprod_neon ""]] } # Return 1 if this is a ARM target with NEON enabled. proc check_effective_target_arm_neon { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_neon object { #ifndef __ARM_NEON__ #error not NEON #else int dummy; #endif }] } else { return 0 } } proc check_effective_target_arm_neonv2 { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_neon object { #ifndef __ARM_NEON__ #error not NEON #else #ifndef __ARM_FEATURE_FMA #error not NEONv2 #else int dummy; #endif #endif }] } else { return 0 } } # Return 1 if this is an ARM target with load acquire and store release # instructions for 8-, 16- and 32-bit types. proc check_effective_target_arm_acq_rel { } { return [check_no_compiler_messages arm_acq_rel object { void load_acquire_store_release (void) { asm ("lda r0, [r1]\n\t" "stl r0, [r1]\n\t" "ldah r0, [r1]\n\t" "stlh r0, [r1]\n\t" "ldab r0, [r1]\n\t" "stlb r0, [r1]" : : : "r0", "memory"); } }] } # Add the options needed for MIPS Paired-Single. proc add_options_for_mpaired_single { flags } { if { ! [check_effective_target_mpaired_single] } { return "$flags" } return "$flags -mpaired-single" } # Add the options needed for MIPS SIMD Architecture. proc add_options_for_mips_msa { flags } { if { ! [check_effective_target_mips_msa] } { return "$flags" } return "$flags -mmsa" } # Add the options needed for MIPS Loongson MMI Architecture. proc add_options_for_mips_loongson_mmi { flags } { if { ! [check_effective_target_mips_loongson_mmi] } { return "$flags" } return "$flags -mloongson-mmi" } # Return 1 if this a Loongson-2E or -2F target using an ABI that supports # the Loongson vector modes. proc check_effective_target_mips_loongson_mmi { } { return [check_no_compiler_messages loongson assembly { #if !defined(__mips_loongson_mmi) #error !__mips_loongson_mmi #endif #if !defined(__mips_loongson_vector_rev) #error !__mips_loongson_vector_rev #endif }] } # Return 1 if this is a MIPS target that supports the legacy NAN. proc check_effective_target_mips_nanlegacy { } { return [check_no_compiler_messages nanlegacy assembly { #include int main () { return 0; } } "-mnan=legacy"] } # Return 1 if an MSA program can be compiled to object proc check_effective_target_mips_msa { } { if ![check_effective_target_nomips16] { return 0 } return [check_no_compiler_messages msa object { #if !defined(__mips_msa) #error "MSA NOT AVAIL" #else #if !(((__mips == 64) || (__mips == 32)) && (__mips_isa_rev >= 2)) #error "MSA NOT AVAIL FOR ISA REV < 2" #endif #if !defined(__mips_hard_float) #error "MSA HARD_FLOAT REQUIRED" #endif #if __mips_fpr != 64 #error "MSA 64-bit FPR REQUIRED" #endif #include int main() { v8i16 v = __builtin_msa_ldi_h (1); return v[0]; } #endif } "-mmsa" ] } # Return 1 if this is an ARM target that adheres to the ABI for the ARM # Architecture. proc check_effective_target_arm_eabi { } { return [check_no_compiler_messages arm_eabi object { #ifndef __ARM_EABI__ #error not EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target that adheres to the hard-float variant of # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard). proc check_effective_target_arm_hf_eabi { } { return [check_no_compiler_messages arm_hf_eabi object { #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP) #error not hard-float EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target that uses the soft float ABI # with no floating-point instructions at all (e.g. -mfloat-abi=soft). proc check_effective_target_arm_softfloat { } { return [check_no_compiler_messages arm_softfloat object { #if !defined(__SOFTFP__) #error not soft-float EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target supporting -mcpu=iwmmxt. # Some multilibs may be incompatible with this option. proc check_effective_target_arm_iwmmxt_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_iwmmxt_ok object { int dummy; } "-mcpu=iwmmxt"] } else { return 0 } } # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions # for an ARM target. proc check_effective_target_arm_prefer_ldrd_strd { } { if { ![check_effective_target_arm32] } { return 0; } return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly { void foo (void) { __asm__ ("" ::: "r4", "r5"); } } "-O2 -mthumb" ] } # Return 1 if this is a PowerPC target supporting -meabi. proc check_effective_target_powerpc_eabi_ok { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_eabi_ok object { int dummy; } "-meabi"] } else { return 0 } } # Return 1 if this is a PowerPC target with floating-point registers. proc check_effective_target_powerpc_fprs { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_fprs object { #ifdef __NO_FPRS__ #error no FPRs #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with hardware double-precision # floating point. proc check_effective_target_powerpc_hard_double { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_hard_double object { #ifdef _SOFT_DOUBLE #error soft double #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -maltivec. proc check_effective_target_powerpc_altivec_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_altivec_ok object { int dummy; } "-maltivec"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mpower8-vector proc check_effective_target_powerpc_p8vector_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_p8vector_ok object { int main (void) { #ifdef __MACH__ asm volatile ("xxlorc vs0,vs0,vs0"); #else asm volatile ("xxlorc 0,0,0"); #endif return 0; } } "-mpower8-vector"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mpower9-vector proc check_effective_target_powerpc_p9vector_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_p9vector_ok object { int main (void) { long e = -1; vector double v = (vector double) { 0.0, 0.0 }; asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v)); return e; } } "-mpower9-vector"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mmodulo proc check_effective_target_powerpc_p9modulo_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_p9modulo_ok object { int main (void) { int i = 5, j = 3, r = -1; asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j)); return (r == 2); } } "-mmodulo"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mfloat128 via either # software emulation on power7/power8 systems or hardware support on power9. proc check_effective_target_powerpc_float128_sw_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_float128_sw_ok object { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z = x + y; return (z == 3.0q); } } "-mfloat128 -mvsx"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mfloat128 via hardware # support on power9. proc check_effective_target_powerpc_float128_hw_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_float128_hw_ok object { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z; __asm__ ("xsaddqp %0,%1,%2" : "=v" (z) : "v" (x), "v" (y)); return (z == 3.0q); } } "-mfloat128-hardware"] } else { return 0 } } # Return 1 if current options define float128, 0 otherwise. proc check_effective_target_ppc_float128 { } { return [check_no_compiler_messages_nocache ppc_float128 object { #ifndef __FLOAT128__ nope no good #endif }] } # Return 1 if current options generate float128 insns, 0 otherwise. proc check_effective_target_ppc_float128_insns { } { return [check_no_compiler_messages_nocache ppc_float128 object { #ifndef __FLOAT128_HARDWARE__ nope no good #endif }] } # Return 1 if current options generate VSX instructions, 0 otherwise. proc check_effective_target_powerpc_vsx { } { return [check_no_compiler_messages_nocache powerpc_vsx object { #ifndef __VSX__ nope no vsx #endif }] } # Return 1 if this is a PowerPC target supporting -mvsx proc check_effective_target_powerpc_vsx_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # VSX is not supported on AIX before 7.1. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5*] || [istarget powerpc*-*-aix6*] } { return 0 } return [check_no_compiler_messages powerpc_vsx_ok object { int main (void) { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif return 0; } } "-mvsx"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mhtm proc check_effective_target_powerpc_htm_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # HTM is not supported on AIX yet. if { [istarget powerpc*-*-aix*] } { return 0 } return [check_no_compiler_messages powerpc_htm_ok object { int main (void) { asm volatile ("tbegin. 0"); return 0; } } "-mhtm"] } else { return 0 } } # Return 1 if the target supports executing HTM hardware instructions, # 0 otherwise. Cache the result. proc check_htm_hw_available { } { return [check_cached_effective_target htm_hw_available { # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { check_runtime_nocache htm_hw_available { int main() { __builtin_ttest (); return 0; } } "-mhtm" } }] } # Return 1 if this is a PowerPC target supporting -mcpu=cell. proc check_effective_target_powerpc_ppu_ok { } { if [check_effective_target_powerpc_altivec_ok] { return [check_no_compiler_messages cell_asm_available object { int main (void) { #ifdef __MACH__ asm volatile ("lvlx v0,v0,v0"); #else asm volatile ("lvlx 0,0,0"); #endif return 0; } }] } else { return 0 } } # Return 1 if this is a PowerPC target that supports SPU. proc check_effective_target_powerpc_spu { } { if { [istarget powerpc*-*-linux*] } { return [check_effective_target_powerpc_altivec_ok] } else { return 0 } } # Return 1 if this is a PowerPC SPE target. The check includes options # specified by dg-options for this test, so don't cache the result. proc check_effective_target_powerpc_spe_nocache { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages_nocache powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif } [current_compiler_flags]] } else { return 0 } } # Return 1 if this is a PowerPC target with SPE enabled. proc check_effective_target_powerpc_spe { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with Altivec enabled. proc check_effective_target_powerpc_altivec { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_altivec object { #ifndef __ALTIVEC__ #error not Altivec #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC 405 target. The check includes options # specified by dg-options for this test, so don't cache the result. proc check_effective_target_powerpc_405_nocache { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages_nocache powerpc_405 object { #ifdef __PPC405__ int dummy; #else #error not a PPC405 #endif } [current_compiler_flags]] } else { return 0 } } # Return 1 if this is a PowerPC target using the ELFv2 ABI. proc check_effective_target_powerpc_elfv2 { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_elfv2 object { #if _CALL_ELF != 2 #error not ELF v2 ABI #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a SPU target with a toolchain that # supports automatic overlay generation. proc check_effective_target_spu_auto_overlay { } { if { [istarget spu*-*-elf*] } { return [check_no_compiler_messages spu_auto_overlay executable { int main (void) { } } "-Wl,--auto-overlay" ] } else { return 0 } } # The VxWorks SPARC simulator accepts only EM_SPARC executables and # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the # test environment appears to run executables on such a simulator. proc check_effective_target_ultrasparc_hw { } { return [check_runtime ultrasparc_hw { int main() { return 0; } } "-mcpu=ultrasparc"] } # Return 1 if the test environment supports executing UltraSPARC VIS2 # instructions. We check this by attempting: "bmask %g0, %g0, %g0" proc check_effective_target_ultrasparc_vis2_hw { } { return [check_runtime ultrasparc_vis2_hw { int main() { __asm__(".word 0x81b00320"); return 0; } } "-mcpu=ultrasparc3"] } # Return 1 if the test environment supports executing UltraSPARC VIS3 # instructions. We check this by attempting: "addxc %g0, %g0, %g0" proc check_effective_target_ultrasparc_vis3_hw { } { return [check_runtime ultrasparc_vis3_hw { int main() { __asm__(".word 0x81b00220"); return 0; } } "-mcpu=niagara3"] } # Return 1 if this is a SPARC-V9 target. proc check_effective_target_sparc_v9 { } { if { [istarget sparc*-*-*] } { return [check_no_compiler_messages sparc_v9 object { int main (void) { asm volatile ("return %i7+8"); return 0; } }] } else { return 0 } } # Return 1 if this is a SPARC target with VIS enabled. proc check_effective_target_sparc_vis { } { if { [istarget sparc*-*-*] } { return [check_no_compiler_messages sparc_vis object { #ifndef __VIS__ #error not VIS #else int dummy; #endif }] } else { return 0 } } # Return 1 if the target supports hardware vector shift operation. proc check_effective_target_vect_shift { } { return [check_cached_effective_target_indexed vect_shift { expr {([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [is-effective-target arm_neon] || ([istarget mips*-*-*] && ([et-is-effective-target mips_msa] || [et-is-effective-target mips_loongson_mmi])) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports hardware vector shift by register operation. proc check_effective_target_vect_var_shift { } { return [check_cached_effective_target_indexed vect_var_shift { expr {(([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_avx2_available]) }}] } proc check_effective_target_whole_vector_shift { } { if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [istarget powerpc64*-*-*] || ([is-effective-target arm_neon] && [check_effective_target_arm_little_endian]) || ([istarget mips*-*-*] && [et-is-effective-target mips_loongson_mmi]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long: returning $answer" 2 return $answer } # Return 1 if the target supports vector bswap operations. proc check_effective_target_vect_bswap { } { return [check_cached_effective_target_indexed vect_bswap { expr { [istarget aarch64*-*-*] || [is-effective-target arm_neon] }}] } # Return 1 if the target supports hardware vector shift operation for char. proc check_effective_target_vect_shift_char { } { return [check_cached_effective_target_indexed vect_shift_char { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [is-effective-target arm_neon] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports hardware vectors of long, 0 otherwise. # # This can change for different subtargets so do not cache the result. proc check_effective_target_vect_long { } { if { [istarget i?86-*-*] || [istarget x86_64-*-*] || (([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) && [check_effective_target_ilp32]) || [is-effective-target arm_neon] || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) || [istarget aarch64*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long: returning $answer" 2 return $answer } # Return 1 if the target supports hardware vectors of float when # -funsafe-math-optimizations is enabled, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_float { } { return [check_cached_effective_target_indexed vect_float { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget mips-sde-elf] || [istarget mipsisa64*-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || [is-effective-target arm_neon] || ([istarget s390*-*-*] && [check_effective_target_s390_vxe]) }}] } # Return 1 if the target supports hardware vectors of float without # -funsafe-math-optimizations being enabled, 0 otherwise. proc check_effective_target_vect_float_strict { } { return [expr { [check_effective_target_vect_float] && ![istarget arm*-*-*] }] } # Return 1 if the target supports hardware vectors of double, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_double { } { return [check_cached_effective_target_indexed vect_double { expr { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_no_compiler_messages vect_double assembly { #ifdef __tune_atom__ # error No double vectorizer support. #endif }]) || [istarget aarch64*-*-*] || [istarget spu-*-*] || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx])} }] } # Return 1 if the target supports conditional addition, subtraction, # multiplication, division, minimum and maximum on vectors of double, # via the cond_ optabs. Return 0 otherwise. proc check_effective_target_vect_double_cond_arith { } { return [check_effective_target_aarch64_sve] } # Return 1 if the target supports hardware vectors of long long, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_long_long { } { return [check_cached_effective_target_indexed vect_long_long { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target plus current options does not support a vector # max instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_min_max { } { return [check_cached_effective_target_indexed vect_no_int_min_max { expr { [istarget sparc*-*-*] || [istarget spu-*-*] || [istarget alpha*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_loongson_mmi]) }}] } # Return 1 if the target plus current options does not support a vector # add instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_add { } { # Alpha only supports vector add on V8QI and V4HI. return [check_cached_effective_target_indexed vect_no_int_add { expr { [istarget alpha*-*-*] }}] } # Return 1 if the target plus current options does not support vector # bitwise instructions, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_bitwise { } { return [check_cached_effective_target_indexed vect_no_bitwise { return 0 }] } # Return 1 if the target plus current options supports vector permutation, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm { } { return [check_cached_effective_target_indexed vect_perm { expr { [is-effective-target arm_neon] || [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget mips*-*-*] && ([et-is-effective-target mpaired_single] || [et-is-effective-target mips_msa])) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if, for some VF: # # - the target's default vector size is VF * ELEMENT_BITS bits # # - it is possible to implement the equivalent of: # # int_t s1[COUNT][COUNT * VF], s2[COUNT * VF]; # for (int i = 0; i < COUNT; ++i) # for (int j = 0; j < COUNT * VF; ++j) # s1[i][j] = s2[j - j % COUNT + i] # # using only a single 2-vector permute for each vector in s1. # # E.g. for COUNT == 3 and vector length 4, the two arrays would be: # # s2 | a0 a1 a2 a3 | b0 b1 b2 b3 | c0 c1 c2 c3 # ------+-------------+-------------+------------ # s1[0] | a0 a0 a0 a3 | a3 a3 b2 b2 | b2 c1 c1 c1 # s1[1] | a1 a1 a1 b0 | b0 b0 b3 b3 | b3 c2 c2 c2 # s1[2] | a2 a2 a2 b1 | b1 b1 c0 c0 | c0 c3 c3 c3 # # Each s1 permute requires only two of a, b and c. # # The distance between the start of vector n in s1[0] and the start # of vector n in s2 is: # # A = (n * VF) % COUNT # # The corresponding value for the end of vector n is: # # B = (n * VF + VF - 1) % COUNT # # Subtracting i from each value gives the corresponding difference # for s1[i]. The condition being tested by this function is false # iff A - i > 0 and B - i < 0 for some i and n, such that the first # element for s1[i] comes from vector n - 1 of s2 and the last element # comes from vector n + 1 of s2. The condition is therefore true iff # A <= B for all n. This is turn means the condition is true iff: # # (n * VF) % COUNT + (VF - 1) % COUNT < COUNT # # for all n. COUNT - (n * VF) % COUNT is bounded by gcd (VF, COUNT), # and will be that value for at least one n in [0, COUNT), so we want: # # (VF - 1) % COUNT < gcd (VF, COUNT) proc vect_perm_supported { count element_bits } { set vector_bits [lindex [available_vector_sizes] 0] # The number of vectors has to be a power of 2 when permuting # variable-length vectors. if { $vector_bits <= 0 && ($count & -$count) != $count } { return 0 } set vf [expr { $vector_bits / $element_bits }] # Compute gcd (VF, COUNT). set gcd $vf set temp1 $count while { $temp1 > 0 } { set temp2 [expr { $gcd % $temp1 }] set gcd $temp1 set temp1 $temp2 } return [expr { ($vf - 1) % $count < $gcd }] } # Return 1 if the target supports SLP permutation of 3 vectors when each # element has 32 bits. proc check_effective_target_vect_perm3_int { } { return [expr { [check_effective_target_vect_perm] && [vect_perm_supported 3 32] }] } # Return 1 if the target plus current options supports vector permutation # on byte-sized elements, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm_byte { } { return [check_cached_effective_target_indexed vect_perm_byte { expr { ([is-effective-target arm_neon] && [is-effective-target arm_little_endian]) || ([istarget aarch64*-*-*] && [is-effective-target aarch64_little_endian]) || [istarget powerpc*-*-*] || [istarget spu-*-*] || ([istarget mips-*.*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports SLP permutation of 3 vectors when each # element has 8 bits. proc check_effective_target_vect_perm3_byte { } { return [expr { [check_effective_target_vect_perm_byte] && [vect_perm_supported 3 8] }] } # Return 1 if the target plus current options supports vector permutation # on short-sized elements, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm_short { } { return [check_cached_effective_target_indexed vect_perm_short { expr { ([is-effective-target arm_neon] && [is-effective-target arm_little_endian]) || ([istarget aarch64*-*-*] && [is-effective-target aarch64_little_endian]) || [istarget powerpc*-*-*] || [istarget spu-*-*] || (([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_ssse3_available]) || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports SLP permutation of 3 vectors when each # element has 16 bits. proc check_effective_target_vect_perm3_short { } { return [expr { [check_effective_target_vect_perm_short] && [vect_perm_supported 3 16] }] } # Return 1 if the target plus current options supports folding of # copysign into XORSIGN. # # This won't change for different subtargets so cache the result. proc check_effective_target_xorsign { } { return [check_cached_effective_target_indexed xorsign { expr { [istarget aarch64*-*-*] || [istarget arm*-*-*] }}] } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } { return [check_cached_effective_target_indexed vect_widen_sum_hi_to_si_pattern { expr { [istarget powerpc*-*-*] || ([istarget aarch64*-*-*] && ![check_effective_target_aarch64_sve]) || [is-effective-target arm_neon] || [istarget ia64-*-*] }}] } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from shorts to ints. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si { } { return [check_cached_effective_target_indexed vect_widen_sum_hi_to_si { expr { [check_effective_target_vect_unpack] || [istarget powerpc*-*-*] || [istarget ia64-*-*] }}] } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *short* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from chars to shorts. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_hi { } { return [check_cached_effective_target_indexed vect_widen_sum_qi_to_hi { expr { [check_effective_target_vect_unpack] || [is-effective-target arm_neon] || [istarget ia64-*-*] }}] } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_si { } { return [check_cached_effective_target_indexed vect_widen_sum_qi_to_si { expr { [istarget powerpc*-*-*] }}] } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening # multiplication of shorts). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi { } { return [check_cached_effective_target_indexed vect_widen_mult_qi_to_hi { expr { ([check_effective_target_vect_unpack] && [check_effective_target_vect_short_mult]) || ([istarget powerpc*-*-*] || ([istarget aarch64*-*-*] && ![check_effective_target_aarch64_sve]) || [is-effective-target arm_neon] || ([istarget s390*-*-*] && [check_effective_target_s390_vx])) }}] } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening # multiplication of ints). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si { } { return [check_cached_effective_target_indexed vect_widen_mult_hi_to_si { expr { ([check_effective_target_vect_unpack] && [check_effective_target_vect_int_mult]) || ([istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || ([istarget aarch64*-*-*] && ![check_effective_target_aarch64_sve]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [is-effective-target arm_neon] || ([istarget s390*-*-*] && [check_effective_target_s390_vx])) }}] } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } { return [check_cached_effective_target_indexed vect_widen_mult_qi_to_hi_pattern { expr { [istarget powerpc*-*-*] || ([is-effective-target arm_neon] && [check_effective_target_arm_little_endian]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } { return [check_cached_effective_target_indexed vect_widen_mult_hi_to_si_pattern { expr { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([is-effective-target arm_neon] && [check_effective_target_arm_little_endian]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target plus current options supports a vector # widening multiplication of *int* args into *long* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_si_to_di_pattern { } { return [check_cached_effective_target_indexed vect_widen_mult_si_to_di_pattern { expr { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target plus current options supports a vector # widening shift, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_shift { } { return [check_cached_effective_target_indexed vect_widen_shift { expr { [is-effective-target arm_neon] }}] } # Return 1 if the target plus current options supports a vector # dot-product of signed chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_qi { } { return [check_cached_effective_target_indexed vect_sdot_qi { expr { [istarget ia64-*-*] || [istarget aarch64*-*-*] || [istarget arm*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target plus current options supports a vector # dot-product of unsigned chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_qi { } { return [check_cached_effective_target_indexed vect_udot_qi { expr { [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || [istarget arm*-*-*] || [istarget ia64-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target plus current options supports a vector # dot-product of signed shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_hi { } { return [check_cached_effective_target_indexed vect_sdot_hi { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target plus current options supports a vector # dot-product of unsigned shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_hi { } { return [check_cached_effective_target_indexed vect_udot_hi { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) }}] } # Return 1 if the target plus current options supports a vector # sad operation of unsigned chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_usad_char { } { return [check_cached_effective_target_indexed vect_usad_char { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget aarch64*-*-*] && ![check_effective_target_aarch64_sve])}}] } # Return 1 if the target plus current options supports both signed # and unsigned average operations on vectors of bytes. proc check_effective_target_vect_avg_qi {} { return [expr { [istarget aarch64*-*-*] && ![check_effective_target_aarch64_sve] }] } # Return 1 if the target plus current options supports a vector # demotion (packing) of shorts (to chars) and ints (to shorts) # using modulo arithmetic, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_pack_trunc { } { return [check_cached_effective_target_indexed vect_pack_trunc { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target plus current options supports a vector # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_unpack { } { return [check_cached_effective_target_indexed vect_unpack { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target plus current options does not guarantee # that its STACK_BOUNDARY is >= the reguired vector alignment. # # This won't change for different subtargets so cache the result. proc check_effective_target_unaligned_stack { } { return [check_cached_effective_target_indexed unaligned_stack { expr 0 }] } # Return 1 if the target plus current options does not support a vector # alignment mechanism, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_align { } { return [check_cached_effective_target_indexed vect_no_align { expr { [istarget mipsisa64*-*-*] || [istarget mips-sde-elf] || [istarget sparc*-*-*] || [istarget ia64-*-*] || [check_effective_target_arm_vect_no_misalign] || ([istarget powerpc*-*-*] && [check_p8vector_hw_available]) || ([istarget mips*-*-*] && [et-is-effective-target mips_loongson_mmi]) }}] } # Return 1 if the target supports a vector misalign access, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_hw_misalign { } { return [check_cached_effective_target_indexed vect_hw_misalign { if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && [check_p8vector_hw_available]) || [istarget aarch64*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) } { return 1 } if { [istarget arm*-*-*] && ![check_effective_target_arm_vect_no_misalign] } { return 1 } return 0 }] } # Return 1 if arrays are aligned to the vector alignment # boundary, 0 otherwise. proc check_effective_target_vect_aligned_arrays { } { set et_vect_aligned_arrays 0 if { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && !([is-effective-target ia32] || ([check_avx_available] && ![check_prefer_avx128]))) || [istarget spu-*-*] } { set et_vect_aligned_arrays 1 } verbose "check_effective_target_vect_aligned_arrays:\ returning $et_vect_aligned_arrays" 2 return $et_vect_aligned_arrays } # Return 1 if types of size 32 bit or less are naturally aligned # (aligned to their type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment_32 { } { # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER. return [check_cached_effective_target_indexed natural_alignment_32 { if { ([istarget *-*-darwin*] && [is-effective-target lp64]) || [istarget avr-*-*] } { return 0 } else { return 1 } }] } # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their # type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment_64 { } { return [check_cached_effective_target_indexed natural_alignment_64 { expr { ([is-effective-target lp64] && ![istarget *-*-darwin*]) || [istarget spu-*-*] } }] } # Return 1 if all vector types are naturally aligned (aligned to their # type-size), 0 otherwise. proc check_effective_target_vect_natural_alignment { } { set et_vect_natural_alignment 1 if { [check_effective_target_arm_eabi] || [istarget nvptx-*-*] || [istarget s390*-*-*] } { set et_vect_natural_alignment 0 } verbose "check_effective_target_vect_natural_alignment:\ returning $et_vect_natural_alignment" 2 return $et_vect_natural_alignment } # Return true if fully-masked loops are supported. proc check_effective_target_vect_fully_masked { } { return [check_effective_target_aarch64_sve] } # Return 1 if the target doesn't prefer any alignment beyond element # alignment during vectorization. proc check_effective_target_vect_element_align_preferred { } { return [expr { [check_effective_target_aarch64_sve] && [check_effective_target_vect_variable_length] }] } # Return 1 if we can align stack data to the preferred vector alignment. proc check_effective_target_vect_align_stack_vars { } { if { [check_effective_target_aarch64_sve] } { return [check_effective_target_vect_variable_length] } return 1 } # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise. proc check_effective_target_vector_alignment_reachable { } { set et_vector_alignment_reachable 0 if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment_32] } { set et_vector_alignment_reachable 1 } verbose "check_effective_target_vector_alignment_reachable:\ returning $et_vector_alignment_reachable" 2 return $et_vector_alignment_reachable } # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise. proc check_effective_target_vector_alignment_reachable_for_64bit { } { set et_vector_alignment_reachable_for_64bit 0 if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment_64] } { set et_vector_alignment_reachable_for_64bit 1 } verbose "check_effective_target_vector_alignment_reachable_for_64bit:\ returning $et_vector_alignment_reachable_for_64bit" 2 return $et_vector_alignment_reachable_for_64bit } # Return 1 if the target only requires element alignment for vector accesses proc check_effective_target_vect_element_align { } { return [check_cached_effective_target_indexed vect_element_align { expr { ([istarget arm*-*-*] && ![check_effective_target_arm_vect_no_misalign]) || [check_effective_target_vect_hw_misalign] }}] } # Return 1 if we expect to see unaligned accesses in at least some # vector dumps. proc check_effective_target_vect_unaligned_possible { } { return [expr { ![check_effective_target_vect_element_align_preferred] && (![check_effective_target_vect_no_align] || [check_effective_target_vect_hw_misalign]) }] } # Return 1 if the target supports vector LOAD_LANES operations, 0 otherwise. proc check_effective_target_vect_load_lanes { } { # We don't support load_lanes correctly on big-endian arm. return [check_cached_effective_target vect_load_lanes { expr { ([check_effective_target_arm_little_endian] && [check_effective_target_arm_neon_ok]) || [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector masked stores. proc check_effective_target_vect_masked_store { } { return [check_effective_target_aarch64_sve] } # Return 1 if the target supports vector scatter stores. proc check_effective_target_vect_scatter_store { } { return [check_effective_target_aarch64_sve] } # Return 1 if the target supports vector conditional operations, 0 otherwise. proc check_effective_target_vect_condition { } { return [check_cached_effective_target_indexed vect_condition { expr { [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector conditional operations where # the comparison has different type from the lhs, 0 otherwise. proc check_effective_target_vect_cond_mixed { } { return [check_cached_effective_target_indexed vect_cond_mixed { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector char multiplication, 0 otherwise. proc check_effective_target_vect_char_mult { } { return [check_cached_effective_target_indexed vect_char_mult { expr { [istarget aarch64*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [check_effective_target_arm32] || [check_effective_target_powerpc_altivec] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector short multiplication, 0 otherwise. proc check_effective_target_vect_short_mult { } { return [check_cached_effective_target_indexed vect_short_mult { expr { [istarget ia64-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && ([et-is-effective-target mips_msa] || [et-is-effective-target mips_loongson_mmi])) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector int multiplication, 0 otherwise. proc check_effective_target_vect_int_mult { } { return [check_cached_effective_target_indexed vect_int_mult { expr { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) || [check_effective_target_arm32] || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports 64 bit hardware vector # multiplication of long operands with a long result, 0 otherwise. # # This can change for different subtargets so do not cache the result. proc check_effective_target_vect_long_mult { } { if { [istarget i?86-*-*] || [istarget x86_64-*-*] || (([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) && [check_effective_target_ilp32]) || [is-effective-target arm_neon] || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) || [istarget aarch64*-*-*] || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long_mult: returning $answer" 2 return $answer } # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise. proc check_effective_target_vect_extract_even_odd { } { return [check_cached_effective_target_indexed extract_even_odd { expr { [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [is-effective-target arm_neon] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && ([et-is-effective-target mips_msa] || [et-is-effective-target mpaired_single])) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector interleaving, 0 otherwise. proc check_effective_target_vect_interleave { } { return [check_cached_effective_target_indexed vect_interleave { expr { [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [is-effective-target arm_neon] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && ([et-is-effective-target mpaired_single] || [et-is-effective-target mips_msa])) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } foreach N {2 3 4 8} { eval [string map [list N $N] { # Return 1 if the target supports 2-vector interleaving proc check_effective_target_vect_stridedN { } { return [check_cached_effective_target_indexed vect_stridedN { if { (N & -N) == N && [check_effective_target_vect_interleave] && [check_effective_target_vect_extract_even_odd] } { return 1 } if { ([istarget arm*-*-*] || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } { return 1 } return 0 }] } }] } # Return the list of vector sizes (in bits) that each target supports. # A vector length of "0" indicates variable-length vectors. proc available_vector_sizes { } { set result {} if { [istarget aarch64*-*-*] } { if { [check_effective_target_aarch64_sve] } { lappend result [aarch64_sve_bits] } lappend result 128 64 } elseif { [istarget arm*-*-*] && [check_effective_target_arm_neon_ok] } { lappend result 128 64 } elseif { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && ([check_avx_available] && ![check_prefer_avx128])) } { lappend result 256 128 } elseif { [istarget sparc*-*-*] } { lappend result 64 } else { # The traditional default asumption. lappend result 128 } return $result } # Return 1 if the target supports multiple vector sizes proc check_effective_target_vect_multiple_sizes { } { return [expr { [llength [available_vector_sizes]] > 1 }] } # Return true if variable-length vectors are supported. proc check_effective_target_vect_variable_length { } { return [expr { [lindex [available_vector_sizes] 0] == 0 }] } # Return 1 if the target supports vectors of 64 bits. proc check_effective_target_vect64 { } { return [expr { [lsearch -exact [available_vector_sizes] 64] >= 0 }] } # Return 1 if the target supports vector copysignf calls. proc check_effective_target_vect_call_copysignf { } { return [check_cached_effective_target_indexed vect_call_copysignf { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget aarch64*-*-*] }}] } # Return 1 if the target supports hardware square root instructions. proc check_effective_target_sqrt_insn { } { return [check_cached_effective_target sqrt_insn { expr { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_vfp_ok]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector sqrtf calls. proc check_effective_target_vect_call_sqrtf { } { return [check_cached_effective_target_indexed vect_call_sqrtf { expr { [istarget aarch64*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) || ([istarget s390*-*-*] && [check_effective_target_s390_vx]) }}] } # Return 1 if the target supports vector lrint calls. proc check_effective_target_vect_call_lrint { } { set et_vect_call_lrint 0 if { (([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32]) } { set et_vect_call_lrint 1 } verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2 return $et_vect_call_lrint } # Return 1 if the target supports vector btrunc calls. proc check_effective_target_vect_call_btrunc { } { return [check_cached_effective_target_indexed vect_call_btrunc { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector btruncf calls. proc check_effective_target_vect_call_btruncf { } { return [check_cached_effective_target_indexed vect_call_btruncf { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector ceil calls. proc check_effective_target_vect_call_ceil { } { return [check_cached_effective_target_indexed vect_call_ceil { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector ceilf calls. proc check_effective_target_vect_call_ceilf { } { return [check_cached_effective_target_indexed vect_call_ceilf { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector floor calls. proc check_effective_target_vect_call_floor { } { return [check_cached_effective_target_indexed vect_call_floor { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector floorf calls. proc check_effective_target_vect_call_floorf { } { return [check_cached_effective_target_indexed vect_call_floorf { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector lceil calls. proc check_effective_target_vect_call_lceil { } { return [check_cached_effective_target_indexed vect_call_lceil { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector lfloor calls. proc check_effective_target_vect_call_lfloor { } { return [check_cached_effective_target_indexed vect_call_lfloor { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector nearbyint calls. proc check_effective_target_vect_call_nearbyint { } { return [check_cached_effective_target_indexed vect_call_nearbyint { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector nearbyintf calls. proc check_effective_target_vect_call_nearbyintf { } { return [check_cached_effective_target_indexed vect_call_nearbyintf { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector round calls. proc check_effective_target_vect_call_round { } { return [check_cached_effective_target_indexed vect_call_round { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports vector roundf calls. proc check_effective_target_vect_call_roundf { } { return [check_cached_effective_target_indexed vect_call_roundf { expr { [istarget aarch64*-*-*] }}] } # Return 1 if the target supports AND, OR and XOR reduction. proc check_effective_target_vect_logical_reduc { } { return [check_effective_target_aarch64_sve] } # Return 1 if the target supports the fold_extract_last optab. proc check_effective_target_vect_fold_extract_last { } { return [check_effective_target_aarch64_sve] } # Return 1 if the target supports section-anchors proc check_effective_target_section_anchors { } { return [check_cached_effective_target section_anchors { expr { [istarget powerpc*-*-*] || [istarget arm*-*-*] || [istarget aarch64*-*-*] }}] } # Return 1 if the target supports atomic operations on "int_128" values. proc check_effective_target_sync_int_128 { } { if { [istarget spu-*-*] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "int_128" values # and can execute them. # This requires support for both compare-and-swap and true atomic loads. proc check_effective_target_sync_int_128_runtime { } { if { [istarget spu-*-*] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "long long". # # Note: 32bit x86 targets require -march=pentium in dg-options. # Note: 32bit s390 targets require -mzarch in dg-options. proc check_effective_target_sync_long_long { } { if { [istarget i?86-*-*] || [istarget x86_64-*-*]) || [istarget aarch64*-*-*] || [istarget arm*-*-*] || [istarget alpha*-*-*] || ([istarget sparc*-*-*] && [check_effective_target_lp64]) || [istarget s390*-*-*] || [istarget spu-*-*] } { return 1 } else { return 0 } } # Return 1 if the target supports popcount on long. proc check_effective_target_popcountl { } { return [check_no_messages_and_pattern popcountl "!\\(call" rtl-expand { int foo (long b) { return __builtin_popcountl (b); } } "" ] } # Return 1 if the target supports atomic operations on "long long" # and can execute them. # # Note: 32bit x86 targets require -march=pentium in dg-options. proc check_effective_target_sync_long_long_runtime { } { if { (([istarget x86_64-*-*] || [istarget i?86-*-*]) && [check_cached_effective_target sync_long_long_available { check_runtime_nocache sync_long_long_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_CMPXCHG8B); return 1; } } "" }]) || [istarget aarch64*-*-*] || ([istarget arm*-*-linux-*] && [check_runtime sync_longlong_runtime { #include int main () { long long l1; if (sizeof (long long) != 8) exit (1); /* Just check for native; checking for kernel fallback is tricky. */ asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1"); exit (0); } } "" ]) || [istarget alpha*-*-*] || ([istarget sparc*-*-*] && [check_effective_target_lp64] && [check_effective_target_ultrasparc_hw]) || [istarget spu-*-*] || ([istarget powerpc*-*-*] && [check_effective_target_lp64]) } { return 1 } else { return 0 } } # Return 1 if the target supports byte swap instructions. proc check_effective_target_bswap { } { return [check_cached_effective_target bswap { expr { [istarget aarch64*-*-*] || [istarget alpha*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget m68k-*-*] || [istarget powerpc*-*-*] || [istarget rs6000-*-*] || [istarget s390*-*-*] || ([istarget arm*-*-*] && [check_no_compiler_messages_nocache arm_v6_or_later object { #if __ARM_ARCH < 6 #error not armv6 or later #endif int i; } ""]) }}] } # Return 1 if the target supports atomic operations on "int" and "long". proc check_effective_target_sync_int_long { } { # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. return [check_cached_effective_target sync_int_long { expr { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [istarget alpha*-*-*] || [istarget arm*-*-linux-*] || ([istarget arm*-*-*] && [check_effective_target_arm_acq_rel]) || [istarget bfin*-*linux*] || [istarget hppa*-*linux*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9]) || [istarget spu-*-*] || ([istarget arc*-*-*] && [check_effective_target_arc_atomic]) || [check_effective_target_mips_llsc] }}] } # Return 1 if the target supports atomic operations on "char" and "short". proc check_effective_target_sync_char_short { } { # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. return [check_cached_effective_target sync_char_short { expr { [istarget aarch64*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget alpha*-*-*] || [istarget arm*-*-linux-*] || ([istarget arm*-*-*] && [check_effective_target_arm_acq_rel]) || [istarget hppa*-*linux*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9]) || [istarget spu-*-*] || ([istarget arc*-*-*] && [check_effective_target_arc_atomic]) || [check_effective_target_mips_llsc] }}] } # Return 1 if the target uses a ColdFire FPU. proc check_effective_target_coldfire_fpu { } { return [check_no_compiler_messages coldfire_fpu assembly { #ifndef __mcffpu__ #error !__mcffpu__ #endif }] } # Return true if this is a uClibc target. proc check_effective_target_uclibc {} { return [check_no_compiler_messages uclibc object { #include #if !defined (__UCLIBC__) #error !__UCLIBC__ #endif }] } # Return true if this is a uclibc target and if the uclibc feature # described by __$feature__ is not present. proc check_missing_uclibc_feature {feature} { return [check_no_compiler_messages $feature object " #include #if !defined (__UCLIBC) || defined (__${feature}__) #error FOO #endif "] } # Return true if this is a Newlib target. proc check_effective_target_newlib {} { return [check_no_compiler_messages newlib object { #include }] } # Return true if GCC was configured with --enable-newlib-nano-formatted-io proc check_effective_target_newlib_nano_io { } { return [check_configured_with "--enable-newlib-nano-formatted-io"] } # Some newlib versions don't provide a frexpl and instead depend # on frexp to implement long double conversions in their printf-like # functions. This leads to broken results. Detect such versions here. proc check_effective_target_newlib_broken_long_double_io {} { if { [is-effective-target newlib] && ![is-effective-target frexpl] } { return 1 } return 0 } # Return true if this is NOT a Bionic target. proc check_effective_target_non_bionic {} { return [check_no_compiler_messages non_bionic object { #include #if defined (__BIONIC__) #error FOO #endif }] } # Return true if this target has error.h header. proc check_effective_target_error_h {} { return [check_no_compiler_messages error_h object { #include }] } # Return true if this target has tgmath.h header. proc check_effective_target_tgmath_h {} { return [check_no_compiler_messages tgmath_h object { #include }] } # Return true if target's libc supports complex functions. proc check_effective_target_libc_has_complex_functions {} { return [check_no_compiler_messages libc_has_complex_functions object { #include }] } # Return 1 if # (a) an error of a few ULP is expected in string to floating-point # conversion functions; and # (b) overflow is not always detected correctly by those functions. proc check_effective_target_lax_strtofp {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if this is a target for which wcsftime is a dummy # function that always returns 0. proc check_effective_target_dummy_wcsftime {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if constructors with initialization priority arguments are # supposed on this target. proc check_effective_target_init_priority {} { return [check_no_compiler_messages init_priority assembly " void f() __attribute__((constructor (1000))); void f() \{\} "] } # Return 1 if the target matches the effective target 'arg', 0 otherwise. # This can be used with any check_* proc that takes no argument and # returns only 1 or 0. It could be used with check_* procs that take # arguments with keywords that pass particular arguments. proc is-effective-target { arg } { global et_index set selected 0 if { ![info exists et_index] } { # Initialize the effective target index that is used in some # check_effective_target_* procs. set et_index 0 } if { [info procs check_effective_target_${arg}] != [list] } { set selected [check_effective_target_${arg}] } else { switch $arg { "vmx_hw" { set selected [check_vmx_hw_available] } "vsx_hw" { set selected [check_vsx_hw_available] } "p8vector_hw" { set selected [check_p8vector_hw_available] } "p9vector_hw" { set selected [check_p9vector_hw_available] } "p9modulo_hw" { set selected [check_p9modulo_hw_available] } "ppc_float128_sw" { set selected [check_ppc_float128_sw_available] } "ppc_float128_hw" { set selected [check_ppc_float128_hw_available] } "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] } "ppc_cpu_supports_hw" { set selected [check_ppc_cpu_supports_hw_available] } "dfp_hw" { set selected [check_dfp_hw_available] } "htm_hw" { set selected [check_htm_hw_available] } "named_sections" { set selected [check_named_sections_available] } "gc_sections" { set selected [check_gc_sections_available] } "cxa_atexit" { set selected [check_cxa_atexit_available] } default { error "unknown effective target keyword `$arg'" } } } verbose "is-effective-target: $arg $selected" 2 return $selected } # Return 1 if the argument is an effective-target keyword, 0 otherwise. proc is-effective-target-keyword { arg } { if { [info procs check_effective_target_${arg}] != [list] } { return 1 } else { # These have different names for their check_* procs. switch $arg { "vmx_hw" { return 1 } "vsx_hw" { return 1 } "p8vector_hw" { return 1 } "p9vector_hw" { return 1 } "p9modulo_hw" { return 1 } "ppc_float128_sw" { return 1 } "ppc_float128_hw" { return 1 } "ppc_recip_hw" { return 1 } "dfp_hw" { return 1 } "htm_hw" { return 1 } "named_sections" { return 1 } "gc_sections" { return 1 } "cxa_atexit" { return 1 } default { return 0 } } } } # Execute tests for all targets in EFFECTIVE_TARGETS list. Set et_index to # indicate what target is currently being processed. This is for # the vectorizer tests, e.g. vect_int, to keep track what target supports # a given feature. proc et-dg-runtest { runtest testcases flags default-extra-flags } { global dg-do-what-default global EFFECTIVE_TARGETS global et_index if { [llength $EFFECTIVE_TARGETS] > 0 } { foreach target $EFFECTIVE_TARGETS { set target_flags $flags set dg-do-what-default compile set et_index [lsearch -exact $EFFECTIVE_TARGETS $target] if { [info procs add_options_for_${target}] != [list] } { set target_flags [add_options_for_${target} "$flags"] } if { [info procs check_effective_target_${target}_runtime] != [list] && [check_effective_target_${target}_runtime] } { set dg-do-what-default run } $runtest $testcases $target_flags ${default-extra-flags} } } else { set et_index 0 $runtest $testcases $flags ${default-extra-flags} } } # Return 1 if a target matches the target in EFFECTIVE_TARGETS at index # et_index, 0 otherwise. proc et-is-effective-target { target } { global EFFECTIVE_TARGETS global et_index if { [llength $EFFECTIVE_TARGETS] > $et_index && [lindex $EFFECTIVE_TARGETS $et_index] == $target } { return 1 } return 0 } # Return 1 if target default to short enums proc check_effective_target_short_enums { } { return [check_no_compiler_messages short_enums assembly { enum foo { bar }; int s[sizeof (enum foo) == 1 ? 1 : -1]; }] } # Return 1 if target supports merging string constants at link time. proc check_effective_target_string_merging { } { return [check_no_messages_and_pattern string_merging \ "rodata\\.str" assembly { const char *var = "String"; } {-O2}] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. This will be obsolete when GCC ensures a # working for all targets. proc check_effective_target_stdint_types { } { return [check_no_compiler_messages stdint_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. This is for tests that GCC's notions of # these types agree with those in the header, as some systems have # only . proc check_effective_target_inttypes_types { } { return [check_no_compiler_messages inttypes_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if programs are intended to be run on a simulator # (i.e. slowly) rather than hardware (i.e. fast). proc check_effective_target_simulator { } { # All "src/sim" simulators set this one. if [board_info target exists is_simulator] { return [board_info target is_simulator] } # The "sid" simulators don't set that one, but at least they set # this one. if [board_info target exists slow_simulator] { return [board_info target slow_simulator] } return 0 } # Return 1 if programs are intended to be run on hardware rather than # on a simulator proc check_effective_target_hw { } { # All "src/sim" simulators set this one. if [board_info target exists is_simulator] { if [board_info target is_simulator] { return 0 } else { return 1 } } # The "sid" simulators don't set that one, but at least they set # this one. if [board_info target exists slow_simulator] { if [board_info target slow_simulator] { return 0 } else { return 1 } } return 1 } # Return 1 if the target is a VxWorks kernel. proc check_effective_target_vxworks_kernel { } { return [check_no_compiler_messages vxworks_kernel assembly { #if !defined __vxworks || defined __RTP__ #error NO #endif }] } # Return 1 if the target is a VxWorks RTP. proc check_effective_target_vxworks_rtp { } { return [check_no_compiler_messages vxworks_rtp assembly { #if !defined __vxworks || !defined __RTP__ #error NO #endif }] } # Return 1 if the target is expected to provide wide character support. proc check_effective_target_wchar { } { if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} { return 0 } return [check_no_compiler_messages wchar assembly { #include }] } # Return 1 if the target has . proc check_effective_target_pthread_h { } { return [check_no_compiler_messages pthread_h assembly { #include }] } # Return 1 if the target can truncate a file from a file-descriptor, # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or # chsize. We test for a trivially functional truncation; no stubs. # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a # different function to be used. proc check_effective_target_fd_truncate { } { set prog { #define _FILE_OFFSET_BITS 64 #include #include #include #include int main () { FILE *f = fopen ("tst.tmp", "wb"); int fd; const char t[] = "test writing more than ten characters"; char s[11]; int status = 0; fd = fileno (f); write (fd, t, sizeof (t) - 1); lseek (fd, 0, 0); if (ftruncate (fd, 10) != 0) status = 1; close (fd); fclose (f); if (status) { unlink ("tst.tmp"); exit (status); } f = fopen ("tst.tmp", "rb"); if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0) status = 1; fclose (f); unlink ("tst.tmp"); exit (status); } } if { [check_runtime ftruncate $prog] } { return 1; } regsub "ftruncate" $prog "chsize" prog return [check_runtime chsize $prog] } # Add to FLAGS all the target-specific flags needed to access the c99 runtime. proc add_options_for_c99_runtime { flags } { if { [istarget *-*-solaris2*] } { return "$flags -std=c99" } if { [istarget powerpc-*-darwin*] } { return "$flags -mmacosx-version-min=10.3" } return $flags } # Add to FLAGS all the target-specific flags needed to enable # full IEEE compliance mode. proc add_options_for_ieee { flags } { if { [istarget alpha*-*-*] || [istarget sh*-*-*] } { return "$flags -mieee" } if { [istarget rx-*-*] } { return "$flags -mnofpu" } return $flags } if {![info exists flags_to_postpone]} { set flags_to_postpone "" } # Add to FLAGS the flags needed to enable functions to bind locally # when using pic/PIC passes in the testsuite. proc add_options_for_bind_pic_locally { flags } { global flags_to_postpone # Instead of returning 'flags' with the -fPIE or -fpie appended, we save it # in 'flags_to_postpone' and append it later in gcc_target_compile procedure in # order to make sure that the multilib_flags doesn't override this. if {[check_no_compiler_messages using_pic2 assembly { #if __PIC__ != 2 #error __PIC__ != 2 #endif }]} { set flags_to_postpone "-fPIE" return $flags } if {[check_no_compiler_messages using_pic1 assembly { #if __PIC__ != 1 #error __PIC__ != 1 #endif }]} { set flags_to_postpone "-fpie" return $flags } return $flags } # Add to FLAGS the flags needed to enable 64-bit vectors. proc add_options_for_double_vectors { flags } { if [is-effective-target arm_neon_ok] { return "$flags -mvectorize-with-neon-double" } return $flags } # Add to FLAGS the flags needed to define the STACK_SIZE macro. proc add_options_for_stack_size { flags } { if [is-effective-target stack_size] { set stack_size [dg-effective-target-value stack_size] return "$flags -DSTACK_SIZE=$stack_size" } return $flags } # Return 1 if the target provides a full C99 runtime. proc check_effective_target_c99_runtime { } { return [check_cached_effective_target c99_runtime { global srcdir set file [open "$srcdir/gcc.dg/builtins-config.h"] set contents [read $file] close $file append contents { #ifndef HAVE_C99_RUNTIME #error !HAVE_C99_RUNTIME #endif } check_no_compiler_messages_nocache c99_runtime assembly \ $contents [add_options_for_c99_runtime ""] }] } # Return 1 if the target provides the D runtime. proc check_effective_target_d_runtime { } { return [check_no_compiler_messages d_runtime executable { // D module mod; extern(C) int main() { return 0; } }] } # Return 1 if target wchar_t is at least 4 bytes. proc check_effective_target_4byte_wchar_t { } { return [check_no_compiler_messages 4byte_wchar_t object { int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1]; }] } # Return 1 if the target supports automatic stack alignment. proc check_effective_target_automatic_stack_alignment { } { # Ordinarily x86 supports automatic stack alignment ... if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then { if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } { # ... except Win64 SEH doesn't. Succeed for Win32 though. return [check_effective_target_ilp32]; } return 1; } return 0; } # Return true if we are compiling for AVX target. proc check_avx_available { } { if { [check_no_compiler_messages avx_available assembly { #ifndef __AVX__ #error unsupported #endif } ""] } { return 1; } return 0; } # Return true if we are compiling for AVX2 target. proc check_avx2_available { } { if { [check_no_compiler_messages avx_available assembly { #ifndef __AVX2__ #error unsupported #endif } ""] } { return 1; } return 0; } # Return true if we are compiling for SSSE3 target. proc check_ssse3_available { } { if { [check_no_compiler_messages sse3a_available assembly { #ifndef __SSSE3__ #error unsupported #endif } ""] } { return 1; } return 0; } # Return true if 32- and 16-bytes vectors are available. proc check_effective_target_vect_sizes_32B_16B { } { return [expr { [available_vector_sizes] == [list 256 128] }] } # Return true if 16- and 8-bytes vectors are available. proc check_effective_target_vect_sizes_16B_8B { } { if { [check_avx_available] || [is-effective-target arm_neon] || [istarget aarch64*-*-*] } { return 1; } else { return 0; } } # Return true if 128-bits vectors are preferred even if 256-bits vectors # are available. proc check_prefer_avx128 { } { if ![check_avx_available] { return 0; } return [check_no_messages_and_pattern avx_explicit "xmm" assembly { float a[1024],b[1024],c[1024]; void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];} } "-O2 -ftree-vectorize"] } # Return 1 if avx512f instructions can be compiled. proc check_effective_target_avx512f { } { return [check_no_compiler_messages avx512f object { typedef double __m512d __attribute__ ((__vector_size__ (64))); typedef double __m128d __attribute__ ((__vector_size__ (16))); __m512d _mm512_add (__m512d a) { return __builtin_ia32_addpd512_mask (a, a, a, 1, 4); } __m128d _mm128_add (__m128d a) { return __builtin_ia32_addsd_round (a, a, 8); } __m128d _mm128_getmant (__m128d a) { return __builtin_ia32_getmantsd_round (a, a, 0, 8); } } "-O2 -mavx512f" ] } # Return 1 if avx instructions can be compiled. proc check_effective_target_avx { } { if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { return 0 } return [check_no_compiler_messages avx object { void _mm256_zeroall (void) { __builtin_ia32_vzeroall (); } } "-O2 -mavx" ] } # Return 1 if avx2 instructions can be compiled. proc check_effective_target_avx2 { } { return [check_no_compiler_messages avx2 object { typedef long long __v4di __attribute__ ((__vector_size__ (32))); __v4di mm256_is32_andnotsi256 (__v4di __X, __v4di __Y) { return __builtin_ia32_andnotsi256 (__X, __Y); } } "-O0 -mavx2" ] } # Return 1 if sse instructions can be compiled. proc check_effective_target_sse { } { return [check_no_compiler_messages sse object { int main () { __builtin_ia32_stmxcsr (); return 0; } } "-O2 -msse" ] } # Return 1 if sse2 instructions can be compiled. proc check_effective_target_sse2 { } { return [check_no_compiler_messages sse2 object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); __m128i _mm_srli_si128 (__m128i __A, int __N) { return (__m128i)__builtin_ia32_psrldqi128 (__A, 8); } } "-O2 -msse2" ] } # Return 1 if sse4.1 instructions can be compiled. proc check_effective_target_sse4 { } { return [check_no_compiler_messages sse4.1 object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef int __v4si __attribute__ ((__vector_size__ (16))); __m128i _mm_mullo_epi32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmulld128 ((__v4si)__X, (__v4si)__Y); } } "-O2 -msse4.1" ] } # Return 1 if F16C instructions can be compiled. proc check_effective_target_f16c { } { return [check_no_compiler_messages f16c object { #include "immintrin.h" float foo (unsigned short val) { return _cvtsh_ss (val); } } "-O2 -mf16c" ] } proc check_effective_target_ms_hook_prologue { } { if { [check_no_compiler_messages ms_hook_prologue object { void __attribute__ ((__ms_hook_prologue__)) foo (); } ""] } { return 1 } else { return 0 } } # Return 1 if 3dnow instructions can be compiled. proc check_effective_target_3dnow { } { return [check_no_compiler_messages 3dnow object { typedef int __m64 __attribute__ ((__vector_size__ (8))); typedef float __v2sf __attribute__ ((__vector_size__ (8))); __m64 _m_pfadd (__m64 __A, __m64 __B) { return (__m64) __builtin_ia32_pfadd ((__v2sf)__A, (__v2sf)__B); } } "-O2 -m3dnow" ] } # Return 1 if sse3 instructions can be compiled. proc check_effective_target_sse3 { } { return [check_no_compiler_messages sse3 object { typedef double __m128d __attribute__ ((__vector_size__ (16))); typedef double __v2df __attribute__ ((__vector_size__ (16))); __m128d _mm_addsub_pd (__m128d __X, __m128d __Y) { return (__m128d) __builtin_ia32_addsubpd ((__v2df)__X, (__v2df)__Y); } } "-O2 -msse3" ] } # Return 1 if ssse3 instructions can be compiled. proc check_effective_target_ssse3 { } { return [check_no_compiler_messages ssse3 object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef int __v4si __attribute__ ((__vector_size__ (16))); __m128i _mm_abs_epi32 (__m128i __X) { return (__m128i) __builtin_ia32_pabsd128 ((__v4si)__X); } } "-O2 -mssse3" ] } # Return 1 if aes instructions can be compiled. proc check_effective_target_aes { } { return [check_no_compiler_messages aes object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef long long __v2di __attribute__ ((__vector_size__ (16))); __m128i _mm_aesimc_si128 (__m128i __X) { return (__m128i) __builtin_ia32_aesimc128 ((__v2di)__X); } } "-O2 -maes" ] } # Return 1 if vaes instructions can be compiled. proc check_effective_target_vaes { } { return [check_no_compiler_messages vaes object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef long long __v2di __attribute__ ((__vector_size__ (16))); __m128i _mm_aesimc_si128 (__m128i __X) { return (__m128i) __builtin_ia32_aesimc128 ((__v2di)__X); } } "-O2 -maes -mavx" ] } # Return 1 if pclmul instructions can be compiled. proc check_effective_target_pclmul { } { return [check_no_compiler_messages pclmul object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef long long __v2di __attribute__ ((__vector_size__ (16))); __m128i pclmulqdq_test (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pclmulqdq128 ((__v2di)__X, (__v2di)__Y, 1); } } "-O2 -mpclmul" ] } # Return 1 if vpclmul instructions can be compiled. proc check_effective_target_vpclmul { } { return [check_no_compiler_messages vpclmul object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef long long __v2di __attribute__ ((__vector_size__ (16))); __m128i pclmulqdq_test (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pclmulqdq128 ((__v2di)__X, (__v2di)__Y, 1); } } "-O2 -mpclmul -mavx" ] } # Return 1 if sse4a instructions can be compiled. proc check_effective_target_sse4a { } { return [check_no_compiler_messages sse4a object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef long long __v2di __attribute__ ((__vector_size__ (16))); __m128i _mm_insert_si64 (__m128i __X,__m128i __Y) { return (__m128i) __builtin_ia32_insertq ((__v2di)__X, (__v2di)__Y); } } "-O2 -msse4a" ] } # Return 1 if fma4 instructions can be compiled. proc check_effective_target_fma4 { } { return [check_no_compiler_messages fma4 object { typedef float __m128 __attribute__ ((__vector_size__ (16))); typedef float __v4sf __attribute__ ((__vector_size__ (16))); __m128 _mm_macc_ps(__m128 __A, __m128 __B, __m128 __C) { return (__m128) __builtin_ia32_vfmaddps ((__v4sf)__A, (__v4sf)__B, (__v4sf)__C); } } "-O2 -mfma4" ] } # Return 1 if fma instructions can be compiled. proc check_effective_target_fma { } { return [check_no_compiler_messages fma object { typedef float __m128 __attribute__ ((__vector_size__ (16))); typedef float __v4sf __attribute__ ((__vector_size__ (16))); __m128 _mm_macc_ps(__m128 __A, __m128 __B, __m128 __C) { return (__m128) __builtin_ia32_vfmaddps ((__v4sf)__A, (__v4sf)__B, (__v4sf)__C); } } "-O2 -mfma" ] } # Return 1 if xop instructions can be compiled. proc check_effective_target_xop { } { return [check_no_compiler_messages xop object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef short __v8hi __attribute__ ((__vector_size__ (16))); __m128i _mm_maccs_epi16(__m128i __A, __m128i __B, __m128i __C) { return (__m128i) __builtin_ia32_vpmacssww ((__v8hi)__A, (__v8hi)__B, (__v8hi)__C); } } "-O2 -mxop" ] } # Return 1 if lzcnt instruction can be compiled. proc check_effective_target_lzcnt { } { return [check_no_compiler_messages lzcnt object { unsigned short _lzcnt (unsigned short __X) { return __builtin_clzs (__X); } } "-mlzcnt" ] } # Return 1 if bmi instructions can be compiled. proc check_effective_target_bmi { } { return [check_no_compiler_messages bmi object { unsigned int __bextr_u32 (unsigned int __X, unsigned int __Y) { return __builtin_ia32_bextr_u32 (__X, __Y); } } "-mbmi" ] } # Return 1 if ADX instructions can be compiled. proc check_effective_target_adx { } { return [check_no_compiler_messages adx object { unsigned char _adxcarry_u32 (unsigned char __CF, unsigned int __X, unsigned int __Y, unsigned int *__P) { return __builtin_ia32_addcarryx_u32 (__CF, __X, __Y, __P); } } "-madx" ] } # Return 1 if rtm instructions can be compiled. proc check_effective_target_rtm { } { return [check_no_compiler_messages rtm object { void _rtm_xend (void) { return __builtin_ia32_xend (); } } "-mrtm" ] } # Return 1 if avx512vl instructions can be compiled. proc check_effective_target_avx512vl { } { return [check_no_compiler_messages avx512vl object { typedef long long __v4di __attribute__ ((__vector_size__ (32))); __v4di mm256_and_epi64 (__v4di __X, __v4di __Y) { __v4di __W; return __builtin_ia32_pandq256_mask (__X, __Y, __W, -1); } } "-mavx512vl" ] } # Return 1 if avx512cd instructions can be compiled. proc check_effective_target_avx512cd { } { return [check_no_compiler_messages avx512cd_trans object { typedef long long __v8di __attribute__ ((__vector_size__ (64))); __v8di _mm512_conflict_epi64 (__v8di __W, __v8di __A) { return (__v8di) __builtin_ia32_vpconflictdi_512_mask ((__v8di) __A, (__v8di) __W, -1); } } "-Wno-psabi -mavx512cd" ] } # Return 1 if avx512er instructions can be compiled. proc check_effective_target_avx512er { } { return [check_no_compiler_messages avx512er_trans object { typedef float __v16sf __attribute__ ((__vector_size__ (64))); __v16sf mm512_exp2a23_ps (__v16sf __X) { return __builtin_ia32_exp2ps_mask (__X, __X, -1, 4); } } "-Wno-psabi -mavx512er" ] } # Return 1 if sha instructions can be compiled. proc check_effective_target_sha { } { return [check_no_compiler_messages sha object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); typedef int __v4si __attribute__ ((__vector_size__ (16))); __m128i _mm_sha1msg1_epu32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_sha1msg1 ((__v4si)__X, (__v4si)__Y); } } "-O2 -msha" ] } # Return 1 if avx512dq instructions can be compiled. proc check_effective_target_avx512dq { } { return [check_no_compiler_messages avx512dq object { typedef long long __v8di __attribute__ ((__vector_size__ (64))); __v8di _mm512_mask_mullo_epi64 (__v8di __W, __v8di __A, __v8di __B) { return (__v8di) __builtin_ia32_pmullq512_mask ((__v8di) __A, (__v8di) __B, (__v8di) __W, -1); } } "-mavx512dq" ] } # Return 1 if avx512bw instructions can be compiled. proc check_effective_target_avx512bw { } { return [check_no_compiler_messages avx512bw object { typedef short __v32hi __attribute__ ((__vector_size__ (64))); __v32hi _mm512_mask_mulhrs_epi16 (__v32hi __W, __v32hi __A, __v32hi __B) { return (__v32hi) __builtin_ia32_pmulhrsw512_mask ((__v32hi) __A, (__v32hi) __B, (__v32hi) __W, -1); } } "-mavx512bw" ] } # Return 1 if avx512ifma instructions can be compiled. proc check_effective_target_avx512ifma { } { return [check_no_compiler_messages avx512ifma object { typedef long long __v8di __attribute__ ((__vector_size__ (64))); __v8di _mm512_madd52lo_epu64 (__v8di __X, __v8di __Y, __v8di __Z) { return (__v8di) __builtin_ia32_vpmadd52luq512_mask ((__v8di) __X, (__v8di) __Y, (__v8di) __Z, -1); } } "-mavx512ifma" ] } # Return 1 if avx512vbmi instructions can be compiled. proc check_effective_target_avx512vbmi { } { return [check_no_compiler_messages avx512vbmi object { typedef char __v64qi __attribute__ ((__vector_size__ (64))); __v64qi _mm512_multishift_epi64_epi8 (__v64qi __X, __v64qi __Y) { return (__v64qi) __builtin_ia32_vpmultishiftqb512_mask ((__v64qi) __X, (__v64qi) __Y, (__v64qi) __Y, -1); } } "-mavx512vbmi" ] } # Return 1 if avx512_4fmaps instructions can be compiled. proc check_effective_target_avx5124fmaps { } { return [check_no_compiler_messages avx5124fmaps object { typedef float __v16sf __attribute__ ((__vector_size__ (64))); typedef float __v4sf __attribute__ ((__vector_size__ (16))); __v16sf _mm512_mask_4fmadd_ps (__v16sf __DEST, __v16sf __A, __v16sf __B, __v16sf __C, __v16sf __D, __v16sf __E, __v4sf *__F) { return (__v16sf) __builtin_ia32_4fmaddps_mask ((__v16sf) __A, (__v16sf) __B, (__v16sf) __C, (__v16sf) __D, (__v16sf) __E, (const __v4sf *) __F, (__v16sf) __DEST, 0xffff); } } "-mavx5124fmaps" ] } # Return 1 if avx512_4vnniw instructions can be compiled. proc check_effective_target_avx5124vnniw { } { return [check_no_compiler_messages avx5124vnniw object { typedef int __v16si __attribute__ ((__vector_size__ (64))); typedef int __v4si __attribute__ ((__vector_size__ (16))); __v16si _mm512_4dpwssd_epi32 (__v16si __A, __v16si __B, __v16si __C, __v16si __D, __v16si __E, __v4si *__F) { return (__v16si) __builtin_ia32_vp4dpwssd ((__v16si) __B, (__v16si) __C, (__v16si) __D, (__v16si) __E, (__v16si) __A, (const __v4si *) __F); } } "-mavx5124vnniw" ] } # Return 1 if avx512_vpopcntdq instructions can be compiled. proc check_effective_target_avx512vpopcntdq { } { return [check_no_compiler_messages avx512vpopcntdq object { typedef int __v16si __attribute__ ((__vector_size__ (64))); __v16si _mm512_popcnt_epi32 (__v16si __A) { return (__v16si) __builtin_ia32_vpopcountd_v16si ((__v16si) __A); } } "-mavx512vpopcntdq" ] } # Return 1 if 128 or 256-bit avx512_vpopcntdq instructions can be compiled. proc check_effective_target_avx512vpopcntdqvl { } { return [check_no_compiler_messages avx512vpopcntdqvl object { typedef int __v8si __attribute__ ((__vector_size__ (32))); __v8si _mm256_popcnt_epi32 (__v8si __A) { return (__v8si) __builtin_ia32_vpopcountd_v8si ((__v8si) __A); } } "-mavx512vpopcntdq -mavx512vl" ] } # Return 1 if gfni instructions can be compiled. proc check_effective_target_gfni { } { return [check_no_compiler_messages gfni object { typedef char __v16qi __attribute__ ((__vector_size__ (16))); __v16qi _mm_gf2p8affineinv_epi64_epi8 (__v16qi __A, __v16qi __B, const int __C) { return (__v16qi) __builtin_ia32_vgf2p8affineinvqb_v16qi ((__v16qi) __A, (__v16qi) __B, 0); } } "-mgfni" ] } # Return 1 if avx512vbmi2 instructions can be compiled. proc check_effective_target_avx512vbmi2 { } { return [check_no_compiler_messages avx512vbmi2 object { typedef char __v16qi __attribute__ ((__vector_size__ (16))); typedef unsigned long long __mmask16; __v16qi _mm_mask_compress_epi8 (__v16qi __A, __mmask16 __B, __v16qi __C) { return (__v16qi) __builtin_ia32_compressqi128_mask((__v16qi)__C, (__v16qi)__A, (__mmask16)__B); } } "-mavx512vbmi2 -mavx512vl" ] } # Return 1 if avx512vbmi2 instructions can be compiled. proc check_effective_target_avx512vnni { } { return [check_no_compiler_messages avx512vnni object { typedef int __v16si __attribute__ ((__vector_size__ (64))); __v16si _mm_mask_compress_epi8 (__v16si __A, __v16si __B, __v16si __C) { return (__v16si) __builtin_ia32_vpdpbusd_v16si ((__v16si)__A, (__v16si)__B, (__v16si)__C); } } "-mavx512vnni -mavx512f" ] } # Return 1 if vaes instructions can be compiled. proc check_effective_target_avx512vaes { } { return [check_no_compiler_messages avx512vaes object { typedef int __v16si __attribute__ ((__vector_size__ (64))); __v32qi _mm256_aesdec_epi128 (__v32qi __A, __v32qi __B) { return (__v32qi)__builtin_ia32_vaesdec_v32qi ((__v32qi) __A, (__v32qi) __B); } } "-mvaes" ] } # Return 1 if vpclmulqdq instructions can be compiled. proc check_effective_target_vpclmulqdq { } { return [check_no_compiler_messages vpclmulqdq object { typedef long long __v4di __attribute__ ((__vector_size__ (32))); __v4di _mm256_clmulepi64_epi128 (__v4di __A, __v4di __B) { return (__v4di) __builtin_ia32_vpclmulqdq_v4di (__A, __B, 0); } } "-mvpclmulqdq -mavx512vl" ] } # Return 1 if avx512_bitalg instructions can be compiled. proc check_effective_target_avx512bitalg { } { return [check_no_compiler_messages avx512bitalg object { typedef short int __v32hi __attribute__ ((__vector_size__ (64))); __v32hi _mm512_popcnt_epi16 (__v32hi __A) { return (__v32hi) __builtin_ia32_vpopcountw_v32hi ((__v32hi) __A); } } "-mavx512bitalg" ] } # Return 1 if C wchar_t type is compatible with char16_t. proc check_effective_target_wchar_t_char16_t_compatible { } { return [check_no_compiler_messages wchar_t_char16_t object { __WCHAR_TYPE__ wc; __CHAR16_TYPE__ *p16 = &wc; char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1]; }] } # Return 1 if C wchar_t type is compatible with char32_t. proc check_effective_target_wchar_t_char32_t_compatible { } { return [check_no_compiler_messages wchar_t_char32_t object { __WCHAR_TYPE__ wc; __CHAR32_TYPE__ *p32 = &wc; char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1]; }] } # Return 1 if pow10 function exists. proc check_effective_target_pow10 { } { return [check_runtime pow10 { #include int main () { double x; x = pow10 (1); return 0; } } "-lm" ] } # Return 1 if frexpl function exists. proc check_effective_target_frexpl { } { return [check_runtime frexpl { #include int main () { long double x; int y; x = frexpl (5.0, &y); return 0; } } "-lm" ] } # Return 1 if issignaling function exists. proc check_effective_target_issignaling {} { return [check_runtime issignaling { #define _GNU_SOURCE #include int main () { return issignaling (0.0); } } "-lm" ] } # Return 1 if current options generate DFP instructions, 0 otherwise. proc check_effective_target_hard_dfp {} { return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly { typedef float d64 __attribute__((mode(DD))); d64 x, y, z; void foo (void) { z = x + y; } }] } # Return 1 if string.h and wchar.h headers provide C++ requires overloads # for strchr etc. functions. proc check_effective_target_correct_iso_cpp_string_wchar_protos { } { return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly { #include #include #if !defined(__cplusplus) \ || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \ || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO) ISO C++ correct string.h and wchar.h protos not supported. #else int i; #endif }] } # Return 1 if GNU as is used. proc check_effective_target_gas { } { global use_gas_saved global tool if {![info exists use_gas_saved]} { # Check if the as used by gcc is GNU as. set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0] # Provide /dev/null as input, otherwise gas times out reading from # stdin. set status [remote_exec host "$gcc_as" "-v /dev/null"] set as_output [lindex $status 1] if { [ string first "GNU" $as_output ] >= 0 } { set use_gas_saved 1 } else { set use_gas_saved 0 } } return $use_gas_saved } # Return 1 if GNU ld is used. proc check_effective_target_gld { } { global use_gld_saved global tool if {![info exists use_gld_saved]} { # Check if the ld used by gcc is GNU ld. set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0] set status [remote_exec host "$gcc_ld" "--version"] set ld_output [lindex $status 1] if { [ string first "GNU" $ld_output ] >= 0 } { set use_gld_saved 1 } else { set use_gld_saved 0 } } return $use_gld_saved } # Return 1 if the compiler has been configure with link-time optimization # (LTO) support. proc check_effective_target_lto { } { if { [istarget nvptx-*-*] } { return 0; } return [check_no_compiler_messages lto object { void foo (void) { } } "-flto"] } # Return 1 if the compiler and linker support incremental link-time # optimization. proc check_effective_target_lto_incremental { } { if ![check_effective_target_lto] { return 0 } return [check_no_compiler_messages lto_incremental executable { int main () { return 0; } } "-flto -r -nostdlib"] } # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise. proc check_effective_target_maybe_x32 { } { return [check_no_compiler_messages maybe_x32 object { void foo (void) {} } "-mx32 -maddress-mode=short"] } # Return 1 if this target supports the -fsplit-stack option, 0 # otherwise. proc check_effective_target_split_stack {} { return [check_no_compiler_messages split_stack object { void foo (void) { } } "-fsplit-stack"] } # Return 1 if this target supports the -masm=intel option, 0 # otherwise proc check_effective_target_masm_intel {} { return [check_no_compiler_messages masm_intel object { extern void abort (void); } "-masm=intel"] } # Return 1 if the language for the compiler under test is C. proc check_effective_target_c { } { global tool if [string match $tool "gcc"] { return 1 } return 0 } # Return 1 if the language for the compiler under test is C++. proc check_effective_target_c++ { } { global tool if { [string match $tool "g++"] || [string match $tool "libstdc++"] } { return 1 } return 0 } set cxx_default "c++14" # Check whether the current active language standard supports the features # of C++11/C++14 by checking for the presence of one of the -std flags. # This assumes that the default for the compiler is $cxx_default, and that # there will never be multiple -std= arguments on the command line. proc check_effective_target_c++11_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }] { return 1 } if { $cxx_default == "c++11" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++11 { } { if [check_effective_target_c++11_only] { return 1 } return [check_effective_target_c++14] } proc check_effective_target_c++11_down { } { if ![check_effective_target_c++] { return 0 } return [expr ![check_effective_target_c++14] ] } proc check_effective_target_c++14_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++14 -std=gnu++14 -std=c++14 -std=gnu++14 } }] { return 1 } if { $cxx_default == "c++14" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++14 { } { if [check_effective_target_c++14_only] { return 1 } return [check_effective_target_c++17] } proc check_effective_target_c++14_down { } { if ![check_effective_target_c++] { return 0 } return [expr ![check_effective_target_c++17] ] } proc check_effective_target_c++98_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++98 -std=gnu++98 -std=c++03 -std=gnu++03 } }] { return 1 } if { $cxx_default == "c++98" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++17_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++17 -std=gnu++17 -std=c++1z -std=gnu++1z } }] { return 1 } if { $cxx_default == "c++17" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++17 { } { if [check_effective_target_c++17_only] { return 1 } return [check_effective_target_c++2a] } proc check_effective_target_c++17_down { } { if ![check_effective_target_c++] { return 0 } return [expr ![check_effective_target_c++2a] ] } proc check_effective_target_c++2a_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++2a -std=gnu++2a } }] { return 1 } if { $cxx_default == "c++20" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++2a { } { return [check_effective_target_c++2a_only] } # Check for C++ Concepts TS support, i.e. -fconcepts flag. proc check_effective_target_concepts { } { return [check-flags { "" { } { -fconcepts } }] } # Return 1 if expensive testcases should be run. proc check_effective_target_run_expensive_tests { } { if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } { return 1 } return 0 } # Returns 1 if "mempcpy" is available on the target system. proc check_effective_target_mempcpy {} { return [check_function_available "mempcpy"] } # Returns 1 if "stpcpy" is available on the target system. proc check_effective_target_stpcpy {} { return [check_function_available "stpcpy"] } # Check whether the vectorizer tests are supported by the target and # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS. # If a port wants to execute the tests more than once it should append # the supported target to EFFECTIVE_TARGETS instead, and the compile flags # will be added by a call to add_options_for_. # Set dg-do-what-default to either compile or run, depending on target # capabilities. Do not set this if the supported target is appended to # EFFECTIVE_TARGETS. Flags and this variable will be set by et-dg-runtest # automatically. Return the number of effective targets if vectorizer tests # are supported, 0 otherwise. proc check_vect_support_and_set_flags { } { global DEFAULT_VECTCFLAGS global dg-do-what-default global EFFECTIVE_TARGETS if [istarget powerpc-*paired*] { lappend DEFAULT_VECTCFLAGS "-mpaired" if [check_750cl_hw_available] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget powerpc*-*-*] { # Skip targets not supporting -maltivec. if ![is-effective-target powerpc_altivec_ok] { return 0 } lappend DEFAULT_VECTCFLAGS "-maltivec" if [check_p9vector_hw_available] { lappend DEFAULT_VECTCFLAGS "-mpower9-vector" } elseif [check_p8vector_hw_available] { lappend DEFAULT_VECTCFLAGS "-mpower8-vector" } elseif [check_vsx_hw_available] { lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign" } if [check_vmx_hw_available] { set dg-do-what-default run } else { if [is-effective-target ilp32] { # Specify a cpu that supports VMX for compile-only tests. lappend DEFAULT_VECTCFLAGS "-mcpu=970" } set dg-do-what-default compile } } elseif { [istarget spu-*-*] } { set dg-do-what-default run } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } { lappend DEFAULT_VECTCFLAGS "-msse2" if { [check_effective_target_sse2_runtime] } { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif { [istarget mips*-*-*] && [check_effective_target_nomips16] } { if { [check_effective_target_mpaired_single] } { lappend EFFECTIVE_TARGETS mpaired_single } if { [check_effective_target_mips_loongson_mmi] } { lappend EFFECTIVE_TARGETS mips_loongson_mmi } if { [check_effective_target_mips_msa] } { lappend EFFECTIVE_TARGETS mips_msa } return [llength $EFFECTIVE_TARGETS] } elseif [istarget sparc*-*-*] { lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis" if [check_effective_target_ultrasparc_hw] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget alpha*-*-*] { # Alpha's vectorization capabilities are extremely limited. # It's more effort than its worth disabling all of the tests # that it cannot pass. But if you actually want to see what # does work, command out the return. return 0 lappend DEFAULT_VECTCFLAGS "-mmax" if [check_alpha_max_hw_available] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget ia64-*-*] { set dg-do-what-default run } elseif [is-effective-target arm_neon_ok] { eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""] # NEON does not support denormals, so is not used for vectorization by # default to avoid loss of precision. We must pass -ffast-math to test # vectorization of float operations. lappend DEFAULT_VECTCFLAGS "-ffast-math" if [is-effective-target arm_neon_hw] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget "aarch64*-*-*"] { set dg-do-what-default run } elseif [istarget s390*-*-*] { # The S/390 backend set a default of 2 for that value. # Override it to have the same situation as with other # targets. lappend DEFAULT_VECTCFLAGS "--param" "min-vect-loop-bound=1" lappend DEFAULT_VECTCFLAGS "--param" "max-unrolled-insns=200" lappend DEFAULT_VECTCFLAGS "--param" "max-unroll-times=8" lappend DEFAULT_VECTCFLAGS "--param" "max-completely-peeled-insns=200" lappend DEFAULT_VECTCFLAGS "--param" "max-completely-peel-times=16" if [check_effective_target_s390_vxe] { lappend DEFAULT_VECTCFLAGS "-march=z14" "-mzarch" set dg-do-what-default run } elseif [check_effective_target_s390_vx] { lappend DEFAULT_VECTCFLAGS "-march=z13" "-mzarch" set dg-do-what-default run } else { lappend DEFAULT_VECTCFLAGS "-march=z14" "-mzarch" set dg-do-what-default compile } } else { return 0 } return 1 } # Return 1 if the target does *not* require strict alignment. proc check_effective_target_non_strict_align {} { # On ARM, the default is to use STRICT_ALIGNMENT, but there # are interfaces defined for misaligned access and thus # depending on the architecture levels unaligned access is # available. if [istarget "arm*-*-*"] { return [check_effective_target_arm_unaligned] } return [check_no_compiler_messages non_strict_align assembly { char *y; typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c; c *z; void foo(void) { z = (c *) y; } } "-Wcast-align"] } # Return 1 if the target has . proc check_effective_target_ucontext_h { } { return [check_no_compiler_messages ucontext_h assembly { #include }] } proc check_effective_target_aarch64_tiny { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_tiny object { #ifdef __AARCH64_CMODEL_TINY__ int dummy; #else #error target not AArch64 tiny code model #endif }] } else { return 0 } } # Create functions to check that the AArch64 assembler supports the # various architecture extensions via the .arch_extension pseudo-op. foreach { aarch64_ext } { "fp" "simd" "crypto" "crc" "lse" "dotprod" "sve"} { eval [string map [list FUNC $aarch64_ext] { proc check_effective_target_aarch64_asm_FUNC_ok { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_FUNC_assembler object { __asm__ (".arch_extension FUNC"); } "-march=armv8-a+FUNC"] } else { return 0 } } }] } proc check_effective_target_aarch64_small { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_small object { #ifdef __AARCH64_CMODEL_SMALL__ int dummy; #else #error target not AArch64 small code model #endif }] } else { return 0 } } proc check_effective_target_aarch64_large { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_large object { #ifdef __AARCH64_CMODEL_LARGE__ int dummy; #else #error target not AArch64 large code model #endif }] } else { return 0 } } # Return 1 if this is a reduced AVR Tiny core. Such cores have different # register set, instruction set, addressing capabilities and ABI. proc check_effective_target_avr_tiny { } { if { [istarget avr*-*-*] } { return [check_no_compiler_messages avr_tiny object { #ifdef __AVR_TINY__ int dummy; #else #error target not a reduced AVR Tiny core #endif }] } else { return 0 } } # Return 1 if is available with all the standard IEEE # exceptions and floating-point exceptions are raised by arithmetic # operations. (If the target requires special options for "inexact" # exceptions, those need to be specified in the testcases.) proc check_effective_target_fenv_exceptions {} { return [check_runtime fenv_exceptions { #include #include #ifndef FE_DIVBYZERO # error Missing FE_DIVBYZERO #endif #ifndef FE_INEXACT # error Missing FE_INEXACT #endif #ifndef FE_INVALID # error Missing FE_INVALID #endif #ifndef FE_OVERFLOW # error Missing FE_OVERFLOW #endif #ifndef FE_UNDERFLOW # error Missing FE_UNDERFLOW #endif volatile float a = 0.0f, r; int main (void) { r = a / a; if (fetestexcept (FE_INVALID)) exit (0); else abort (); } } [add_options_for_ieee "-std=gnu99"]] } proc check_effective_target_tiny {} { return [check_cached_effective_target tiny { if { [istarget aarch64*-*-*] && [check_effective_target_aarch64_tiny] } { return 1 } if { [istarget avr-*-*] && [check_effective_target_avr_tiny] } { return 1 } return 0 }] } # Return 1 if the target supports -mbranch-cost=N option. proc check_effective_target_branch_cost {} { if { [ istarget arm*-*-*] || [istarget avr*-*-*] || [istarget csky*-*-*] || [istarget epiphany*-*-*] || [istarget frv*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget mips*-*-*] || [istarget s390*-*-*] || [istarget riscv*-*-*] || [istarget sh*-*-*] || [istarget spu*-*-*] } { return 1 } return 0 } # Record that dg-final test TEST requires convential compilation. proc force_conventional_output_for { test } { if { [info proc $test] == "" } { perror "$test does not exist" exit 1 } proc ${test}_required_options {} { global gcc_force_conventional_output upvar 1 extra_tool_flags extra_tool_flags if {[regexp -- "^scan-assembler" [info level 0]] && ![string match "*-fident*" $extra_tool_flags]} { # Do not let .ident confuse assembler scan tests return [list $gcc_force_conventional_output "-fno-ident"] } return $gcc_force_conventional_output } } # Record that dg-final test scan-ltrans-tree-dump* requires -flto-partition=one # in order to force a single partition, allowing scan-ltrans-tree-dump* to scan # a dump file *.exe.ltrans0.*. proc scan-ltrans-tree-dump_required_options {} { return "-flto-partition=one" } proc scan-ltrans-tree-dump-times_required_options {} { return "-flto-partition=one" } proc scan-ltrans-tree-dump-not_required_options {} { return "-flto-partition=one" } proc scan-ltrans-tree-dump-dem_required_options {} { return "-flto-partition=one" } proc scan-ltrans-tree-dump-dem-not_required_options {} { return "-flto-partition=one" } # Return 1 if the x86-64 target supports PIE with copy reloc, 0 # otherwise. Cache the result. proc check_effective_target_pie_copyreloc { } { global tool global GCC_UNDER_TEST if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { return 0 } # Need auto-host.h to check linker support. if { ![file exists ../../auto-host.h ] } { return 0 } return [check_cached_effective_target pie_copyreloc { # Set up and compile to see if linker supports PIE with copy # reloc. Include the current process ID in the file names to # prevent conflicts with invocations for multiple testsuites. set src pie[pid].c set obj pie[pid].o set f [open $src "w"] puts $f "#include \"../../auto-host.h\"" puts $f "#if HAVE_LD_PIE_COPYRELOC == 0" puts $f "# error Linker does not support PIE with copy reloc." puts $f "#endif" close $f verbose "check_effective_target_pie_copyreloc compiling testfile $src" 2 set lines [${tool}_target_compile $src $obj object ""] file delete $src file delete $obj if [string match "" $lines] then { verbose "check_effective_target_pie_copyreloc testfile compilation passed" 2 return 1 } else { verbose "check_effective_target_pie_copyreloc testfile compilation failed" 2 return 0 } }] } # Return 1 if the x86 target supports R_386_GOT32X relocation, 0 # otherwise. Cache the result. proc check_effective_target_got32x_reloc { } { global tool global GCC_UNDER_TEST if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { return 0 } # Need auto-host.h to check linker support. if { ![file exists ../../auto-host.h ] } { return 0 } return [check_cached_effective_target got32x_reloc { # Include the current process ID in the file names to prevent # conflicts with invocations for multiple testsuites. set src got32x[pid].c set obj got32x[pid].o set f [open $src "w"] puts $f "#include \"../../auto-host.h\"" puts $f "#if HAVE_AS_IX86_GOT32X == 0" puts $f "# error Assembler does not support R_386_GOT32X." puts $f "#endif" close $f verbose "check_effective_target_got32x_reloc compiling testfile $src" 2 set lines [${tool}_target_compile $src $obj object ""] file delete $src file delete $obj if [string match "" $lines] then { verbose "check_effective_target_got32x_reloc testfile compilation passed" 2 return 1 } else { verbose "check_effective_target_got32x_reloc testfile compilation failed" 2 return 0 } }] return $got32x_reloc_available_saved } # Return 1 if the x86 target supports calling ___tls_get_addr via GOT, # 0 otherwise. Cache the result. proc check_effective_target_tls_get_addr_via_got { } { global tool global GCC_UNDER_TEST if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { return 0 } # Need auto-host.h to check linker support. if { ![file exists ../../auto-host.h ] } { return 0 } return [check_cached_effective_target tls_get_addr_via_got { # Include the current process ID in the file names to prevent # conflicts with invocations for multiple testsuites. set src tls_get_addr_via_got[pid].c set obj tls_get_addr_via_got[pid].o set f [open $src "w"] puts $f "#include \"../../auto-host.h\"" puts $f "#if HAVE_AS_IX86_TLS_GET_ADDR_GOT == 0" puts $f "# error Assembler/linker do not support calling ___tls_get_addr via GOT." puts $f "#endif" close $f verbose "check_effective_target_tls_get_addr_via_got compiling testfile $src" 2 set lines [${tool}_target_compile $src $obj object ""] file delete $src file delete $obj if [string match "" $lines] then { verbose "check_effective_target_tls_get_addr_via_got testfile compilation passed" 2 return 1 } else { verbose "check_effective_target_tls_get_addr_via_got testfile compilation failed" 2 return 0 } }] } # Return 1 if the target uses comdat groups. proc check_effective_target_comdat_group {} { return [check_no_messages_and_pattern comdat_group "\.section\[^\n\r]*,comdat|\.group\[^\n\r]*,#comdat" assembly { // C++ inline int foo () { return 1; } int (*fn) () = foo; }] } # Return 1 if target supports __builtin_eh_return proc check_effective_target_builtin_eh_return { } { return [check_no_compiler_messages builtin_eh_return object { void test (long l, void *p) { __builtin_eh_return (l, p); } } "" ] } # Return 1 if the target supports max reduction for vectors. proc check_effective_target_vect_max_reduc { } { if { [istarget aarch64*-*-*] || [is-effective-target arm_neon] } { return 1 } return 0 } # Return 1 if there is an nvptx offload compiler. proc check_effective_target_offload_nvptx { } { return [check_no_compiler_messages offload_nvptx object { int main () {return 0;} } "-foffload=nvptx-none" ] } # Return 1 if the compiler has been configured with hsa offloading. proc check_effective_target_offload_hsa { } { return [check_no_compiler_messages offload_hsa assembly { int main () {return 0;} } "-foffload=hsa" ] } # Return 1 if the target support -fprofile-update=atomic proc check_effective_target_profile_update_atomic {} { return [check_no_compiler_messages profile_update_atomic assembly { int main (void) { return 0; } } "-fprofile-update=atomic -fprofile-generate"] } # Return 1 if vector (va - vector add) instructions are understood by # the assembler and can be executed. This also covers checking for # the VX kernel feature. A kernel without that feature does not # enable the vector facility and the following check will die with a # signal. proc check_effective_target_s390_vx { } { if ![istarget s390*-*-*] then { return 0; } return [check_runtime s390_check_vx { int main (void) { asm ("va %%v24, %%v26, %%v28, 3" : : : "v24", "v26", "v28"); return 0; } } "-march=z13 -mzarch" ] } # Same as above but for the z14 vector enhancement facility. Test # is performed with the vector nand instruction. proc check_effective_target_s390_vxe { } { if ![istarget s390*-*-*] then { return 0; } return [check_runtime s390_check_vxe { int main (void) { asm ("vnn %%v24, %%v26, %%v28" : : : "v24", "v26", "v28"); return 0; } } "-march=z14 -mzarch" ] } #For versions of ARM architectures that have hardware div insn, #disable the divmod transform proc check_effective_target_arm_divmod_simode { } { return [check_no_compiler_messages arm_divmod assembly { #ifdef __ARM_ARCH_EXT_IDIV__ #error has div insn #endif int i; }] } # Return 1 if target supports divmod hardware insn or divmod libcall. proc check_effective_target_divmod { } { #TODO: Add checks for all targets that have either hardware divmod insn # or define libfunc for divmod. if { [istarget arm*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { return 1 } return 0 } # Return 1 if target supports divmod for SImode. The reason for # separating this from check_effective_target_divmod is that # some versions of ARM architecture define div instruction # only for simode, and for these archs, we do not want to enable # divmod transform for simode. proc check_effective_target_divmod_simode { } { if { [istarget arm*-*-*] } { return [check_effective_target_arm_divmod_simode] } return [check_effective_target_divmod] } # Return 1 if store merging optimization is applicable for target. # Store merging is not profitable for targets like the avr which # can load/store only one byte at a time. Use int size as a proxy # for the number of bytes the target can write, and skip for targets # with a smallish (< 32) size. proc check_effective_target_store_merge { } { if { [is-effective-target non_strict_align ] && [is-effective-target int32plus] } { return 1 } return 0 } # Return 1 if we're able to assemble rdrand proc check_effective_target_rdrand { } { return [check_no_compiler_messages_nocache rdrand object { unsigned int __foo(void) { unsigned int val; __builtin_ia32_rdrand32_step(&val); return val; } } "-mrdrnd" ] } # Return 1 if the target supports coprocessor instructions: cdp, ldc, ldcl, # stc, stcl, mcr and mrc. proc check_effective_target_arm_coproc1_ok_nocache { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages_nocache arm_coproc1_ok assembly { #if (__thumb__ && !__thumb2__) || __ARM_ARCH < 4 #error FOO #endif }] } proc check_effective_target_arm_coproc1_ok { } { return [check_cached_effective_target arm_coproc1_ok \ check_effective_target_arm_coproc1_ok_nocache] } # Return 1 if the target supports all coprocessor instructions checked by # check_effective_target_arm_coproc1_ok in addition to the following: cdp2, # ldc2, ldc2l, stc2, stc2l, mcr2 and mrc2. proc check_effective_target_arm_coproc2_ok_nocache { } { if { ![check_effective_target_arm_coproc1_ok] } { return 0 } return [check_no_compiler_messages_nocache arm_coproc2_ok assembly { #if (__thumb__ && !__thumb2__) || __ARM_ARCH < 5 #error FOO #endif }] } proc check_effective_target_arm_coproc2_ok { } { return [check_cached_effective_target arm_coproc2_ok \ check_effective_target_arm_coproc2_ok_nocache] } # Return 1 if the target supports all coprocessor instructions checked by # check_effective_target_arm_coproc2_ok in addition the following: mcrr and # mrrc. proc check_effective_target_arm_coproc3_ok_nocache { } { if { ![check_effective_target_arm_coproc2_ok] } { return 0 } return [check_no_compiler_messages_nocache arm_coproc3_ok assembly { #if (__thumb__ && !__thumb2__) \ || (__ARM_ARCH < 6 && !defined (__ARM_ARCH_5TE__)) #error FOO #endif }] } proc check_effective_target_arm_coproc3_ok { } { return [check_cached_effective_target arm_coproc3_ok \ check_effective_target_arm_coproc3_ok_nocache] } # Return 1 if the target supports all coprocessor instructions checked by # check_effective_target_arm_coproc3_ok in addition the following: mcrr2 and # mrcc2. proc check_effective_target_arm_coproc4_ok_nocache { } { if { ![check_effective_target_arm_coproc3_ok] } { return 0 } return [check_no_compiler_messages_nocache arm_coproc4_ok assembly { #if (__thumb__ && !__thumb2__) || __ARM_ARCH < 6 #error FOO #endif }] } proc check_effective_target_arm_coproc4_ok { } { return [check_cached_effective_target arm_coproc4_ok \ check_effective_target_arm_coproc4_ok_nocache] } # Return 1 if the target supports the auto_inc_dec optimization pass. proc check_effective_target_autoincdec { } { if { ![check_no_compiler_messages auto_incdec assembly { void f () { } } "-O2 -fdump-rtl-auto_inc_dec" ] } { return 0 } set dumpfile [glob -nocomplain "auto_incdec[pid].c.\[0-9\]\[0-9\]\[0-9\]r.auto_inc_dec"] if { [file exists $dumpfile ] } { file delete $dumpfile return 1 } return 0 } # Return 1 if the target has support for stack probing designed # to avoid stack-clash style attacks. # # This is used to restrict the stack-clash mitigation tests to # just those targets that have been explicitly supported. # # In addition to the prologue work on those targets, each target's # properties should be described in the functions below so that # tests do not become a mess of unreadable target conditions. # proc check_effective_target_supports_stack_clash_protection { } { if { [istarget x86_64-*-*] || [istarget i?86-*-*] || [istarget powerpc*-*-*] || [istarget rs6000*-*-*] || [istarget aarch64*-**] || [istarget s390*-*-*] } { return 1 } return 0 } # Return 1 if the target creates a frame pointer for non-leaf functions # Note we ignore cases where we apply tail call optimization here. proc check_effective_target_frame_pointer_for_non_leaf { } { # Solaris/x86 defaults to -fno-omit-frame-pointer. if { [istarget i?86-*-solaris*] || [istarget x86_64-*-solaris*] } { return 1 } return 0 } # Return 1 if the target's calling sequence or its ABI # create implicit stack probes at or prior to function entry. proc check_effective_target_caller_implicit_probes { } { # On x86/x86_64 the call instruction itself pushes the return # address onto the stack. That is an implicit probe of *sp. if { [istarget x86_64-*-*] || [istarget i?86-*-*] } { return 1 } # On PPC, the ABI mandates that the address of the outer # frame be stored at *sp. Thus each allocation of stack # space is itself an implicit probe of *sp. if { [istarget powerpc*-*-*] || [istarget rs6000*-*-*] } { return 1 } # s390's ABI has a register save area allocated by the # caller for use by the callee. The mere existence does # not constitute a probe by the caller, but when the slots # used by the callee those stores are implicit probes. if { [istarget s390*-*-*] } { return 1 } # Not strictly true on aarch64, but we have agreed that we will # consider any function that pushes SP more than 3kbytes into # the guard page as broken. This essentially means that we can # consider the aarch64 as having a caller implicit probe at # *(sp + 1k). if { [istarget aarch64*-*-*] } { return 1; } return 0 } # Targets that potentially realign the stack pointer often cause residual # stack allocations and make it difficult to elimination loops or residual # allocations for dynamic stack allocations proc check_effective_target_callee_realigns_stack { } { if { [istarget x86_64-*-*] || [istarget i?86-*-*] } { return 1 } return 0 } # Return 1 if CET instructions can be compiled. proc check_effective_target_cet { } { if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { return 0 } return [check_no_compiler_messages cet object { void foo (void) { asm ("setssbsy"); } } "-O2" ] } # Return 1 if target supports floating point "infinite" proc check_effective_target_inf { } { return [check_no_compiler_messages supports_inf assembly { const double pinf = __builtin_inf (); }] }