# Copyright (C) 1999-2016 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GCC; see the file COPYING3. If not see # . # Please email any bugs, comments, and/or additions to this file to: # gcc-patches@gcc.gnu.org # This file defines procs for determining features supported by the target. # Try to compile the code given by CONTENTS into an output file of # type TYPE, where TYPE is as for target_compile. Return a list # whose first element contains the compiler messages and whose # second element is the name of the output file. # # BASENAME is a prefix to use for source and output files. # If ARGS is not empty, its first element is a string that # should be added to the command line. # # Assume by default that CONTENTS is C code. # Otherwise, code should contain: # "// C++" for c++, # "! Fortran" for Fortran code, # "/* ObjC", for ObjC # "// ObjC++" for ObjC++ # and "// Go" for Go # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to # allow for ObjC/ObjC++ specific flags. proc check_compile {basename type contents args} { global tool verbose "check_compile tool: $tool for $basename" # Save additional_sources to avoid compiling testsuite's sources # against check_compile's source. global additional_sources if [info exists additional_sources] { set tmp_additional_sources "$additional_sources" set additional_sources "" } if { [llength $args] > 0 } { set options [list "additional_flags=[lindex $args 0]"] } else { set options "" } switch -glob -- $contents { "*! Fortran*" { set src ${basename}[pid].f90 } "*// C++*" { set src ${basename}[pid].cc } "*// ObjC++*" { set src ${basename}[pid].mm } "*/* ObjC*" { set src ${basename}[pid].m } "*// Go*" { set src ${basename}[pid].go } default { switch -- $tool { "objc" { set src ${basename}[pid].m } "obj-c++" { set src ${basename}[pid].mm } default { set src ${basename}[pid].c } } } } set compile_type $type switch -glob $type { assembly { set output ${basename}[pid].s } object { set output ${basename}[pid].o } executable { set output ${basename}[pid].exe } "rtl-*" { set output ${basename}[pid].s lappend options "additional_flags=-fdump-$type" set compile_type assembly } } set f [open $src "w"] puts $f $contents close $f set lines [${tool}_target_compile $src $output $compile_type "$options"] file delete $src set scan_output $output # Don't try folding this into the switch above; calling "glob" before the # file is created won't work. if [regexp "rtl-(.*)" $type dummy rtl_type] { set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]" file delete $output } # Restore additional_sources. if [info exists additional_sources] { set additional_sources "$tmp_additional_sources" } return [list $lines $scan_output] } proc current_target_name { } { global target_info if [info exists target_info(target,name)] { set answer $target_info(target,name) } else { set answer "" } return $answer } # Implement an effective-target check for property PROP by invoking # the Tcl command ARGS and seeing if it returns true. proc check_cached_effective_target { prop args } { global et_cache global et_prop_list set target [current_target_name] if {![info exists et_cache($prop,target)] || $et_cache($prop,target) != $target} { verbose "check_cached_effective_target $prop: checking $target" 2 set et_cache($prop,target) $target set et_cache($prop,value) [uplevel eval $args] if {![info exists et_prop_list] || [lsearch $et_prop_list $prop] < 0} { lappend et_prop_list $prop } verbose "check_cached_effective_target cached list is now: $et_prop_list" 2 } set value $et_cache($prop,value) verbose "check_cached_effective_target $prop: returning $value for $target" 2 return $value } # Clear effective-target cache. This is useful after testing # effective-target features and overriding TEST_ALWAYS_FLAGS and/or # ALWAYS_CXXFLAGS. # If one changes ALWAYS_CXXFLAGS or TEST_ALWAYS_FLAGS then they should # do a clear_effective_target_cache at the end as the target cache can # make decisions based upon the flags, and those decisions need to be # redone when the flags change. An example of this is the # asan_init/asan_finish pair. proc clear_effective_target_cache { } { global et_cache global et_prop_list if {[info exists et_prop_list]} { verbose "clear_effective_target_cache: $et_prop_list" 2 foreach prop $et_prop_list { unset et_cache($prop,value) unset et_cache($prop,target) } unset et_prop_list } } # Like check_compile, but delete the output file and return true if the # compiler printed no messages. proc check_no_compiler_messages_nocache {args} { set result [eval check_compile $args] set lines [lindex $result 0] set output [lindex $result 1] remote_file build delete $output return [string match "" $lines] } # Like check_no_compiler_messages_nocache, but cache the result. # PROP is the property we're checking, and doubles as a prefix for # temporary filenames. proc check_no_compiler_messages {prop args} { return [check_cached_effective_target $prop { eval [list check_no_compiler_messages_nocache $prop] $args }] } # Like check_compile, but return true if the compiler printed no # messages and if the contents of the output file satisfy PATTERN. # If PATTERN has the form "!REGEXP", the contents satisfy it if they # don't match regular expression REGEXP, otherwise they satisfy it # if they do match regular expression PATTERN. (PATTERN can start # with something like "[!]" if the regular expression needs to match # "!" as the first character.) # # Delete the output file before returning. The other arguments are # as for check_compile. proc check_no_messages_and_pattern_nocache {basename pattern args} { global tool set result [eval [list check_compile $basename] $args] set lines [lindex $result 0] set output [lindex $result 1] set ok 0 if { [string match "" $lines] } { set chan [open "$output"] set invert [regexp {^!(.*)} $pattern dummy pattern] set ok [expr { [regexp $pattern [read $chan]] != $invert }] close $chan } remote_file build delete $output return $ok } # Like check_no_messages_and_pattern_nocache, but cache the result. # PROP is the property we're checking, and doubles as a prefix for # temporary filenames. proc check_no_messages_and_pattern {prop pattern args} { return [check_cached_effective_target $prop { eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args }] } # Try to compile and run an executable from code CONTENTS. Return true # if the compiler reports no messages and if execution "passes" in the # usual DejaGNU sense. The arguments are as for check_compile, with # TYPE implicitly being "executable". proc check_runtime_nocache {basename contents args} { global tool set result [eval [list check_compile $basename executable $contents] $args] set lines [lindex $result 0] set output [lindex $result 1] set ok 0 if { [string match "" $lines] } { # No error messages, everything is OK. set result [remote_load target "./$output" "" ""] set status [lindex $result 0] verbose "check_runtime_nocache $basename: status is <$status>" 2 if { $status == "pass" } { set ok 1 } } remote_file build delete $output return $ok } # Like check_runtime_nocache, but cache the result. PROP is the # property we're checking, and doubles as a prefix for temporary # filenames. proc check_runtime {prop args} { global tool return [check_cached_effective_target $prop { eval [list check_runtime_nocache $prop] $args }] } ############################### # proc check_weak_available { } ############################### # weak symbols are only supported in some configs/object formats # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure proc check_weak_available { } { global target_cpu # All mips targets should support it if { [ string first "mips" $target_cpu ] >= 0 } { return 1 } # All AIX targets should support it if { [istarget *-*-aix*] } { return 1 } # All solaris2 targets should support it if { [istarget *-*-solaris2*] } { return 1 } # Windows targets Cygwin and MingW32 support it if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } { return 1 } # HP-UX 10.X doesn't support it if { [istarget hppa*-*-hpux10*] } { return 0 } # nvptx (nearly) supports it if { [istarget nvptx-*-*] } { return 1 } # ELF and ECOFF support it. a.out does with gas/gld but may also with # other linkers, so we should try it set objformat [gcc_target_object_format] switch $objformat { elf { return 1 } ecoff { return 1 } a.out { return 1 } mach-o { return 1 } som { return 1 } unknown { return -1 } default { return 0 } } } ############################### # proc check_weak_override_available { } ############################### # Like check_weak_available, but return 0 if weak symbol definitions # cannot be overridden. proc check_weak_override_available { } { if { [istarget *-*-mingw*] } { return 0 } return [check_weak_available] } ############################### # proc check_visibility_available { what_kind } ############################### # The visibility attribute is only support in some object formats # This proc returns 1 if it is supported, 0 if not. # The argument is the kind of visibility, default/protected/hidden/internal. proc check_visibility_available { what_kind } { if [string match "" $what_kind] { set what_kind "hidden" } return [check_no_compiler_messages visibility_available_$what_kind object " void f() __attribute__((visibility(\"$what_kind\"))); void f() {} "] } ############################### # proc check_alias_available { } ############################### # Determine if the target toolchain supports the alias attribute. # Returns 2 if the target supports aliases. Returns 1 if the target # only supports weak aliased. Returns 0 if the target does not # support aliases at all. Returns -1 if support for aliases could not # be determined. proc check_alias_available { } { global alias_available_saved global tool if [info exists alias_available_saved] { verbose "check_alias_available returning saved $alias_available_saved" 2 } else { set src alias[pid].c set obj alias[pid].o verbose "check_alias_available compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. The definition of "g" is # necessary to keep the Solaris assembler from complaining # about the program. puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n" puts $f "void g() {} void f() __attribute__((alias(\"g\")));" close $f set lines [${tool}_target_compile $src $obj object ""] file delete $src remote_file build delete $obj if [string match "" $lines] then { # No error messages, everything is OK. set alias_available_saved 2 } else { if [regexp "alias definitions not supported" $lines] { verbose "check_alias_available target does not support aliases" 2 set objformat [gcc_target_object_format] if { $objformat == "elf" } { verbose "check_alias_available but target uses ELF format, so it ought to" 2 set alias_available_saved -1 } else { set alias_available_saved 0 } } else { if [regexp "only weak aliases are supported" $lines] { verbose "check_alias_available target supports only weak aliases" 2 set alias_available_saved 1 } else { set alias_available_saved -1 } } } verbose "check_alias_available returning $alias_available_saved" 2 } return $alias_available_saved } # Returns 1 if the target toolchain supports strong aliases, 0 otherwise. proc check_effective_target_alias { } { if { [check_alias_available] < 2 } { return 0 } else { return 1 } } # Returns 1 if the target toolchain supports ifunc, 0 otherwise. proc check_ifunc_available { } { return [check_no_compiler_messages ifunc_available object { #ifdef __cplusplus extern "C" #endif void g() {} void f() __attribute__((ifunc("g"))); }] } # Returns true if --gc-sections is supported on the target. proc check_gc_sections_available { } { global gc_sections_available_saved global tool if {![info exists gc_sections_available_saved]} { # Some targets don't support gc-sections despite whatever's # advertised by ld's options. if { [istarget alpha*-*-*] || [istarget ia64-*-*] } { set gc_sections_available_saved 0 return 0 } # elf2flt uses -q (--emit-relocs), which is incompatible with # --gc-sections. if { [board_info target exists ldflags] && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } { set gc_sections_available_saved 0 return 0 } # VxWorks kernel modules are relocatable objects linked with -r, # while RTP executables are linked with -q (--emit-relocs). # Both of these options are incompatible with --gc-sections. if { [istarget *-*-vxworks*] } { set gc_sections_available_saved 0 return 0 } # Check if the ld used by gcc supports --gc-sections. set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""] regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0] set ld_output [remote_exec host "$gcc_ld" "--help"] if { [ string first "--gc-sections" $ld_output ] >= 0 } { set gc_sections_available_saved 1 } else { set gc_sections_available_saved 0 } } return $gc_sections_available_saved } # Return 1 if according to target_info struct and explicit target list # target is supposed to support trampolines. proc check_effective_target_trampolines { } { if [target_info exists no_trampolines] { return 0 } if { [istarget avr-*-*] || [istarget msp430-*-*] || [istarget nvptx-*-*] || [istarget hppa2.0w-hp-hpux11.23] || [istarget hppa64-hp-hpux11.23] } { return 0; } return 1 } # Return 1 if according to target_info struct and explicit target list # target disables -fdelete-null-pointer-checks. Targets should return 0 # if they simply default to -fno-delete-null-pointer-checks but obey # -fdelete-null-pointer-checks when passed explicitly (and tests that # depend on this option should do that). proc check_effective_target_keeps_null_pointer_checks { } { if [target_info exists keeps_null_pointer_checks] { return 1 } if { [istarget avr-*-*] } { return 1; } return 0 } # Return true if profiling is supported on the target. proc check_profiling_available { test_what } { global profiling_available_saved verbose "Profiling argument is <$test_what>" 1 # These conditions depend on the argument so examine them before # looking at the cache variable. # Tree profiling requires TLS runtime support. if { $test_what == "-fprofile-generate" } { if { ![check_effective_target_tls_runtime] } { return 0 } } # Support for -p on solaris2 relies on mcrt1.o which comes with the # vendor compiler. We cannot reliably predict the directory where the # vendor compiler (and thus mcrt1.o) is installed so we can't # necessarily find mcrt1.o even if we have it. if { [istarget *-*-solaris2*] && $test_what == "-p" } { return 0 } # We don't yet support profiling for MIPS16. if { [istarget mips*-*-*] && ![check_effective_target_nomips16] && ($test_what == "-p" || $test_what == "-pg") } { return 0 } # MinGW does not support -p. if { [istarget *-*-mingw*] && $test_what == "-p" } { return 0 } # cygwin does not support -p. if { [istarget *-*-cygwin*] && $test_what == "-p" } { return 0 } # uClibc does not have gcrt1.o. if { [check_effective_target_uclibc] && ($test_what == "-p" || $test_what == "-pg") } { return 0 } # Now examine the cache variable. if {![info exists profiling_available_saved]} { # Some targets don't have any implementation of __bb_init_func or are # missing other needed machinery. if {[istarget aarch64*-*-elf] || [istarget am3*-*-linux*] || [istarget arm*-*-eabi*] || [istarget arm*-*-elf] || [istarget arm*-*-symbianelf*] || [istarget avr-*-*] || [istarget bfin-*-*] || [istarget cris-*-*] || [istarget crisv32-*-*] || [istarget fido-*-elf] || [istarget h8300-*-*] || [istarget lm32-*-*] || [istarget m32c-*-elf] || [istarget m68k-*-elf] || [istarget m68k-*-uclinux*] || [istarget mep-*-elf] || [istarget mips*-*-elf*] || [istarget mmix-*-*] || [istarget mn10300-*-elf*] || [istarget moxie-*-elf*] || [istarget msp430-*-*] || [istarget nds32*-*-elf] || [istarget nios2-*-elf] || [istarget nvptx-*-*] || [istarget powerpc-*-eabi*] || [istarget powerpc-*-elf] || [istarget rx-*-*] || [istarget tic6x-*-elf] || [istarget visium-*-*] || [istarget xstormy16-*] || [istarget xtensa*-*-elf] || [istarget *-*-rtems*] || [istarget *-*-vxworks*] } { set profiling_available_saved 0 } else { set profiling_available_saved 1 } } # -pg link test result can't be cached since it may change between # runs. set profiling_working $profiling_available_saved if { $profiling_available_saved == 1 && ![check_no_compiler_messages_nocache profiling executable { int main() { return 0; } } "-pg"] } { set profiling_working 0 } return $profiling_working } # Check to see if a target is "freestanding". This is as per the definition # in Section 4 of C99 standard. Effectively, it is a target which supports no # extra headers or libraries other than what is considered essential. proc check_effective_target_freestanding { } { if { [istarget nvptx-*-*] } { return 1 } return 0 } # Return 1 if target has packed layout of structure members by # default, 0 otherwise. Note that this is slightly different than # whether the target has "natural alignment": both attributes may be # false. proc check_effective_target_default_packed { } { return [check_no_compiler_messages default_packed assembly { struct x { char a; long b; } c; int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1]; }] } # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See # documentation, where the test also comes from. proc check_effective_target_pcc_bitfield_type_matters { } { # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty # bitfields, but let's stick to the example code from the docs. return [check_no_compiler_messages pcc_bitfield_type_matters assembly { struct foo1 { char x; char :0; char y; }; struct foo2 { char x; int :0; char y; }; int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1]; }] } # Add to FLAGS all the target-specific flags needed to use thread-local storage. proc add_options_for_tls { flags } { # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in # libthread, so always pass -pthread for native TLS. Same for AIX. # Need to duplicate native TLS check from # check_effective_target_tls_native to avoid recursion. if { ([istarget powerpc-ibm-aix*]) && [check_no_messages_and_pattern tls_native "!emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } { return "-pthread [g++_link_flags [get_multilibs "-pthread"] ] $flags " } return $flags } # Return 1 if indirect jumps are supported, 0 otherwise. proc check_effective_target_indirect_jumps {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if nonlocal goto is supported, 0 otherwise. proc check_effective_target_nonlocal_goto {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if global constructors are supported, 0 otherwise. proc check_effective_target_global_constructor {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if taking label values is supported, 0 otherwise. proc check_effective_target_label_values {} { if { [istarget nvptx-*-*] } { return 0 } return [check_no_compiler_messages label_values assembly { #ifdef NO_LABEL_VALUES #error NO #endif }] } # Return 1 if builtin_return_address and builtin_frame_address are # supported, 0 otherwise. proc check_effective_target_return_address {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if the assembler does not verify function types against # calls, 0 otherwise. Such verification will typically show up problems # with K&R C function declarations. proc check_effective_target_untyped_assembly {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if alloca is supported, 0 otherwise. proc check_effective_target_alloca {} { if { [istarget nvptx-*-*] } { return 0 } return 1 } # Return 1 if thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls {} { return [check_no_compiler_messages tls assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls_native {} { # VxWorks uses emulated TLS machinery, but with non-standard helper # functions, so we fail to automatically detect it. if { [istarget *-*-vxworks*] } { return 0 } return [check_no_messages_and_pattern tls_native "!emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise. proc check_effective_target_tls_emulated {} { # VxWorks uses emulated TLS machinery, but with non-standard helper # functions, so we fail to automatically detect it. if { [istarget *-*-vxworks*] } { return 1 } return [check_no_messages_and_pattern tls_emulated "emutls" assembly { __thread int i; int f (void) { return i; } void g (int j) { i = j; } }] } # Return 1 if TLS executables can run correctly, 0 otherwise. proc check_effective_target_tls_runtime {} { # The runtime does not have TLS support, but just # running the test below is insufficient to show this. if { [istarget msp430-*-*] || [istarget visium-*-*] } { return 0 } return [check_runtime tls_runtime { __thread int thr = 0; int main (void) { return thr; } } [add_options_for_tls ""]] } # Return 1 if atomic compare-and-swap is supported on 'int' proc check_effective_target_cas_char {} { return [check_no_compiler_messages cas_char assembly { #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1 #error unsupported #endif } ""] } proc check_effective_target_cas_int {} { return [check_no_compiler_messages cas_int assembly { #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 /* ok */ #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 /* ok */ #else #error unsupported #endif } ""] } # Return 1 if -ffunction-sections is supported, 0 otherwise. proc check_effective_target_function_sections {} { # Darwin has its own scheme and silently accepts -ffunction-sections. if { [istarget *-*-darwin*] } { return 0 } return [check_no_compiler_messages functionsections assembly { void foo (void) { } } "-ffunction-sections"] } # Return 1 if instruction scheduling is available, 0 otherwise. proc check_effective_target_scheduling {} { return [check_no_compiler_messages scheduling object { void foo (void) { } } "-fschedule-insns"] } # Return 1 if trapping arithmetic is available, 0 otherwise. proc check_effective_target_trapping {} { return [check_no_compiler_messages trapping object { int add (int a, int b) { return a + b; } } "-ftrapv"] } # Return 1 if compilation with -fgraphite is error-free for trivial # code, 0 otherwise. proc check_effective_target_fgraphite {} { return [check_no_compiler_messages fgraphite object { void foo (void) { } } "-O1 -fgraphite"] } # Return 1 if compilation with -fopenacc is error-free for trivial # code, 0 otherwise. proc check_effective_target_fopenacc {} { # nvptx can be built with the device-side bits of openacc, but it # does not make sense to test it as an openacc host. if [istarget nvptx-*-*] { return 0 } return [check_no_compiler_messages fopenacc object { void foo (void) { } } "-fopenacc"] } # Return 1 if compilation with -fopenmp is error-free for trivial # code, 0 otherwise. proc check_effective_target_fopenmp {} { # nvptx can be built with the device-side bits of libgomp, but it # does not make sense to test it as an openmp host. if [istarget nvptx-*-*] { return 0 } return [check_no_compiler_messages fopenmp object { void foo (void) { } } "-fopenmp"] } # Return 1 if compilation with -fgnu-tm is error-free for trivial # code, 0 otherwise. proc check_effective_target_fgnu_tm {} { return [check_no_compiler_messages fgnu_tm object { void foo (void) { } } "-fgnu-tm"] } # Return 1 if the target supports mmap, 0 otherwise. proc check_effective_target_mmap {} { return [check_function_available "mmap"] } # Return 1 if the target supports dlopen, 0 otherwise. proc check_effective_target_dlopen {} { return [check_no_compiler_messages dlopen executable { #include int main(void) { dlopen ("dummy.so", RTLD_NOW); } } [add_options_for_dlopen ""]] } proc add_options_for_dlopen { flags } { return "$flags -ldl" } # Return 1 if the target supports clone, 0 otherwise. proc check_effective_target_clone {} { return [check_function_available "clone"] } # Return 1 if the target supports setrlimit, 0 otherwise. proc check_effective_target_setrlimit {} { # Darwin has non-posix compliant RLIMIT_AS if { [istarget *-*-darwin*] } { return 0 } return [check_function_available "setrlimit"] } # Return 1 if the target supports swapcontext, 0 otherwise. proc check_effective_target_swapcontext {} { return [check_no_compiler_messages swapcontext executable { #include int main (void) { ucontext_t orig_context,child_context; if (swapcontext(&child_context, &orig_context) < 0) { } } }] } # Return 1 if compilation with -pthread is error-free for trivial # code, 0 otherwise. proc check_effective_target_pthread {} { return [check_no_compiler_messages pthread object { void foo (void) { } } "-pthread"] } # Return 1 if compilation with -gstabs is error-free for trivial # code, 0 otherwise. proc check_effective_target_stabs {} { return [check_no_compiler_messages stabs object { void foo (void) { } } "-gstabs"] } # Return 1 if compilation with -mpe-aligned-commons is error-free # for trivial code, 0 otherwise. proc check_effective_target_pe_aligned_commons {} { if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } { return [check_no_compiler_messages pe_aligned_commons object { int foo; } "-mpe-aligned-commons"] } return 0 } # Return 1 if the target supports -static proc check_effective_target_static {} { return [check_no_compiler_messages static executable { int main (void) { return 0; } } "-static"] } # Return 1 if the target supports -fstack-protector proc check_effective_target_fstack_protector {} { return [check_runtime fstack_protector { int main (void) { return 0; } } "-fstack-protector"] } # Return 1 if compilation with -freorder-blocks-and-partition is error-free # for trivial code, 0 otherwise. proc check_effective_target_freorder {} { return [check_no_compiler_messages freorder object { void foo (void) { } } "-freorder-blocks-and-partition"] } # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors # emitted, 0 otherwise. Whether a shared library can actually be built is # out of scope for this test. proc check_effective_target_fpic { } { # Note that M68K has a multilib that supports -fpic but not # -fPIC, so we need to check both. We test with a program that # requires GOT references. foreach arg {fpic fPIC} { if [check_no_compiler_messages $arg object { extern int foo (void); extern int bar; int baz (void) { return foo () + bar; } } "-$arg"] { return 1 } } return 0 } # On AArch64, if -fpic is not supported, then we will fall back to -fPIC # silently. So, we can't rely on above "check_effective_target_fpic" as it # assumes compiler will give warning if -fpic not supported. Here we check # whether binutils supports those new -fpic relocation modifiers, and assume # -fpic is supported if there is binutils support. GCC configuration will # enable -fpic for AArch64 in this case. # # "check_effective_target_aarch64_small_fpic" is dedicated for checking small # memory model -fpic relocation types. proc check_effective_target_aarch64_small_fpic { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_small_fpic object { void foo (void) { asm ("ldr x0, [x2, #:gotpage_lo15:globalsym]"); } }] } else { return 0 } } # On AArch64, instruction sequence for TLS LE under -mtls-size=32 will utilize # the relocation modifier "tprel_g0_nc" together with MOVK, it's only supported # in binutils since 2015-03-04 as PR gas/17843. # # This test directive make sure binutils support all features needed by TLS LE # under -mtls-size=32 on AArch64. proc check_effective_target_aarch64_tlsle32 { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_tlsle32 object { void foo (void) { asm ("movk x1,#:tprel_g0_nc:t1"); } }] } else { return 0 } } # Return 1 if -shared is supported, as in no warnings or errors # emitted, 0 otherwise. proc check_effective_target_shared { } { # Note that M68K has a multilib that supports -fpic but not # -fPIC, so we need to check both. We test with a program that # requires GOT references. return [check_no_compiler_messages shared executable { extern int foo (void); extern int bar; int baz (void) { return foo () + bar; } } "-shared -fpic"] } # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise. proc check_effective_target_pie { } { if { [istarget *-*-darwin\[912\]*] || [istarget *-*-dragonfly*] || [istarget *-*-freebsd*] || [istarget *-*-linux*] || [istarget *-*-gnu*] } { return 1; } if { [istarget *-*-solaris2.1\[1-9\]*] } { # Full PIE support was added in Solaris 11.x and Solaris 12, but gcc # errors out if missing, so check for that. return [check_no_compiler_messages pie executable { int main (void) { return 0; } } "-pie -fpie"] } return 0 } # Return true if the target supports -mpaired-single (as used on MIPS). proc check_effective_target_mpaired_single { } { return [check_no_compiler_messages mpaired_single object { void foo (void) { } } "-mpaired-single"] } # Return true if the target has access to FPU instructions. proc check_effective_target_hard_float { } { if { [istarget mips*-*-*] } { return [check_no_compiler_messages hard_float assembly { #if (defined __mips_soft_float || defined __mips16) #error __mips_soft_float || __mips16 #endif }] } # This proc is actually checking the availabilty of FPU # support for doubles, so on the RX we must fail if the # 64-bit double multilib has been selected. if { [istarget rx-*-*] } { return 0 # return [check_no_compiler_messages hard_float assembly { #if defined __RX_64_BIT_DOUBLES__ #error __RX_64_BIT_DOUBLES__ #endif # }] } # The generic test equates hard_float with "no call for adding doubles". return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand { double a (double b, double c) { return b + c; } }] } # Return true if the target is a 64-bit MIPS target. proc check_effective_target_mips64 { } { return [check_no_compiler_messages mips64 assembly { #ifndef __mips64 #error !__mips64 #endif }] } # Return true if the target is a MIPS target that does not produce # MIPS16 code. proc check_effective_target_nomips16 { } { return [check_no_compiler_messages nomips16 object { #ifndef __mips #error !__mips #else /* A cheap way of testing for -mflip-mips16. */ void foo (void) { asm ("addiu $20,$20,1"); } void bar (void) { asm ("addiu $20,$20,1"); } #endif }] } # Add the options needed for MIPS16 function attributes. At the moment, # we don't support MIPS16 PIC. proc add_options_for_mips16_attribute { flags } { return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))" } # Return true if we can force a mode that allows MIPS16 code generation. # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float # for o32 and o64. proc check_effective_target_mips16_attribute { } { return [check_no_compiler_messages mips16_attribute assembly { #ifdef PIC #error PIC #endif #if defined __mips_hard_float \ && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \ && (!defined _ABIO64 || _MIPS_SIM != _ABIO64) #error __mips_hard_float && (!_ABIO32 || !_ABIO64) #endif } [add_options_for_mips16_attribute ""]] } # Return 1 if the target supports long double larger than double when # using the new ABI, 0 otherwise. proc check_effective_target_mips_newabi_large_long_double { } { return [check_no_compiler_messages mips_newabi_large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; } "-mabi=64"] } # Return true if the target is a MIPS target that has access # to the LL and SC instructions. proc check_effective_target_mips_llsc { } { if { ![istarget mips*-*-*] } { return 0 } # Assume that these instructions are always implemented for # non-elf* targets, via emulation if necessary. if { ![istarget *-*-elf*] } { return 1 } # Otherwise assume LL/SC support for everything but MIPS I. return [check_no_compiler_messages mips_llsc assembly { #if __mips == 1 #error __mips == 1 #endif }] } # Return true if the target is a MIPS target that uses in-place relocations. proc check_effective_target_mips_rel { } { if { ![istarget mips*-*-*] } { return 0 } return [check_no_compiler_messages mips_rel object { #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \ || (defined _ABI64 && _MIPS_SIM == _ABI64) #error _ABIN32 && (_ABIN32 || _ABI64) #endif }] } # Return true if the target is a MIPS target that uses the EABI. proc check_effective_target_mips_eabi { } { if { ![istarget mips*-*-*] } { return 0 } return [check_no_compiler_messages mips_eabi object { #ifndef __mips_eabi #error !__mips_eabi #endif }] } # Return 1 if the current multilib does not generate PIC by default. proc check_effective_target_nonpic { } { return [check_no_compiler_messages nonpic assembly { #if __PIC__ #error __PIC__ #endif }] } # Return 1 if the current multilib generates PIE by default. proc check_effective_target_pie_enabled { } { return [check_no_compiler_messages pie_enabled assembly { #ifndef __PIE__ #error unsupported #endif }] } # Return 1 if the target generates -fstack-protector by default. proc check_effective_target_fstack_protector_enabled {} { return [ check_no_compiler_messages fstack_protector_enabled assembly { #if !defined(__SSP__) && !defined(__SSP_ALL__) && \ !defined(__SSP_STRONG__) && !defined(__SSP_EXPICIT__) #error unsupported #endif }] } # Return 1 if the target does not use a status wrapper. proc check_effective_target_unwrapped { } { if { [target_info needs_status_wrapper] != "" \ && [target_info needs_status_wrapper] != "0" } { return 0 } return 1 } # Return true if iconv is supported on the target. In particular IBM1047. proc check_iconv_available { test_what } { global libiconv # If the tool configuration file has not set libiconv, try "-liconv" if { ![info exists libiconv] } { set libiconv "-liconv" } set test_what [lindex $test_what 1] return [check_runtime_nocache $test_what [subst { #include int main (void) { iconv_t cd; cd = iconv_open ("$test_what", "UTF-8"); if (cd == (iconv_t) -1) return 1; return 0; } }] $libiconv] } # Return true if Cilk Library is supported on the target. proc check_effective_target_cilkplus_runtime { } { return [ check_no_compiler_messages_nocache cilkplus_runtime executable { #ifdef __cplusplus extern "C" #endif int __cilkrts_set_param (const char *, const char *); int main (void) { int x = __cilkrts_set_param ("nworkers", "0"); return x; } } "-fcilkplus -lcilkrts" ] } # Return true if the atomic library is supported on the target. proc check_effective_target_libatomic_available { } { return [check_no_compiler_messages libatomic_available executable { int main (void) { return 0; } } "-latomic"] } # Return 1 if an ASCII locale is supported on this host, 0 otherwise. proc check_ascii_locale_available { } { return 1 } # Return true if named sections are supported on this target. proc check_named_sections_available { } { return [check_no_compiler_messages named_sections assembly { int __attribute__ ((section("whatever"))) foo; }] } # Return true if the "naked" function attribute is supported on this target. proc check_effective_target_naked_functions { } { return [check_no_compiler_messages naked_functions assembly { void f() __attribute__((naked)); }] } # Return 1 if the target supports Fortran real kinds larger than real(8), # 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_real { } { return [check_no_compiler_messages fortran_large_real executable { ! Fortran integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1) real(kind=k) :: x x = cos (x) end }] } # Return 1 if the target supports Fortran real kind real(16), # 0 otherwise. Contrary to check_effective_target_fortran_large_real # this checks for Real(16) only; the other returned real(10) if # both real(10) and real(16) are available. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_real_16 { } { return [check_no_compiler_messages fortran_real_16 executable { ! Fortran real(kind=16) :: x x = cos (x) end }] } # Return 1 if the target supports Fortran's IEEE modules, # 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_ieee { flags } { return [check_no_compiler_messages fortran_ieee executable { ! Fortran use, intrinsic :: ieee_features end } $flags ] } # Return 1 if the target supports SQRT for the largest floating-point # type. (Some targets lack the libm support for this FP type.) # On most targets, this check effectively checks either whether sqrtl is # available or on __float128 systems whether libquadmath is installed, # which provides sqrtq. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_largest_fp_has_sqrt { } { return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable { ! Fortran use iso_fortran_env, only: real_kinds integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1)) real(kind=maxFP), volatile :: x x = 2.0_maxFP x = sqrt (x) end }] } # Return 1 if the target supports Fortran integer kinds larger than # integer(8), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_int { } { return [check_no_compiler_messages fortran_large_int executable { ! Fortran integer,parameter :: k = selected_int_kind (range (0_8) + 1) integer(kind=k) :: i end }] } # Return 1 if the target supports Fortran integer(16), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_integer_16 { } { return [check_no_compiler_messages fortran_integer_16 executable { ! Fortran integer(16) :: i end }] } # Return 1 if we can statically link libgfortran, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_static_libgfortran { } { return [check_no_compiler_messages static_libgfortran executable { ! Fortran print *, 'test' end } "-static"] } # Return 1 if cilk-plus is supported by the target, 0 otherwise. proc check_effective_target_cilkplus { } { # Skip cilk-plus tests on int16 and size16 targets for now. # The cilk-plus tests are not generic enough to cover these # cases and would throw hundreds of FAILs. if { [check_effective_target_int16] || ![check_effective_target_size32plus] } { return 0; } # Skip AVR, its RAM is too small and too many tests would fail. if { [istarget avr-*-*] } { return 0; } if { ! [check_effective_target_pthread] } { return 0; } return 1 } proc check_linker_plugin_available { } { return [check_no_compiler_messages_nocache linker_plugin executable { int main() { return 0; } } "-flto -fuse-linker-plugin"] } # Return 1 if the target supports executing 750CL paired-single instructions, 0 # otherwise. Cache the result. proc check_750cl_hw_available { } { return [check_cached_effective_target 750cl_hw_available { # If this is not the right target then we can skip the test. if { ![istarget powerpc-*paired*] } { expr 0 } else { check_runtime_nocache 750cl_hw_available { int main() { #ifdef __MACH__ asm volatile ("ps_mul v0,v0,v0"); #else asm volatile ("ps_mul 0,0,0"); #endif return 0; } } "-mpaired" } }] } # Return 1 if the target OS supports running SSE executables, 0 # otherwise. Cache the result. proc check_sse_os_support_available { } { return [check_cached_effective_target sse_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } elseif { [istarget i?86-*-solaris2*] } { # The Solaris 2 kernel doesn't save and restore SSE registers # before Solaris 9 4/04. Before that, executables die with SIGILL. check_runtime_nocache sse_os_support_available { int main () { asm volatile ("movaps %xmm0,%xmm0"); return 0; } } "-msse" } else { expr 1 } }] } # Return 1 if the target OS supports running AVX executables, 0 # otherwise. Cache the result. proc check_avx_os_support_available { } { return [check_cached_effective_target avx_os_support_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { # Check that OS has AVX and SSE saving enabled. check_runtime_nocache avx_os_support_available { int main () { unsigned int eax, edx; asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0)); return (eax & 6) != 6; } } "" } }] } # Return 1 if the target supports executing SSE instructions, 0 # otherwise. Cache the result. proc check_sse_hw_available { } { return [check_cached_effective_target sse_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache sse_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_SSE); return 1; } } "" } }] } # Return 1 if the target supports executing SSE2 instructions, 0 # otherwise. Cache the result. proc check_sse2_hw_available { } { return [check_cached_effective_target sse2_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache sse2_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_SSE2); return 1; } } "" } }] } # Return 1 if the target supports executing AVX instructions, 0 # otherwise. Cache the result. proc check_avx_hw_available { } { return [check_cached_effective_target avx_hw_available { # If this is not the right target then we can skip the test. if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { expr 0 } else { check_runtime_nocache avx_hw_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return ((ecx & (bit_AVX | bit_OSXSAVE)) != (bit_AVX | bit_OSXSAVE)); return 1; } } "" } }] } # Return 1 if the target supports running SSE executables, 0 otherwise. proc check_effective_target_sse_runtime { } { if { [check_effective_target_sse] && [check_sse_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running SSE2 executables, 0 otherwise. proc check_effective_target_sse2_runtime { } { if { [check_effective_target_sse2] && [check_sse2_hw_available] && [check_sse_os_support_available] } { return 1 } return 0 } # Return 1 if the target supports running AVX executables, 0 otherwise. proc check_effective_target_avx_runtime { } { if { [check_effective_target_avx] && [check_avx_hw_available] && [check_avx_os_support_available] } { return 1 } return 0 } # Return 1 if we are compiling for 64-bit PowerPC but we do not use direct # move instructions for moves from GPR to FPR. proc check_effective_target_powerpc64_no_dm { } { # The "mulld" checks if we are generating PowerPC64 code. The "lfd" # checks if we do not use direct moves, but use the old-fashioned # slower move-via-the-stack. return [check_no_messages_and_pattern powerpc64_no_dm \ {\mmulld\M.*\mlfd} assembly { double f(long long x) { return x*x; } } {-O2}] } # Return 1 if the target supports executing power8 vector instructions, 0 # otherwise. Cache the result. proc check_p8vector_hw_available { } { return [check_cached_effective_target p8vector_hw_available { # Some simulators are known to not support VSX/power8 instructions. # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpower8-vector" check_runtime_nocache p8vector_hw_available { int main() { #ifdef __MACH__ asm volatile ("xxlorc vs0,vs0,vs0"); #else asm volatile ("xxlorc 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing power9 vector instructions, 0 # otherwise. Cache the result. proc check_p9vector_hw_available { } { return [check_cached_effective_target p9vector_hw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpower9-vector" check_runtime_nocache p9vector_hw_available { int main() { long e = -1; vector double v = (vector double) { 0.0, 0.0 }; asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v)); return e; } } $options } }] } # Return 1 if the target supports executing power9 modulo instructions, 0 # otherwise. Cache the result. proc check_p9modulo_hw_available { } { return [check_cached_effective_target p9modulo_hw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mmodulo" check_runtime_nocache p9modulo_hw_available { int main() { int i = 5, j = 3, r = -1; asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j)); return (r == 2); } } $options } }] } # Return 1 if the target supports executing __float128 on PowerPC via software # emulation, 0 otherwise. Cache the result. proc check_ppc_float128_sw_available { } { return [check_cached_effective_target ppc_float128_sw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mfloat128 -mvsx" check_runtime_nocache ppc_float128_sw_available { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z = x + y; return (z != 3.0q); } } $options } }] } # Return 1 if the target supports executing __float128 on PowerPC via power9 # hardware instructions, 0 otherwise. Cache the result. proc check_ppc_float128_hw_available { } { return [check_cached_effective_target ppc_float128_hw_available { # Some simulators are known to not support VSX/power8/power9 # instructions. For now, disable on Darwin. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mfloat128 -mvsx -mfloat128-hardware -mpower9-vector" check_runtime_nocache ppc_float128_hw_available { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z = x + y; __float128 w = -1.0q; __asm__ ("xsaddqp %0,%1,%2" : "+v" (w) : "v" (x), "v" (y)); return ((z != 3.0q) || (z != w); } } $options } }] } # Return 1 if the target supports executing VSX instructions, 0 # otherwise. Cache the result. proc check_vsx_hw_available { } { return [check_cached_effective_target vsx_hw_available { # Some simulators are known to not support VSX instructions. # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mvsx" check_runtime_nocache vsx_hw_available { int main() { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing AltiVec instructions, 0 # otherwise. Cache the result. proc check_vmx_hw_available { } { return [check_cached_effective_target vmx_hw_available { # Some simulators are known to not support VMX instructions. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } { expr 0 } else { # Most targets don't require special flags for this test case, but # Darwin does. Just to be sure, make sure VSX is not enabled for # the altivec tests. if { [istarget *-*-darwin*] || [istarget *-*-aix*] } { set options "-maltivec -mno-vsx" } else { set options "-mno-vsx" } check_runtime_nocache vmx_hw_available { int main() { #ifdef __MACH__ asm volatile ("vor v0,v0,v0"); #else asm volatile ("vor 0,0,0"); #endif return 0; } } $options } }] } proc check_ppc_recip_hw_available { } { return [check_cached_effective_target ppc_recip_hw_available { # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb" check_runtime_nocache ppc_recip_hw_available { volatile double d_recip, d_rsqrt, d_four = 4.0; volatile float f_recip, f_rsqrt, f_four = 4.0f; int main() { asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four)); asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four)); asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four)); asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four)); return 0; } } $options } }] } # Return 1 if the target supports executing AltiVec and Cell PPU # instructions, 0 otherwise. Cache the result. proc check_effective_target_cell_hw { } { return [check_cached_effective_target cell_hw_available { # Some simulators are known to not support VMX and PPU instructions. if { [istarget powerpc-*-eabi*] } { expr 0 } else { # Most targets don't require special flags for this test # case, but Darwin and AIX do. if { [istarget *-*-darwin*] || [istarget *-*-aix*] } { set options "-maltivec -mcpu=cell" } else { set options "-mcpu=cell" } check_runtime_nocache cell_hw_available { int main() { #ifdef __MACH__ asm volatile ("vor v0,v0,v0"); asm volatile ("lvlx v0,r0,r0"); #else asm volatile ("vor 0,0,0"); asm volatile ("lvlx 0,0,0"); #endif return 0; } } $options } }] } # Return 1 if the target supports executing 64-bit instructions, 0 # otherwise. Cache the result. proc check_effective_target_powerpc64 { } { global powerpc64_available_saved global tool if [info exists powerpc64_available_saved] { verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2 } else { set powerpc64_available_saved 0 # Some simulators are known to not support powerpc64 instructions. if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } { verbose "check_effective_target_powerpc64 returning 0" 2 return $powerpc64_available_saved } # Set up, compile, and execute a test program containing a 64-bit # instruction. Include the current process ID in the file # names to prevent conflicts with invocations for multiple # testsuites. set src ppc[pid].c set exe ppc[pid].x set f [open $src "w"] puts $f "int main() {" puts $f "#ifdef __MACH__" puts $f " asm volatile (\"extsw r0,r0\");" puts $f "#else" puts $f " asm volatile (\"extsw 0,0\");" puts $f "#endif" puts $f " return 0; }" close $f set opts "additional_flags=-mcpu=G5" verbose "check_effective_target_powerpc64 compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable "$opts"] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_effective_target_powerpc64 testfile status is <$status>" 2 if { $status == "pass" } then { set powerpc64_available_saved 1 } } else { verbose "check_effective_target_powerpc64 testfile compilation failed" 2 } } return $powerpc64_available_saved } # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing # complex float arguments. This affects gfortran tests that call cabsf # in libm built by an earlier compiler. Return 1 if libm uses the same # argument passing as the compiler under test, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_broken_cplxf_arg { } { return [check_cached_effective_target broken_cplxf_arg { # Skip the work for targets known not to be affected. if { ![istarget powerpc64-*-linux*] } { expr 0 } elseif { ![is-effective-target lp64] } { expr 0 } else { check_runtime_nocache broken_cplxf_arg { #include extern void abort (void); float fabsf (float); float cabsf (_Complex float); int main () { _Complex float cf; float f; cf = 3 + 4.0fi; f = cabsf (cf); if (fabsf (f - 5.0) > 0.0001) abort (); return 0; } } "-lm" } }] } # Return 1 is this is a TI C6X target supporting C67X instructions proc check_effective_target_ti_c67x { } { return [check_no_compiler_messages ti_c67x assembly { #if !defined(_TMS320C6700) #error !_TMS320C6700 #endif }] } # Return 1 is this is a TI C6X target supporting C64X+ instructions proc check_effective_target_ti_c64xp { } { return [check_no_compiler_messages ti_c64xp assembly { #if !defined(_TMS320C6400_PLUS) #error !_TMS320C6400_PLUS #endif }] } proc check_alpha_max_hw_available { } { return [check_runtime alpha_max_hw_available { int main() { return __builtin_alpha_amask(1<<8) != 0; } }] } # Returns true iff the FUNCTION is available on the target system. # (This is essentially a Tcl implementation of Autoconf's # AC_CHECK_FUNC.) proc check_function_available { function } { return [check_no_compiler_messages ${function}_available \ executable [subst { #ifdef __cplusplus extern "C" #endif char $function (); int main () { $function (); } }] "-fno-builtin" ] } # Returns true iff "fork" is available on the target system. proc check_fork_available {} { return [check_function_available "fork"] } # Returns true iff "mkfifo" is available on the target system. proc check_mkfifo_available {} { if { [istarget *-*-cygwin*] } { # Cygwin has mkfifo, but support is incomplete. return 0 } return [check_function_available "mkfifo"] } # Returns true iff "__cxa_atexit" is used on the target system. proc check_cxa_atexit_available { } { return [check_cached_effective_target cxa_atexit_available { if { [istarget hppa*-*-hpux10*] } { # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes. expr 0 } elseif { [istarget *-*-vxworks] } { # vxworks doesn't have __cxa_atexit but subsequent test passes. expr 0 } else { check_runtime_nocache cxa_atexit_available { // C++ #include static unsigned int count; struct X { X() { count = 1; } ~X() { if (count != 3) exit(1); count = 4; } }; void f() { static X x; } struct Y { Y() { f(); count = 2; } ~Y() { if (count != 2) exit(1); count = 3; } }; Y y; int main() { return 0; } } } }] } proc check_effective_target_objc2 { } { return [check_no_compiler_messages objc2 object { #ifdef __OBJC2__ int dummy[1]; #else #error !__OBJC2__ #endif }] } proc check_effective_target_next_runtime { } { return [check_no_compiler_messages objc2 object { #ifdef __NEXT_RUNTIME__ int dummy[1]; #else #error !__NEXT_RUNTIME__ #endif }] } # Return 1 if we're generating 32-bit code using default options, 0 # otherwise. proc check_effective_target_ilp32 { } { return [check_no_compiler_messages ilp32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if we're generating ia32 code using default options, 0 # otherwise. proc check_effective_target_ia32 { } { return [check_no_compiler_messages ia32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1] = { __i386__ }; }] } # Return 1 if we're generating x32 code using default options, 0 # otherwise. proc check_effective_target_x32 { } { return [check_no_compiler_messages x32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ }; }] } # Return 1 if we're generating 32-bit integers using default # options, 0 otherwise. proc check_effective_target_int32 { } { return [check_no_compiler_messages int32 object { int dummy[sizeof (int) == 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger integers using default # options, 0 otherwise. proc check_effective_target_int32plus { } { return [check_no_compiler_messages int32plus object { int dummy[sizeof (int) >= 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger pointers using default # options, 0 otherwise. proc check_effective_target_ptr32plus { } { # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it # cannot really hold a 32-bit address, so we always return false here. if { [istarget msp430-*-*] } { return 0 } return [check_no_compiler_messages ptr32plus object { int dummy[sizeof (void *) >= 4 ? 1 : -1]; }] } # Return 1 if we support 32-bit or larger array and structure sizes # using default options, 0 otherwise. Avoid false positive on # targets with 20 or 24 bit address spaces. proc check_effective_target_size32plus { } { return [check_no_compiler_messages size32plus object { char dummy[16777217L]; }] } # Returns 1 if we're generating 16-bit or smaller integers with the # default options, 0 otherwise. proc check_effective_target_int16 { } { return [check_no_compiler_messages int16 object { int dummy[sizeof (int) < 4 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default options, 0 # otherwise. proc check_effective_target_lp64 { } { return [check_no_compiler_messages lp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long) == 8 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default llp64 options, # 0 otherwise. proc check_effective_target_llp64 { } { return [check_no_compiler_messages llp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long long) == 8 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if long and int have different sizes, # 0 otherwise. proc check_effective_target_long_neq_int { } { return [check_no_compiler_messages long_ne_int object { int dummy[sizeof (int) != sizeof (long) ? 1 : -1]; }] } # Return 1 if the target supports long double larger than double, # 0 otherwise. proc check_effective_target_large_long_double { } { return [check_no_compiler_messages large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; }] } # Return 1 if the target supports double larger than float, # 0 otherwise. proc check_effective_target_large_double { } { return [check_no_compiler_messages large_double object { int dummy[sizeof(double) > sizeof(float) ? 1 : -1]; }] } # Return 1 if the target supports long double of 128 bits, # 0 otherwise. proc check_effective_target_longdouble128 { } { return [check_no_compiler_messages longdouble128 object { int dummy[sizeof(long double) == 16 ? 1 : -1]; }] } # Return 1 if the target supports double of 64 bits, # 0 otherwise. proc check_effective_target_double64 { } { return [check_no_compiler_messages double64 object { int dummy[sizeof(double) == 8 ? 1 : -1]; }] } # Return 1 if the target supports double of at least 64 bits, # 0 otherwise. proc check_effective_target_double64plus { } { return [check_no_compiler_messages double64plus object { int dummy[sizeof(double) >= 8 ? 1 : -1]; }] } # Return 1 if the target supports 'w' suffix on floating constant # 0 otherwise. proc check_effective_target_has_w_floating_suffix { } { set opts "" if [check_effective_target_c++] { append opts "-std=gnu++03" } return [check_no_compiler_messages w_fp_suffix object { float dummy = 1.0w; } "$opts"] } # Return 1 if the target supports 'q' suffix on floating constant # 0 otherwise. proc check_effective_target_has_q_floating_suffix { } { set opts "" if [check_effective_target_c++] { append opts "-std=gnu++03" } return [check_no_compiler_messages q_fp_suffix object { float dummy = 1.0q; } "$opts"] } # Return 1 if the target supports compiling fixed-point, # 0 otherwise. proc check_effective_target_fixed_point { } { return [check_no_compiler_messages fixed_point object { _Sat _Fract x; _Sat _Accum y; }] } # Return 1 if the target supports compiling decimal floating point, # 0 otherwise. proc check_effective_target_dfp_nocache { } { verbose "check_effective_target_dfp_nocache: compiling source" 2 set ret [check_no_compiler_messages_nocache dfp object { float x __attribute__((mode(DD))); }] verbose "check_effective_target_dfp_nocache: returning $ret" 2 return $ret } proc check_effective_target_dfprt_nocache { } { return [check_runtime_nocache dfprt { typedef float d64 __attribute__((mode(DD))); d64 x = 1.2df, y = 2.3dd, z; int main () { z = x + y; return 0; } }] } # Return 1 if the target supports compiling Decimal Floating Point, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfp { } { return [check_cached_effective_target dfp { check_effective_target_dfp_nocache }] } # Return 1 if the target supports linking and executing Decimal Floating # Point, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfprt { } { return [check_cached_effective_target dfprt { check_effective_target_dfprt_nocache }] } # Return 1 if the target supports executing DFP hardware instructions, # 0 otherwise. Cache the result. proc check_dfp_hw_available { } { return [check_cached_effective_target dfp_hw_available { # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { check_runtime_nocache dfp_hw_available { volatile _Decimal64 r; volatile _Decimal64 a = 4.0DD; volatile _Decimal64 b = 2.0DD; int main() { asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b)); return 0; } } "-mcpu=power6 -mhard-float" } }] } # Return 1 if the target supports compiling and assembling UCN, 0 otherwise. proc check_effective_target_ucn_nocache { } { # -std=c99 is only valid for C if [check_effective_target_c] { set ucnopts "-std=c99" } else { set ucnopts "" } verbose "check_effective_target_ucn_nocache: compiling source" 2 set ret [check_no_compiler_messages_nocache ucn object { int \u00C0; } $ucnopts] verbose "check_effective_target_ucn_nocache: returning $ret" 2 return $ret } # Return 1 if the target supports compiling and assembling UCN, 0 otherwise. # # This won't change for different subtargets, so cache the result. proc check_effective_target_ucn { } { return [check_cached_effective_target ucn { check_effective_target_ucn_nocache }] } # Return 1 if the target needs a command line argument to enable a SIMD # instruction set. proc check_effective_target_vect_cmdline_needed { } { global et_vect_cmdline_needed_saved global et_vect_cmdline_needed_target_name if { ![info exists et_vect_cmdline_needed_target_name] } { set et_vect_cmdline_needed_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_vect_cmdline_needed_target_name } { verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2 set et_vect_cmdline_needed_target_name $current_target if { [info exists et_vect_cmdline_needed_saved] } { verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2 unset et_vect_cmdline_needed_saved } } if [info exists et_vect_cmdline_needed_saved] { verbose "check_effective_target_vect_cmdline_needed: using cached result" 2 } else { set et_vect_cmdline_needed_saved 1 if { [istarget alpha*-*-*] || [istarget ia64-*-*] || (([istarget x86_64-*-*] || [istarget i?86-*-*]) && ([check_effective_target_x32] || [check_effective_target_lp64])) || ([istarget powerpc*-*-*] && ([check_effective_target_powerpc_spe] || [check_effective_target_powerpc_altivec])) || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis]) || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) || [istarget aarch64*-*-*] } { set et_vect_cmdline_needed_saved 0 } } verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2 return $et_vect_cmdline_needed_saved } # Return 1 if the target supports hardware vectors of int, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_int { } { global et_vect_int_saved if [info exists et_vect_int_saved] { verbose "check_effective_target_vect_int: using cached result" 2 } else { set et_vect_int_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget spu-*-*] || [istarget sparc*-*-*] || [istarget alpha*-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_int_saved 1 } } verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2 return $et_vect_int_saved } # Return 1 if the target supports signed int->float conversion # proc check_effective_target_vect_intfloat_cvt { } { global et_vect_intfloat_cvt_saved if [info exists et_vect_intfloat_cvt_saved] { verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2 } else { set et_vect_intfloat_cvt_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_intfloat_cvt_saved 1 } } verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2 return $et_vect_intfloat_cvt_saved } #Return 1 if we're supporting __int128 for target, 0 otherwise. proc check_effective_target_int128 { } { return [check_no_compiler_messages int128 object { int dummy[ #ifndef __SIZEOF_INT128__ -1 #else 1 #endif ]; }] } # Return 1 if the target supports unsigned int->float conversion # proc check_effective_target_vect_uintfloat_cvt { } { global et_vect_uintfloat_cvt_saved if [info exists et_vect_uintfloat_cvt_saved] { verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2 } else { set et_vect_uintfloat_cvt_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_uintfloat_cvt_saved 1 } } verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2 return $et_vect_uintfloat_cvt_saved } # Return 1 if the target supports signed float->int conversion # proc check_effective_target_vect_floatint_cvt { } { global et_vect_floatint_cvt_saved if [info exists et_vect_floatint_cvt_saved] { verbose "check_effective_target_vect_floatint_cvt: using cached result" 2 } else { set et_vect_floatint_cvt_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_floatint_cvt_saved 1 } } verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2 return $et_vect_floatint_cvt_saved } # Return 1 if the target supports unsigned float->int conversion # proc check_effective_target_vect_floatuint_cvt { } { global et_vect_floatuint_cvt_saved if [info exists et_vect_floatuint_cvt_saved] { verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2 } else { set et_vect_floatuint_cvt_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])} { set et_vect_floatuint_cvt_saved 1 } } verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2 return $et_vect_floatuint_cvt_saved } # Return 1 if the target supports #pragma omp declare simd, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_simd_clones { } { global et_vect_simd_clones_saved if [info exists et_vect_simd_clones_saved] { verbose "check_effective_target_vect_simd_clones: using cached result" 2 } else { set et_vect_simd_clones_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } { # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx and # avx2 clone. Only the right clone for the specified arch will be # chosen, but still we need to at least be able to assemble # avx2. if { [check_effective_target_avx512f] } { set et_vect_simd_clones_saved 1 } } } verbose "check_effective_target_vect_simd_clones: returning $et_vect_simd_clones_saved" 2 return $et_vect_simd_clones_saved } # Return 1 if this is a AArch64 target supporting big endian proc check_effective_target_aarch64_big_endian { } { return [check_no_compiler_messages aarch64_big_endian assembly { #if !defined(__aarch64__) || !defined(__AARCH64EB__) #error !__aarch64__ || !__AARCH64EB__ #endif }] } # Return 1 if this is a AArch64 target supporting little endian proc check_effective_target_aarch64_little_endian { } { if { ![istarget aarch64*-*-*] } { return 0 } return [check_no_compiler_messages aarch64_little_endian assembly { #if !defined(__aarch64__) || defined(__AARCH64EB__) #error FOO #endif }] } # Return 1 if this is a compiler supporting ARC atomic operations proc check_effective_target_arc_atomic { } { return [check_no_compiler_messages arc_atomic assembly { #if !defined(__ARC_ATOMIC__) #error FOO #endif }] } # Return 1 if this is an arm target using 32-bit instructions proc check_effective_target_arm32 { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm32 assembly { #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__)) #error !__arm || __thumb__ && !__thumb2__ #endif }] } # Return 1 if this is an arm target not using Thumb proc check_effective_target_arm_nothumb { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_nothumb assembly { #if !defined(__arm__) || (defined(__thumb__) || defined(__thumb2__)) #error !__arm__ || __thumb || __thumb2__ #endif }] } # Return 1 if this is a little-endian ARM target proc check_effective_target_arm_little_endian { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_little_endian assembly { #if !defined(__arm__) || !defined(__ARMEL__) #error !__arm__ || !__ARMEL__ #endif }] } # Return 1 if this is an ARM target that only supports aligned vector accesses proc check_effective_target_arm_vect_no_misalign { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_vect_no_misalign assembly { #if !defined(__arm__) \ || (defined(__ARM_FEATURE_UNALIGNED) \ && defined(__ARMEL__)) #error !__arm__ || (__ARMEL__ && __ARM_FEATURE_UNALIGNED) #endif }] } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=softfp. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_vfp_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_vfp_ok object { int dummy; } "-mfpu=vfp -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=vfp3 # -mfloat-abi=softfp. proc check_effective_target_arm_vfp3_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_vfp3_ok object { int dummy; } "-mfpu=vfp3 -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=fp-armv8 # -mfloat-abi=softfp. proc check_effective_target_arm_v8_vfp_ok {} { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_v8_vfp_ok object { int foo (void) { __asm__ volatile ("vrinta.f32.f32 s0, s0"); return 0; } } "-mfpu=fp-armv8 -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=hard. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_hard_vfp_ok { } { if { [check_effective_target_arm32] && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } { return [check_no_compiler_messages arm_hard_vfp_ok executable { int main() { return 0;} } "-mfpu=vfp -mfloat-abi=hard"] } else { return 0 } } # Return 1 if this is an ARM target defining __ARM_FP. We may need # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_fp_flags to the # best options to add. proc check_effective_target_arm_fp_ok_nocache { } { global et_arm_fp_flags set et_arm_fp_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfloat-abi=hard"} { if { [check_no_compiler_messages_nocache arm_fp_ok object { #ifndef __ARM_FP #error __ARM_FP not defined #endif } "$flags"] } { set et_arm_fp_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_fp_ok { } { return [check_cached_effective_target arm_fp_ok \ check_effective_target_arm_fp_ok_nocache] } # Add the options needed to define __ARM_FP. We need either # -mfloat-abi=softfp or -mfloat-abi=hard, but if one is already # specified by the multilib, use it. proc add_options_for_arm_fp { flags } { if { ! [check_effective_target_arm_fp_ok] } { return "$flags" } global et_arm_fp_flags return "$flags $et_arm_fp_flags" } # Return 1 if this is an ARM target that supports DSP multiply with # current multilib flags. proc check_effective_target_arm_dsp { } { return [check_no_compiler_messages arm_dsp assembly { #ifndef __ARM_FEATURE_DSP #error not DSP #endif int i; }] } # Return 1 if this is an ARM target that supports unaligned word/halfword # load/store instructions. proc check_effective_target_arm_unaligned { } { return [check_no_compiler_messages arm_unaligned assembly { #ifndef __ARM_FEATURE_UNALIGNED #error no unaligned support #endif int i; }] } # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_crypto_flags to the # best options to add. proc check_effective_target_arm_crypto_ok_nocache { } { global et_arm_crypto_flags set et_arm_crypto_flags "" if { [check_effective_target_arm_v8_neon_ok] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_crypto_ok object { #include "arm_neon.h" uint8x16_t foo (uint8x16_t a, uint8x16_t b) { return vaeseq_u8 (a, b); } } "$flags"] } { set et_arm_crypto_flags $flags return 1 } } } return 0 } # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8 proc check_effective_target_arm_crypto_ok { } { return [check_cached_effective_target arm_crypto_ok \ check_effective_target_arm_crypto_ok_nocache] } # Add options for crypto extensions. proc add_options_for_arm_crypto { flags } { if { ! [check_effective_target_arm_crypto_ok] } { return "$flags" } global et_arm_crypto_flags return "$flags $et_arm_crypto_flags" } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. Similarly, if a -mfpu option already enables # NEON, do not add -mfpu=neon. proc add_options_for_arm_neon { flags } { if { ! [check_effective_target_arm_neon_ok] } { return "$flags" } global et_arm_neon_flags return "$flags $et_arm_neon_flags" } proc add_options_for_arm_v8_vfp { flags } { if { ! [check_effective_target_arm_v8_vfp_ok] } { return "$flags" } return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp" } proc add_options_for_arm_v8_neon { flags } { if { ! [check_effective_target_arm_v8_neon_ok] } { return "$flags" } global et_arm_v8_neon_flags return "$flags $et_arm_v8_neon_flags -march=armv8-a" } # Add the options needed for ARMv8.1 Adv.SIMD. Also adds the ARMv8 NEON # options for AArch64 and for ARM. proc add_options_for_arm_v8_1a_neon { flags } { if { ! [check_effective_target_arm_v8_1a_neon_ok] } { return "$flags" } global et_arm_v8_1a_neon_flags return "$flags $et_arm_v8_1a_neon_flags -march=armv8.1-a" } proc add_options_for_arm_crc { flags } { if { ! [check_effective_target_arm_crc_ok] } { return "$flags" } global et_arm_crc_flags return "$flags $et_arm_crc_flags" } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. Similarly, if a -mfpu option already enables # NEON, do not add -mfpu=neon. proc add_options_for_arm_neonv2 { flags } { if { ! [check_effective_target_arm_neonv2_ok] } { return "$flags" } global et_arm_neonv2_flags return "$flags $et_arm_neonv2_flags" } # Add the options needed for vfp3. proc add_options_for_arm_vfp3 { flags } { if { ! [check_effective_target_arm_vfp3_ok] } { return "$flags" } return "$flags -mfpu=vfp3 -mfloat-abi=softfp" } # Return 1 if this is an ARM target supporting -mfpu=neon # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neon_flags to the # best options to add. proc check_effective_target_arm_neon_ok_nocache { } { global et_arm_neon_flags set et_arm_neon_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp" "-mfpu=neon -mfloat-abi=softfp -march=armv7-a"} { if { [check_no_compiler_messages_nocache arm_neon_ok object { int dummy; #ifndef __ARM_NEON__ #error not NEON #endif /* Avoid the case where a test adds -mfpu=neon, but the toolchain is configured for -mcpu=arm926ej-s, for example. */ #if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M' #error Architecture does not support NEON. #endif } "$flags"] } { set et_arm_neon_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_neon_ok { } { return [check_cached_effective_target arm_neon_ok \ check_effective_target_arm_neon_ok_nocache] } proc check_effective_target_arm_crc_ok_nocache { } { global et_arm_crc_flags set et_arm_crc_flags "-march=armv8-a+crc" return [check_no_compiler_messages_nocache arm_crc_ok object { #if !defined (__ARM_FEATURE_CRC32) #error FOO #endif } "$et_arm_crc_flags"] } proc check_effective_target_arm_crc_ok { } { return [check_cached_effective_target arm_crc_ok \ check_effective_target_arm_crc_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon-fp16 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neon_fp16_flags to # the best options to add. proc check_effective_target_arm_neon_fp16_ok_nocache { } { global et_arm_neon_fp16_flags set et_arm_neon_fp16_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16" "-mfpu=neon-fp16 -mfloat-abi=softfp" "-mfp16-format=ieee" "-mfloat-abi=softfp -mfp16-format=ieee" "-mfpu=neon-fp16 -mfp16-format=ieee" "-mfpu=neon-fp16 -mfloat-abi=softfp -mfp16-format=ieee"} { if { [check_no_compiler_messages_nocache arm_neon_fp_16_ok object { #include "arm_neon.h" float16x4_t foo (float32x4_t arg) { return vcvt_f16_f32 (arg); } } "$flags"] } { set et_arm_neon_fp16_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_neon_fp16_ok { } { return [check_cached_effective_target arm_neon_fp16_ok \ check_effective_target_arm_neon_fp16_ok_nocache] } proc check_effective_target_arm_neon_fp16_hw { } { if {! [check_effective_target_arm_neon_fp16_ok] } { return 0 } global et_arm_neon_fp16_flags check_runtime_nocache arm_neon_fp16_hw { int main (int argc, char **argv) { asm ("vcvt.f32.f16 q1, d0"); return 0; } } $et_arm_neon_fp16_flags } proc add_options_for_arm_neon_fp16 { flags } { if { ! [check_effective_target_arm_neon_fp16_ok] } { return "$flags" } global et_arm_neon_fp16_flags return "$flags $et_arm_neon_fp16_flags" } # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_v8_neon_flags to the # best options to add. proc check_effective_target_arm_v8_neon_ok_nocache { } { global et_arm_v8_neon_flags set et_arm_v8_neon_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_v8_neon_ok object { #if __ARM_ARCH < 8 #error not armv8 or later #endif #include "arm_neon.h" void foo () { __asm__ volatile ("vrintn.f32 q0, q0"); } } "$flags -march=armv8-a"] } { set et_arm_v8_neon_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_v8_neon_ok { } { return [check_cached_effective_target arm_v8_neon_ok \ check_effective_target_arm_v8_neon_ok_nocache] } # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4 # -mfloat-abi=softfp or equivalent options. Some multilibs may be # incompatible with these options. Also set et_arm_neonv2_flags to the # best options to add. proc check_effective_target_arm_neonv2_ok_nocache { } { global et_arm_neonv2_flags set et_arm_neonv2_flags "" if { [check_effective_target_arm32] } { foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_neonv2_ok object { #include "arm_neon.h" float32x2_t foo (float32x2_t a, float32x2_t b, float32x2_t c) { return vfma_f32 (a, b, c); } } "$flags"] } { set et_arm_neonv2_flags $flags return 1 } } } return 0 } proc check_effective_target_arm_neonv2_ok { } { return [check_cached_effective_target arm_neonv2_ok \ check_effective_target_arm_neonv2_ok_nocache] } # Add the options needed for NEON. We need either -mfloat-abi=softfp # or -mfloat-abi=hard, but if one is already specified by the # multilib, use it. proc add_options_for_arm_fp16 { flags } { if { ! [check_effective_target_arm_fp16_ok] } { return "$flags" } global et_arm_fp16_flags return "$flags $et_arm_fp16_flags" } # Return 1 if this is an ARM target that can support a VFP fp16 variant. # Skip multilibs that are incompatible with these options and set # et_arm_fp16_flags to the best options to add. proc check_effective_target_arm_fp16_ok_nocache { } { global et_arm_fp16_flags set et_arm_fp16_flags "" if { ! [check_effective_target_arm32] } { return 0; } if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] { # Multilib flags would override -mfpu. return 0 } if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] { # Must generate floating-point instructions. return 0 } if [check_effective_target_arm_hf_eabi] { # Use existing float-abi and force an fpu which supports fp16 set et_arm_fp16_flags "-mfpu=vfpv4" return 1; } if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] { # The existing -mfpu value is OK; use it, but add softfp. set et_arm_fp16_flags "-mfloat-abi=softfp" return 1; } # Add -mfpu for a VFP fp16 variant since there is no preprocessor # macro to check for this support. set flags "-mfpu=vfpv4 -mfloat-abi=softfp" if { [check_no_compiler_messages_nocache arm_fp16_ok assembly { int dummy; } "$flags"] } { set et_arm_fp16_flags "$flags" return 1 } return 0 } proc check_effective_target_arm_fp16_ok { } { return [check_cached_effective_target arm_fp16_ok \ check_effective_target_arm_fp16_ok_nocache] } # Creates a series of routines that return 1 if the given architecture # can be selected and a routine to give the flags to select that architecture # Note: Extra flags may be added to disable options from newer compilers # (Thumb in particular - but others may be added in the future). # -march=armv7ve is special and is handled explicitly after this loop because # it needs more than one predefine check to identify. # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */ # /* { dg-add-options arm_arch_v5 } */ # /* { dg-require-effective-target arm_arch_v5_multilib } */ foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__ v4t "-march=armv4t" __ARM_ARCH_4T__ v5 "-march=armv5 -marm" __ARM_ARCH_5__ v5t "-march=armv5t" __ARM_ARCH_5T__ v5te "-march=armv5te" __ARM_ARCH_5TE__ v6 "-march=armv6" __ARM_ARCH_6__ v6k "-march=armv6k" __ARM_ARCH_6K__ v6t2 "-march=armv6t2" __ARM_ARCH_6T2__ v6z "-march=armv6z" __ARM_ARCH_6Z__ v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__ v7a "-march=armv7-a" __ARM_ARCH_7A__ v7r "-march=armv7-r" __ARM_ARCH_7R__ v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__ v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__ v8a "-march=armv8-a" __ARM_ARCH_8A__ v8_1a "-march=armv8.1a" __ARM_ARCH_8A__ } { eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] { proc check_effective_target_arm_arch_FUNC_ok { } { if { [ string match "*-marm*" "FLAG" ] && ![check_effective_target_arm_arm_ok] } { return 0 } return [check_no_compiler_messages arm_arch_FUNC_ok assembly { #if !defined (DEF) #error !DEF #endif } "FLAG" ] } proc add_options_for_arm_arch_FUNC { flags } { return "$flags FLAG" } proc check_effective_target_arm_arch_FUNC_multilib { } { return [check_runtime arm_arch_FUNC_multilib { int main (void) { return 0; } } [add_options_for_arm_arch_FUNC ""]] } }] } # Same functions as above but for -march=armv7ve. To uniquely identify # -march=armv7ve we need to check for __ARM_ARCH_7A__ as well as # __ARM_FEATURE_IDIV otherwise it aliases with armv7-a. proc check_effective_target_arm_arch_v7ve_ok { } { if { [ string match "*-marm*" "-march=armv7ve" ] && ![check_effective_target_arm_arm_ok] } { return 0 } return [check_no_compiler_messages arm_arch_v7ve_ok assembly { #if !defined (__ARM_ARCH_7A__) || !defined (__ARM_FEATURE_IDIV) #error !armv7ve #endif } "-march=armv7ve" ] } proc add_options_for_arm_arch_v7ve { flags } { return "$flags -march=armv7ve" } # Return 1 if this is an ARM target where -marm causes ARM to be # used (not Thumb) proc check_effective_target_arm_arm_ok { } { return [check_no_compiler_messages arm_arm_ok assembly { #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__) #error !__arm__ || __thumb__ || __thumb2__ #endif } "-marm"] } # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be # used. proc check_effective_target_arm_thumb1_ok { } { return [check_no_compiler_messages arm_thumb1_ok assembly { #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__) #error !__arm__ || !__thumb__ || __thumb2__ #endif int foo (int i) { return i; } } "-mthumb"] } # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be # used. proc check_effective_target_arm_thumb2_ok { } { return [check_no_compiler_messages arm_thumb2_ok assembly { #if !defined(__thumb2__) #error !__thumb2__ #endif int foo (int i) { return i; } } "-mthumb"] } # Return 1 if this is an ARM target where Thumb-1 is used without options # added by the test. proc check_effective_target_arm_thumb1 { } { return [check_no_compiler_messages arm_thumb1 assembly { #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__) #error !__arm__ || !__thumb__ || __thumb2__ #endif int i; } ""] } # Return 1 if this is an ARM target where Thumb-2 is used without options # added by the test. proc check_effective_target_arm_thumb2 { } { return [check_no_compiler_messages arm_thumb2 assembly { #if !defined(__thumb2__) #error !__thumb2__ #endif int i; } ""] } # Return 1 if this is an ARM target where conditional execution is available. proc check_effective_target_arm_cond_exec { } { return [check_no_compiler_messages arm_cond_exec assembly { #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__) #error FOO #endif int i; } ""] } # Return 1 if this is an ARM cortex-M profile cpu proc check_effective_target_arm_cortex_m { } { if { ![istarget arm*-*-*] } { return 0 } return [check_no_compiler_messages arm_cortex_m assembly { #if !defined(__ARM_ARCH_7M__) \ && !defined (__ARM_ARCH_7EM__) \ && !defined (__ARM_ARCH_6M__) #error !__ARM_ARCH_7M__ && !__ARM_ARCH_7EM__ && !__ARM_ARCH_6M__ #endif int i; } "-mthumb"] } # Return 1 if this compilation turns on string_ops_prefer_neon on. proc check_effective_target_arm_tune_string_ops_prefer_neon { } { return [check_no_messages_and_pattern arm_tune_string_ops_prefer_neon "@string_ops_prefer_neon:\t1" assembly { int foo (void) { return 0; } } "-O2 -mprint-tune-info" ] } # Return 1 if the target supports executing NEON instructions, 0 # otherwise. Cache the result. proc check_effective_target_arm_neon_hw { } { return [check_runtime arm_neon_hw_available { int main (void) { long long a = 0, b = 1; asm ("vorr %P0, %P1, %P2" : "=w" (a) : "0" (a), "w" (b)); return (a != 1); } } [add_options_for_arm_neon ""]] } proc check_effective_target_arm_neonv2_hw { } { return [check_runtime arm_neon_hwv2_available { #include "arm_neon.h" int main (void) { float32x2_t a, b, c; asm ("vfma.f32 %P0, %P1, %P2" : "=w" (a) : "w" (b), "w" (c)); return 0; } } [add_options_for_arm_neonv2 ""]] } # Return 1 if the target supports the ARMv8.1 Adv.SIMD extension, 0 # otherwise. The test is valid for AArch64 and ARM. Record the command # line options needed. proc check_effective_target_arm_v8_1a_neon_ok_nocache { } { global et_arm_v8_1a_neon_flags set et_arm_v8_1a_neon_flags "" if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } { return 0; } # Iterate through sets of options to find the compiler flags that # need to be added to the -march option. Start with the empty set # since AArch64 only needs the -march setting. foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \ "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} { if { [check_no_compiler_messages_nocache arm_v8_1a_neon_ok object { #if !defined (__ARM_FEATURE_QRDMX) #error "__ARM_FEATURE_QRDMX not defined" #endif } "$flags -march=armv8.1-a"] } { set et_arm_v8_1a_neon_flags "$flags -march=armv8.1-a" return 1 } } return 0; } proc check_effective_target_arm_v8_1a_neon_ok { } { return [check_cached_effective_target arm_v8_1a_neon_ok \ check_effective_target_arm_v8_1a_neon_ok_nocache] } # Return 1 if the target supports executing ARMv8 NEON instructions, 0 # otherwise. proc check_effective_target_arm_v8_neon_hw { } { return [check_runtime arm_v8_neon_hw_available { #include "arm_neon.h" int main (void) { float32x2_t a; asm ("vrinta.f32 %P0, %P1" : "=w" (a) : "0" (a)); return 0; } } [add_options_for_arm_v8_neon ""]] } # Return 1 if the target supports executing the ARMv8.1 Adv.SIMD extension, 0 # otherwise. The test is valid for AArch64 and ARM. proc check_effective_target_arm_v8_1a_neon_hw { } { if { ![check_effective_target_arm_v8_1a_neon_ok] } { return 0; } return [check_runtime arm_v8_1a_neon_hw_available { int main (void) { #ifdef __ARM_ARCH_ISA_A64 __Int32x2_t a = {0, 1}; __Int32x2_t b = {0, 2}; __Int32x2_t result; asm ("sqrdmlah %0.2s, %1.2s, %2.2s" : "=w"(result) : "w"(a), "w"(b) : /* No clobbers. */); #else __simd64_int32_t a = {0, 1}; __simd64_int32_t b = {0, 2}; __simd64_int32_t result; asm ("vqrdmlah.s32 %P0, %P1, %P2" : "=w"(result) : "w"(a), "w"(b) : /* No clobbers. */); #endif return result[0]; } } [add_options_for_arm_v8_1a_neon ""]] } # Return 1 if this is a ARM target with NEON enabled. proc check_effective_target_arm_neon { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_neon object { #ifndef __ARM_NEON__ #error not NEON #else int dummy; #endif }] } else { return 0 } } proc check_effective_target_arm_neonv2 { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_neon object { #ifndef __ARM_NEON__ #error not NEON #else #ifndef __ARM_FEATURE_FMA #error not NEONv2 #else int dummy; #endif #endif }] } else { return 0 } } # Return 1 if this is an ARM target with load acquire and store release # instructions for 8-, 16- and 32-bit types. proc check_effective_target_arm_acq_rel { } { return [check_no_compiler_messages arm_acq_rel object { void load_acquire_store_release (void) { asm ("lda r0, [r1]\n\t" "stl r0, [r1]\n\t" "ldah r0, [r1]\n\t" "stlh r0, [r1]\n\t" "ldab r0, [r1]\n\t" "stlb r0, [r1]" : : : "r0", "memory"); } }] } # Return 1 if this a Loongson-2E or -2F target using an ABI that supports # the Loongson vector modes. proc check_effective_target_mips_loongson { } { return [check_no_compiler_messages loongson assembly { #if !defined(__mips_loongson_vector_rev) #error !__mips_loongson_vector_rev #endif }] } # Return 1 if this is a MIPS target that supports the legacy NAN. proc check_effective_target_mips_nanlegacy { } { return [check_no_compiler_messages nanlegacy assembly { #include int main () { return 0; } } "-mnan=legacy"] } # Return 1 if this is an ARM target that adheres to the ABI for the ARM # Architecture. proc check_effective_target_arm_eabi { } { return [check_no_compiler_messages arm_eabi object { #ifndef __ARM_EABI__ #error not EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target that adheres to the hard-float variant of # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard). proc check_effective_target_arm_hf_eabi { } { return [check_no_compiler_messages arm_hf_eabi object { #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP) #error not hard-float EABI #else int dummy; #endif }] } # Return 1 if this is an ARM target supporting -mcpu=iwmmxt. # Some multilibs may be incompatible with this option. proc check_effective_target_arm_iwmmxt_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_iwmmxt_ok object { int dummy; } "-mcpu=iwmmxt"] } else { return 0 } } # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions # for an ARM target. proc check_effective_target_arm_prefer_ldrd_strd { } { if { ![check_effective_target_arm32] } { return 0; } return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly { void foo (int *p) { p[0] = 1; p[1] = 0;} } "-O2 -mthumb" ] } # Return 1 if this is a PowerPC target supporting -meabi. proc check_effective_target_powerpc_eabi_ok { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_eabi_ok object { int dummy; } "-meabi"] } else { return 0 } } # Return 1 if this is a PowerPC target with floating-point registers. proc check_effective_target_powerpc_fprs { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_fprs object { #ifdef __NO_FPRS__ #error no FPRs #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with hardware double-precision # floating point. proc check_effective_target_powerpc_hard_double { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_hard_double object { #ifdef _SOFT_DOUBLE #error soft double #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -maltivec. proc check_effective_target_powerpc_altivec_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_altivec_ok object { int dummy; } "-maltivec"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mpower8-vector proc check_effective_target_powerpc_p8vector_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_p8vector_ok object { int main (void) { #ifdef __MACH__ asm volatile ("xxlorc vs0,vs0,vs0"); #else asm volatile ("xxlorc 0,0,0"); #endif return 0; } } "-mpower8-vector"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mpower9-vector proc check_effective_target_powerpc_p9vector_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_p9vector_ok object { int main (void) { long e = -1; vector double v = (vector double) { 0.0, 0.0 }; asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v)); return e; } } "-mpower9-vector"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mmodulo proc check_effective_target_powerpc_p9modulo_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_p9modulo_ok object { int main (void) { int i = 5, j = 3, r = -1; asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j)); return (r == 2); } } "-mmodulo"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mfloat128 via either # software emulation on power7/power8 systems or hardware support on power9. proc check_effective_target_powerpc_float128_sw_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_float128_sw_ok object { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z = x + y; return (z == 3.0q); } } "-mfloat128 -mvsx"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mfloat128 via hardware # support on power9. proc check_effective_target_powerpc_float128_hw_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # AltiVec is not supported on AIX before 5.3. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5.1*] || [istarget powerpc*-*-aix5.2*] } { return 0 } return [check_no_compiler_messages powerpc_float128_hw_ok object { volatile __float128 x = 1.0q; volatile __float128 y = 2.0q; int main() { __float128 z; __asm__ ("xsaddqp %0,%1,%2" : "=v" (z) : "v" (x), "v" (y)); return (z == 3.0q); } } "-mfloat128-hardware"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mvsx proc check_effective_target_powerpc_vsx_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # VSX is not supported on AIX before 7.1. if { [istarget powerpc*-*-aix4*] || [istarget powerpc*-*-aix5*] || [istarget powerpc*-*-aix6*] } { return 0 } return [check_no_compiler_messages powerpc_vsx_ok object { int main (void) { #ifdef __MACH__ asm volatile ("xxlor vs0,vs0,vs0"); #else asm volatile ("xxlor 0,0,0"); #endif return 0; } } "-mvsx"] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -mhtm proc check_effective_target_powerpc_htm_ok { } { if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget rs6000-*-*] } { # HTM is not supported on AIX yet. if { [istarget powerpc*-*-aix*] } { return 0 } return [check_no_compiler_messages powerpc_htm_ok object { int main (void) { asm volatile ("tbegin. 0"); return 0; } } "-mhtm"] } else { return 0 } } # Return 1 if the target supports executing HTM hardware instructions, # 0 otherwise. Cache the result. proc check_htm_hw_available { } { return [check_cached_effective_target htm_hw_available { # For now, disable on Darwin if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} { expr 0 } else { check_runtime_nocache htm_hw_available { int main() { __builtin_ttest (); return 0; } } "-mhtm" } }] } # Return 1 if this is a PowerPC target supporting -mcpu=cell. proc check_effective_target_powerpc_ppu_ok { } { if [check_effective_target_powerpc_altivec_ok] { return [check_no_compiler_messages cell_asm_available object { int main (void) { #ifdef __MACH__ asm volatile ("lvlx v0,v0,v0"); #else asm volatile ("lvlx 0,0,0"); #endif return 0; } }] } else { return 0 } } # Return 1 if this is a PowerPC target that supports SPU. proc check_effective_target_powerpc_spu { } { if { [istarget powerpc*-*-linux*] } { return [check_effective_target_powerpc_altivec_ok] } else { return 0 } } # Return 1 if this is a PowerPC SPE target. The check includes options # specified by dg-options for this test, so don't cache the result. proc check_effective_target_powerpc_spe_nocache { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages_nocache powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif } [current_compiler_flags]] } else { return 0 } } # Return 1 if this is a PowerPC target with SPE enabled. proc check_effective_target_powerpc_spe { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with Altivec enabled. proc check_effective_target_powerpc_altivec { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_altivec object { #ifndef __ALTIVEC__ #error not Altivec #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC 405 target. The check includes options # specified by dg-options for this test, so don't cache the result. proc check_effective_target_powerpc_405_nocache { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages_nocache powerpc_405 object { #ifdef __PPC405__ int dummy; #else #error not a PPC405 #endif } [current_compiler_flags]] } else { return 0 } } # Return 1 if this is a PowerPC target using the ELFv2 ABI. proc check_effective_target_powerpc_elfv2 { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_elfv2 object { #if _CALL_ELF != 2 #error not ELF v2 ABI #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a SPU target with a toolchain that # supports automatic overlay generation. proc check_effective_target_spu_auto_overlay { } { if { [istarget spu*-*-elf*] } { return [check_no_compiler_messages spu_auto_overlay executable { int main (void) { } } "-Wl,--auto-overlay" ] } else { return 0 } } # The VxWorks SPARC simulator accepts only EM_SPARC executables and # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the # test environment appears to run executables on such a simulator. proc check_effective_target_ultrasparc_hw { } { return [check_runtime ultrasparc_hw { int main() { return 0; } } "-mcpu=ultrasparc"] } # Return 1 if the test environment supports executing UltraSPARC VIS2 # instructions. We check this by attempting: "bmask %g0, %g0, %g0" proc check_effective_target_ultrasparc_vis2_hw { } { return [check_runtime ultrasparc_vis2_hw { int main() { __asm__(".word 0x81b00320"); return 0; } } "-mcpu=ultrasparc3"] } # Return 1 if the test environment supports executing UltraSPARC VIS3 # instructions. We check this by attempting: "addxc %g0, %g0, %g0" proc check_effective_target_ultrasparc_vis3_hw { } { return [check_runtime ultrasparc_vis3_hw { int main() { __asm__(".word 0x81b00220"); return 0; } } "-mcpu=niagara3"] } # Return 1 if this is a SPARC-V9 target. proc check_effective_target_sparc_v9 { } { if { [istarget sparc*-*-*] } { return [check_no_compiler_messages sparc_v9 object { int main (void) { asm volatile ("return %i7+8"); return 0; } }] } else { return 0 } } # Return 1 if this is a SPARC target with VIS enabled. proc check_effective_target_sparc_vis { } { if { [istarget sparc*-*-*] } { return [check_no_compiler_messages sparc_vis object { #ifndef __VIS__ #error not VIS #else int dummy; #endif }] } else { return 0 } } # Return 1 if the target supports hardware vector shift operation. proc check_effective_target_vect_shift { } { global et_vect_shift_saved if [info exists et_vect_shift_saved] { verbose "check_effective_target_vect_shift: using cached result" 2 } else { set et_vect_shift_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_shift_saved 1 } } verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2 return $et_vect_shift_saved } proc check_effective_target_whole_vector_shift { } { if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [istarget powerpc64*-*-*] || ([check_effective_target_arm32] && [check_effective_target_arm_little_endian]) || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long: returning $answer" 2 return $answer } # Return 1 if the target supports vector bswap operations. proc check_effective_target_vect_bswap { } { global et_vect_bswap_saved if [info exists et_vect_bswap_saved] { verbose "check_effective_target_vect_bswap: using cached result" 2 } else { set et_vect_bswap_saved 0 if { [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } { set et_vect_bswap_saved 1 } } verbose "check_effective_target_vect_bswap: returning $et_vect_bswap_saved" 2 return $et_vect_bswap_saved } # Return 1 if the target supports hardware vector shift operation for char. proc check_effective_target_vect_shift_char { } { global et_vect_shift_char_saved if [info exists et_vect_shift_char_saved] { verbose "check_effective_target_vect_shift_char: using cached result" 2 } else { set et_vect_shift_char_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [check_effective_target_arm32] } { set et_vect_shift_char_saved 1 } } verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2 return $et_vect_shift_char_saved } # Return 1 if the target supports hardware vectors of long, 0 otherwise. # # This can change for different subtargets so do not cache the result. proc check_effective_target_vect_long { } { if { [istarget i?86-*-*] || [istarget x86_64-*-*] || (([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) && [check_effective_target_ilp32]) || [check_effective_target_arm32] || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) || [istarget aarch64*-*-*] } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long: returning $answer" 2 return $answer } # Return 1 if the target supports hardware vectors of float, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_float { } { global et_vect_float_saved if [info exists et_vect_float_saved] { verbose "check_effective_target_vect_float: using cached result" 2 } else { set et_vect_float_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget mips-sde-elf] || [istarget mipsisa64*-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [check_effective_target_arm32] } { set et_vect_float_saved 1 } } verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2 return $et_vect_float_saved } # Return 1 if the target supports hardware vectors of double, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_double { } { global et_vect_double_saved if [info exists et_vect_double_saved] { verbose "check_effective_target_vect_double: using cached result" 2 } else { set et_vect_double_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] } { if { [check_no_compiler_messages vect_double assembly { #ifdef __tune_atom__ # error No double vectorizer support. #endif }] } { set et_vect_double_saved 1 } else { set et_vect_double_saved 0 } } elseif { [istarget spu-*-*] } { set et_vect_double_saved 1 } elseif { [istarget powerpc*-*-*] && [check_vsx_hw_available] } { set et_vect_double_saved 1 } } verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2 return $et_vect_double_saved } # Return 1 if the target supports hardware vectors of long long, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_long_long { } { global et_vect_long_long_saved if [info exists et_vect_long_long_saved] { verbose "check_effective_target_vect_long_long: using cached result" 2 } else { set et_vect_long_long_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_long_long_saved 1 } } verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2 return $et_vect_long_long_saved } # Return 1 if the target plus current options does not support a vector # max instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_min_max { } { global et_vect_no_int_min_max_saved if [info exists et_vect_no_int_min_max_saved] { verbose "check_effective_target_vect_no_int_min_max: using cached result" 2 } else { set et_vect_no_int_min_max_saved 0 if { [istarget sparc*-*-*] || [istarget spu-*-*] || [istarget alpha*-*-*] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_no_int_min_max_saved 1 } } verbose "check_effective_target_vect_no_int_min_max: returning $et_vect_no_int_min_max_saved" 2 return $et_vect_no_int_min_max_saved } # Return 1 if the target plus current options does not support a vector # add instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_add { } { global et_vect_no_int_add_saved if [info exists et_vect_no_int_add_saved] { verbose "check_effective_target_vect_no_int_add: using cached result" 2 } else { set et_vect_no_int_add_saved 0 # Alpha only supports vector add on V8QI and V4HI. if { [istarget alpha*-*-*] } { set et_vect_no_int_add_saved 1 } } verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2 return $et_vect_no_int_add_saved } # Return 1 if the target plus current options does not support vector # bitwise instructions, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_bitwise { } { global et_vect_no_bitwise_saved if [info exists et_vect_no_bitwise_saved] { verbose "check_effective_target_vect_no_bitwise: using cached result" 2 } else { set et_vect_no_bitwise_saved 0 } verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2 return $et_vect_no_bitwise_saved } # Return 1 if the target plus current options supports vector permutation, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm { } { global et_vect_perm if [info exists et_vect_perm_saved] { verbose "check_effective_target_vect_perm: using cached result" 2 } else { set et_vect_perm_saved 0 if { [is-effective-target arm_neon_ok] || [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget mips*-*-*] && [check_effective_target_mpaired_single]) } { set et_vect_perm_saved 1 } } verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2 return $et_vect_perm_saved } # Return 1 if the target plus current options supports vector permutation # on byte-sized elements, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm_byte { } { global et_vect_perm_byte if [info exists et_vect_perm_byte_saved] { verbose "check_effective_target_vect_perm_byte: using cached result" 2 } else { set et_vect_perm_byte_saved 0 if { ([is-effective-target arm_neon_ok] && [is-effective-target arm_little_endian]) || ([istarget aarch64*-*-*] && [is-effective-target aarch64_little_endian]) || [istarget powerpc*-*-*] || [istarget spu-*-*] } { set et_vect_perm_byte_saved 1 } } verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2 return $et_vect_perm_byte_saved } # Return 1 if the target plus current options supports vector permutation # on short-sized elements, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_perm_short { } { global et_vect_perm_short if [info exists et_vect_perm_short_saved] { verbose "check_effective_target_vect_perm_short: using cached result" 2 } else { set et_vect_perm_short_saved 0 if { ([is-effective-target arm_neon_ok] && [is-effective-target arm_little_endian]) || ([istarget aarch64*-*-*] && [is-effective-target aarch64_little_endian]) || [istarget powerpc*-*-*] || [istarget spu-*-*] } { set et_vect_perm_short_saved 1 } } verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2 return $et_vect_perm_short_saved } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } { global et_vect_widen_sum_hi_to_si_pattern if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] { verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2 } else { set et_vect_widen_sum_hi_to_si_pattern_saved 0 if { [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) || [istarget ia64-*-*] } { set et_vect_widen_sum_hi_to_si_pattern_saved 1 } } verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2 return $et_vect_widen_sum_hi_to_si_pattern_saved } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from shorts to ints. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si { } { global et_vect_widen_sum_hi_to_si if [info exists et_vect_widen_sum_hi_to_si_saved] { verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2 } else { set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack] if { [istarget powerpc*-*-*] || [istarget ia64-*-*] } { set et_vect_widen_sum_hi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2 return $et_vect_widen_sum_hi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *short* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from chars to shorts. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_hi { } { global et_vect_widen_sum_qi_to_hi if [info exists et_vect_widen_sum_qi_to_hi_saved] { verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2 } else { set et_vect_widen_sum_qi_to_hi_saved 0 if { [check_effective_target_vect_unpack] || [check_effective_target_arm_neon_ok] || [istarget ia64-*-*] } { set et_vect_widen_sum_qi_to_hi_saved 1 } } verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2 return $et_vect_widen_sum_qi_to_hi_saved } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_si { } { global et_vect_widen_sum_qi_to_si if [info exists et_vect_widen_sum_qi_to_si_saved] { verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2 } else { set et_vect_widen_sum_qi_to_si_saved 0 if { [istarget powerpc*-*-*] } { set et_vect_widen_sum_qi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2 return $et_vect_widen_sum_qi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening # multiplication of shorts). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi { } { global et_vect_widen_mult_qi_to_hi if [info exists et_vect_widen_mult_qi_to_hi_saved] { verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2 } else { if { [check_effective_target_vect_unpack] && [check_effective_target_vect_short_mult] } { set et_vect_widen_mult_qi_to_hi_saved 1 } else { set et_vect_widen_mult_qi_to_hi_saved 0 } if { [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_mult_qi_to_hi_saved 1 } } verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2 return $et_vect_widen_mult_qi_to_hi_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening # multiplication of ints). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si { } { global et_vect_widen_mult_hi_to_si if [info exists et_vect_widen_mult_hi_to_si_saved] { verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2 } else { if { [check_effective_target_vect_unpack] && [check_effective_target_vect_int_mult] } { set et_vect_widen_mult_hi_to_si_saved 1 } else { set et_vect_widen_mult_hi_to_si_saved 0 } if { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_mult_hi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2 return $et_vect_widen_mult_hi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } { global et_vect_widen_mult_qi_to_hi_pattern if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] { verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2 } else { set et_vect_widen_mult_qi_to_hi_pattern_saved 0 if { [istarget powerpc*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) } { set et_vect_widen_mult_qi_to_hi_pattern_saved 1 } } verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2 return $et_vect_widen_mult_qi_to_hi_pattern_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } { global et_vect_widen_mult_hi_to_si_pattern if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] { verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2 } else { set et_vect_widen_mult_hi_to_si_pattern_saved 0 if { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) } { set et_vect_widen_mult_hi_to_si_pattern_saved 1 } } verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2 return $et_vect_widen_mult_hi_to_si_pattern_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *int* args into *long* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_si_to_di_pattern { } { global et_vect_widen_mult_si_to_di_pattern if [info exists et_vect_widen_mult_si_to_di_pattern_saved] { verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: using cached result" 2 } else { set et_vect_widen_mult_si_to_di_pattern_saved 0 if {[istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_widen_mult_si_to_di_pattern_saved 1 } } verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: returning $et_vect_widen_mult_si_to_di_pattern_saved" 2 return $et_vect_widen_mult_si_to_di_pattern_saved } # Return 1 if the target plus current options supports a vector # widening shift, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_shift { } { global et_vect_widen_shift_saved if [info exists et_vect_shift_saved] { verbose "check_effective_target_vect_widen_shift: using cached result" 2 } else { set et_vect_widen_shift_saved 0 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_widen_shift_saved 1 } } verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2 return $et_vect_widen_shift_saved } # Return 1 if the target plus current options supports a vector # dot-product of signed chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_qi { } { global et_vect_sdot_qi if [info exists et_vect_sdot_qi_saved] { verbose "check_effective_target_vect_sdot_qi: using cached result" 2 } else { set et_vect_sdot_qi_saved 0 if { [istarget ia64-*-*] } { set et_vect_udot_qi_saved 1 } } verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2 return $et_vect_sdot_qi_saved } # Return 1 if the target plus current options supports a vector # dot-product of unsigned chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_qi { } { global et_vect_udot_qi if [info exists et_vect_udot_qi_saved] { verbose "check_effective_target_vect_udot_qi: using cached result" 2 } else { set et_vect_udot_qi_saved 0 if { [istarget powerpc*-*-*] || [istarget ia64-*-*] } { set et_vect_udot_qi_saved 1 } } verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2 return $et_vect_udot_qi_saved } # Return 1 if the target plus current options supports a vector # dot-product of signed shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_hi { } { global et_vect_sdot_hi if [info exists et_vect_sdot_hi_saved] { verbose "check_effective_target_vect_sdot_hi: using cached result" 2 } else { set et_vect_sdot_hi_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_sdot_hi_saved 1 } } verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2 return $et_vect_sdot_hi_saved } # Return 1 if the target plus current options supports a vector # dot-product of unsigned shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_hi { } { global et_vect_udot_hi if [info exists et_vect_udot_hi_saved] { verbose "check_effective_target_vect_udot_hi: using cached result" 2 } else { set et_vect_udot_hi_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } { set et_vect_udot_hi_saved 1 } } verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2 return $et_vect_udot_hi_saved } # Return 1 if the target plus current options supports a vector # sad operation of unsigned chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_usad_char { } { global et_vect_usad_char if [info exists et_vect_usad_char_saved] { verbose "check_effective_target_vect_usad_char: using cached result" 2 } else { set et_vect_usad_char_saved 0 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) } { set et_vect_usad_char_saved 1 } } verbose "check_effective_target_vect_usad_char: returning $et_vect_usad_char_saved" 2 return $et_vect_usad_char_saved } # Return 1 if the target plus current options supports a vector # demotion (packing) of shorts (to chars) and ints (to shorts) # using modulo arithmetic, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_pack_trunc { } { global et_vect_pack_trunc if [info exists et_vect_pack_trunc_saved] { verbose "check_effective_target_vect_pack_trunc: using cached result" 2 } else { set et_vect_pack_trunc_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) } { set et_vect_pack_trunc_saved 1 } } verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2 return $et_vect_pack_trunc_saved } # Return 1 if the target plus current options supports a vector # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_unpack { } { global et_vect_unpack if [info exists et_vect_unpack_saved] { verbose "check_effective_target_vect_unpack: using cached result" 2 } else { set et_vect_unpack_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*]) || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) } { set et_vect_unpack_saved 1 } } verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2 return $et_vect_unpack_saved } # Return 1 if the target plus current options does not guarantee # that its STACK_BOUNDARY is >= the reguired vector alignment. # # This won't change for different subtargets so cache the result. proc check_effective_target_unaligned_stack { } { global et_unaligned_stack_saved if [info exists et_unaligned_stack_saved] { verbose "check_effective_target_unaligned_stack: using cached result" 2 } else { set et_unaligned_stack_saved 0 } verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2 return $et_unaligned_stack_saved } # Return 1 if the target plus current options does not support a vector # alignment mechanism, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_align { } { global et_vect_no_align_saved if [info exists et_vect_no_align_saved] { verbose "check_effective_target_vect_no_align: using cached result" 2 } else { set et_vect_no_align_saved 0 if { [istarget mipsisa64*-*-*] || [istarget mips-sde-elf] || [istarget sparc*-*-*] || [istarget ia64-*-*] || [check_effective_target_arm_vect_no_misalign] || ([istarget powerpc*-*-*] && [check_p8vector_hw_available]) || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_no_align_saved 1 } } verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2 return $et_vect_no_align_saved } # Return 1 if the target supports a vector misalign access, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_hw_misalign { } { global et_vect_hw_misalign_saved if [info exists et_vect_hw_misalign_saved] { verbose "check_effective_target_vect_hw_misalign: using cached result" 2 } else { set et_vect_hw_misalign_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && [check_p8vector_hw_available]) || [istarget aarch64*-*-*] } { set et_vect_hw_misalign_saved 1 } } verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2 return $et_vect_hw_misalign_saved } # Return 1 if arrays are aligned to the vector alignment # boundary, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_aligned_arrays { } { global et_vect_aligned_arrays if [info exists et_vect_aligned_arrays_saved] { verbose "check_effective_target_vect_aligned_arrays: using cached result" 2 } else { set et_vect_aligned_arrays_saved 0 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } { if { ([is-effective-target lp64] && ( ![check_avx_available] || [check_prefer_avx128])) } { set et_vect_aligned_arrays_saved 1 } } if [istarget spu-*-*] { set et_vect_aligned_arrays_saved 1 } } verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2 return $et_vect_aligned_arrays_saved } # Return 1 if types of size 32 bit or less are naturally aligned # (aligned to their type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment_32 { } { global et_natural_alignment_32 if [info exists et_natural_alignment_32_saved] { verbose "check_effective_target_natural_alignment_32: using cached result" 2 } else { # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER. set et_natural_alignment_32_saved 1 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } { set et_natural_alignment_32_saved 0 } } verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2 return $et_natural_alignment_32_saved } # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their # type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment_64 { } { global et_natural_alignment_64 if [info exists et_natural_alignment_64_saved] { verbose "check_effective_target_natural_alignment_64: using cached result" 2 } else { set et_natural_alignment_64_saved 0 if { ([is-effective-target lp64] && ![istarget *-*-darwin*]) || [istarget spu-*-*] } { set et_natural_alignment_64_saved 1 } } verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2 return $et_natural_alignment_64_saved } # Return 1 if all vector types are naturally aligned (aligned to their # type-size), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_natural_alignment { } { global et_vect_natural_alignment if [info exists et_vect_natural_alignment_saved] { verbose "check_effective_target_vect_natural_alignment: using cached result" 2 } else { set et_vect_natural_alignment_saved 1 if { [check_effective_target_arm_eabi] || [istarget nvptx-*-*] || [istarget s390*-*-*] } { set et_vect_natural_alignment_saved 0 } } verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2 return $et_vect_natural_alignment_saved } # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vector_alignment_reachable { } { global et_vector_alignment_reachable if [info exists et_vector_alignment_reachable_saved] { verbose "check_effective_target_vector_alignment_reachable: using cached result" 2 } else { if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment_32] } { set et_vector_alignment_reachable_saved 1 } else { set et_vector_alignment_reachable_saved 0 } } verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2 return $et_vector_alignment_reachable_saved } # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vector_alignment_reachable_for_64bit { } { global et_vector_alignment_reachable_for_64bit if [info exists et_vector_alignment_reachable_for_64bit_saved] { verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2 } else { if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment_64] } { set et_vector_alignment_reachable_for_64bit_saved 1 } else { set et_vector_alignment_reachable_for_64bit_saved 0 } } verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2 return $et_vector_alignment_reachable_for_64bit_saved } # Return 1 if the target only requires element alignment for vector accesses proc check_effective_target_vect_element_align { } { global et_vect_element_align if [info exists et_vect_element_align] { verbose "check_effective_target_vect_element_align: using cached result" 2 } else { set et_vect_element_align 0 if { ([istarget arm*-*-*] && ![check_effective_target_arm_vect_no_misalign]) || [check_effective_target_vect_hw_misalign] } { set et_vect_element_align 1 } } verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2 return $et_vect_element_align } # Return 1 if the target supports vector LOAD_LANES operations, 0 otherwise. proc check_effective_target_vect_load_lanes { } { global et_vect_load_lanes if [info exists et_vect_load_lanes] { verbose "check_effective_target_vect_load_lanes: using cached result" 2 } else { set et_vect_load_lanes 0 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) || [istarget aarch64*-*-*] } { set et_vect_load_lanes 1 } } verbose "check_effective_target_vect_load_lanes: returning $et_vect_load_lanes" 2 return $et_vect_load_lanes } # Return 1 if the target supports vector conditional operations, 0 otherwise. proc check_effective_target_vect_condition { } { global et_vect_cond_saved if [info exists et_vect_cond_saved] { verbose "check_effective_target_vect_cond: using cached result" 2 } else { set et_vect_cond_saved 0 if { [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } { set et_vect_cond_saved 1 } } verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2 return $et_vect_cond_saved } # Return 1 if the target supports vector conditional operations where # the comparison has different type from the lhs, 0 otherwise. proc check_effective_target_vect_cond_mixed { } { global et_vect_cond_mixed_saved if [info exists et_vect_cond_mixed_saved] { verbose "check_effective_target_vect_cond_mixed: using cached result" 2 } else { set et_vect_cond_mixed_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] } { set et_vect_cond_mixed_saved 1 } } verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2 return $et_vect_cond_mixed_saved } # Return 1 if the target supports vector char multiplication, 0 otherwise. proc check_effective_target_vect_char_mult { } { global et_vect_char_mult_saved if [info exists et_vect_char_mult_saved] { verbose "check_effective_target_vect_char_mult: using cached result" 2 } else { set et_vect_char_mult_saved 0 if { [istarget aarch64*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [check_effective_target_arm32] || [check_effective_target_powerpc_altivec] } { set et_vect_char_mult_saved 1 } } verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2 return $et_vect_char_mult_saved } # Return 1 if the target supports vector short multiplication, 0 otherwise. proc check_effective_target_vect_short_mult { } { global et_vect_short_mult_saved if [info exists et_vect_short_mult_saved] { verbose "check_effective_target_vect_short_mult: using cached result" 2 } else { set et_vect_short_mult_saved 0 if { [istarget ia64-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || [check_effective_target_arm32] || ([istarget mips*-*-*] && [check_effective_target_mips_loongson]) } { set et_vect_short_mult_saved 1 } } verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2 return $et_vect_short_mult_saved } # Return 1 if the target supports vector int multiplication, 0 otherwise. proc check_effective_target_vect_int_mult { } { global et_vect_int_mult_saved if [info exists et_vect_int_mult_saved] { verbose "check_effective_target_vect_int_mult: using cached result" 2 } else { set et_vect_int_mult_saved 0 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget aarch64*-*-*] || [check_effective_target_arm32] } { set et_vect_int_mult_saved 1 } } verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2 return $et_vect_int_mult_saved } # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise. proc check_effective_target_vect_extract_even_odd { } { global et_vect_extract_even_odd_saved if [info exists et_vect_extract_even_odd_saved] { verbose "check_effective_target_vect_extract_even_odd: using cached result" 2 } else { set et_vect_extract_even_odd_saved 0 if { [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [is-effective-target arm_neon_ok] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && [check_effective_target_mpaired_single]) } { set et_vect_extract_even_odd_saved 1 } } verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2 return $et_vect_extract_even_odd_saved } # Return 1 if the target supports vector interleaving, 0 otherwise. proc check_effective_target_vect_interleave { } { global et_vect_interleave_saved if [info exists et_vect_interleave_saved] { verbose "check_effective_target_vect_interleave: using cached result" 2 } else { set et_vect_interleave_saved 0 if { [istarget aarch64*-*-*] || [istarget powerpc*-*-*] || [is-effective-target arm_neon_ok] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] || [istarget spu-*-*] || ([istarget mips*-*-*] && [check_effective_target_mpaired_single]) } { set et_vect_interleave_saved 1 } } verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2 return $et_vect_interleave_saved } foreach N {2 3 4 8} { eval [string map [list N $N] { # Return 1 if the target supports 2-vector interleaving proc check_effective_target_vect_stridedN { } { global et_vect_stridedN_saved if [info exists et_vect_stridedN_saved] { verbose "check_effective_target_vect_stridedN: using cached result" 2 } else { set et_vect_stridedN_saved 0 if { (N & -N) == N && [check_effective_target_vect_interleave] && [check_effective_target_vect_extract_even_odd] } { set et_vect_stridedN_saved 1 } if { ([istarget arm*-*-*] || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } { set et_vect_stridedN_saved 1 } } verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2 return $et_vect_stridedN_saved } }] } # Return 1 if the target supports multiple vector sizes proc check_effective_target_vect_multiple_sizes { } { global et_vect_multiple_sizes_saved set et_vect_multiple_sizes_saved 0 if { ([istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } { set et_vect_multiple_sizes_saved 1 } if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } { if { ([check_avx_available] && ![check_prefer_avx128]) } { set et_vect_multiple_sizes_saved 1 } } verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2 return $et_vect_multiple_sizes_saved } # Return 1 if the target supports vectors of 64 bits. proc check_effective_target_vect64 { } { global et_vect64_saved if [info exists et_vect64_saved] { verbose "check_effective_target_vect64: using cached result" 2 } else { set et_vect64_saved 0 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok] && [check_effective_target_arm_little_endian]) || [istarget aarch64*-*-*] || [istarget sparc*-*-*] } { set et_vect64_saved 1 } } verbose "check_effective_target_vect64: returning $et_vect64_saved" 2 return $et_vect64_saved } # Return 1 if the target supports vector copysignf calls. proc check_effective_target_vect_call_copysignf { } { global et_vect_call_copysignf_saved if [info exists et_vect_call_copysignf_saved] { verbose "check_effective_target_vect_call_copysignf: using cached result" 2 } else { set et_vect_call_copysignf_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget powerpc*-*-*] } { set et_vect_call_copysignf_saved 1 } } verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2 return $et_vect_call_copysignf_saved } # Return 1 if the target supports hardware square root instructions. proc check_effective_target_sqrt_insn { } { global et_sqrt_insn_saved if [info exists et_sqrt_insn_saved] { verbose "check_effective_target_hw_sqrt: using cached result" 2 } else { set et_sqrt_insn_saved 0 if { [istarget x86_64-*-*] || [istarget powerpc*-*-*] || [istarget aarch64*-*-*] || ([istarget arm*-*-*] && [check_effective_target_arm_vfp_ok]) } { set et_sqrt_insn_saved 1 } } verbose "check_effective_target_hw_sqrt: returning et_sqrt_insn_saved" 2 return $et_sqrt_insn_saved } # Return 1 if the target supports vector sqrtf calls. proc check_effective_target_vect_call_sqrtf { } { global et_vect_call_sqrtf_saved if [info exists et_vect_call_sqrtf_saved] { verbose "check_effective_target_vect_call_sqrtf: using cached result" 2 } else { set et_vect_call_sqrtf_saved 0 if { [istarget aarch64*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } { set et_vect_call_sqrtf_saved 1 } } verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2 return $et_vect_call_sqrtf_saved } # Return 1 if the target supports vector lrint calls. proc check_effective_target_vect_call_lrint { } { set et_vect_call_lrint 0 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } { set et_vect_call_lrint 1 } verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2 return $et_vect_call_lrint } # Return 1 if the target supports vector btrunc calls. proc check_effective_target_vect_call_btrunc { } { global et_vect_call_btrunc_saved if [info exists et_vect_call_btrunc_saved] { verbose "check_effective_target_vect_call_btrunc: using cached result" 2 } else { set et_vect_call_btrunc_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_btrunc_saved 1 } } verbose "check_effective_target_vect_call_btrunc: returning $et_vect_call_btrunc_saved" 2 return $et_vect_call_btrunc_saved } # Return 1 if the target supports vector btruncf calls. proc check_effective_target_vect_call_btruncf { } { global et_vect_call_btruncf_saved if [info exists et_vect_call_btruncf_saved] { verbose "check_effective_target_vect_call_btruncf: using cached result" 2 } else { set et_vect_call_btruncf_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_btruncf_saved 1 } } verbose "check_effective_target_vect_call_btruncf: returning $et_vect_call_btruncf_saved" 2 return $et_vect_call_btruncf_saved } # Return 1 if the target supports vector ceil calls. proc check_effective_target_vect_call_ceil { } { global et_vect_call_ceil_saved if [info exists et_vect_call_ceil_saved] { verbose "check_effective_target_vect_call_ceil: using cached result" 2 } else { set et_vect_call_ceil_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_ceil_saved 1 } } verbose "check_effective_target_vect_call_ceil: returning $et_vect_call_ceil_saved" 2 return $et_vect_call_ceil_saved } # Return 1 if the target supports vector ceilf calls. proc check_effective_target_vect_call_ceilf { } { global et_vect_call_ceilf_saved if [info exists et_vect_call_ceilf_saved] { verbose "check_effective_target_vect_call_ceilf: using cached result" 2 } else { set et_vect_call_ceilf_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_ceilf_saved 1 } } verbose "check_effective_target_vect_call_ceilf: returning $et_vect_call_ceilf_saved" 2 return $et_vect_call_ceilf_saved } # Return 1 if the target supports vector floor calls. proc check_effective_target_vect_call_floor { } { global et_vect_call_floor_saved if [info exists et_vect_call_floor_saved] { verbose "check_effective_target_vect_call_floor: using cached result" 2 } else { set et_vect_call_floor_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_floor_saved 1 } } verbose "check_effective_target_vect_call_floor: returning $et_vect_call_floor_saved" 2 return $et_vect_call_floor_saved } # Return 1 if the target supports vector floorf calls. proc check_effective_target_vect_call_floorf { } { global et_vect_call_floorf_saved if [info exists et_vect_call_floorf_saved] { verbose "check_effective_target_vect_call_floorf: using cached result" 2 } else { set et_vect_call_floorf_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_floorf_saved 1 } } verbose "check_effective_target_vect_call_floorf: returning $et_vect_call_floorf_saved" 2 return $et_vect_call_floorf_saved } # Return 1 if the target supports vector lceil calls. proc check_effective_target_vect_call_lceil { } { global et_vect_call_lceil_saved if [info exists et_vect_call_lceil_saved] { verbose "check_effective_target_vect_call_lceil: using cached result" 2 } else { set et_vect_call_lceil_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_lceil_saved 1 } } verbose "check_effective_target_vect_call_lceil: returning $et_vect_call_lceil_saved" 2 return $et_vect_call_lceil_saved } # Return 1 if the target supports vector lfloor calls. proc check_effective_target_vect_call_lfloor { } { global et_vect_call_lfloor_saved if [info exists et_vect_call_lfloor_saved] { verbose "check_effective_target_vect_call_lfloor: using cached result" 2 } else { set et_vect_call_lfloor_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_lfloor_saved 1 } } verbose "check_effective_target_vect_call_lfloor: returning $et_vect_call_lfloor_saved" 2 return $et_vect_call_lfloor_saved } # Return 1 if the target supports vector nearbyint calls. proc check_effective_target_vect_call_nearbyint { } { global et_vect_call_nearbyint_saved if [info exists et_vect_call_nearbyint_saved] { verbose "check_effective_target_vect_call_nearbyint: using cached result" 2 } else { set et_vect_call_nearbyint_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_nearbyint_saved 1 } } verbose "check_effective_target_vect_call_nearbyint: returning $et_vect_call_nearbyint_saved" 2 return $et_vect_call_nearbyint_saved } # Return 1 if the target supports vector nearbyintf calls. proc check_effective_target_vect_call_nearbyintf { } { global et_vect_call_nearbyintf_saved if [info exists et_vect_call_nearbyintf_saved] { verbose "check_effective_target_vect_call_nearbyintf: using cached result" 2 } else { set et_vect_call_nearbyintf_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_nearbyintf_saved 1 } } verbose "check_effective_target_vect_call_nearbyintf: returning $et_vect_call_nearbyintf_saved" 2 return $et_vect_call_nearbyintf_saved } # Return 1 if the target supports vector round calls. proc check_effective_target_vect_call_round { } { global et_vect_call_round_saved if [info exists et_vect_call_round_saved] { verbose "check_effective_target_vect_call_round: using cached result" 2 } else { set et_vect_call_round_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_round_saved 1 } } verbose "check_effective_target_vect_call_round: returning $et_vect_call_round_saved" 2 return $et_vect_call_round_saved } # Return 1 if the target supports vector roundf calls. proc check_effective_target_vect_call_roundf { } { global et_vect_call_roundf_saved if [info exists et_vect_call_roundf_saved] { verbose "check_effective_target_vect_call_roundf: using cached result" 2 } else { set et_vect_call_roundf_saved 0 if { [istarget aarch64*-*-*] } { set et_vect_call_roundf_saved 1 } } verbose "check_effective_target_vect_call_roundf: returning $et_vect_call_roundf_saved" 2 return $et_vect_call_roundf_saved } # Return 1 if the target supports section-anchors proc check_effective_target_section_anchors { } { global et_section_anchors_saved if [info exists et_section_anchors_saved] { verbose "check_effective_target_section_anchors: using cached result" 2 } else { set et_section_anchors_saved 0 if { [istarget powerpc*-*-*] || [istarget arm*-*-*] || [istarget aarch64*-*-*] } { set et_section_anchors_saved 1 } } verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2 return $et_section_anchors_saved } # Return 1 if the target supports atomic operations on "int_128" values. proc check_effective_target_sync_int_128 { } { if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) && ![is-effective-target ia32] } { return 1 } elseif { [istarget spu-*-*] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "int_128" values # and can execute them. proc check_effective_target_sync_int_128_runtime { } { if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) && ![is-effective-target ia32] } { return [check_cached_effective_target sync_int_128_available { check_runtime_nocache sync_int_128_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(ecx & bit_CMPXCHG16B); return 1; } } "" }] } elseif { [istarget spu-*-*] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "long long". # # Note: 32bit x86 targets require -march=pentium in dg-options. # Note: 32bit s390 targets require -mzarch in dg-options. proc check_effective_target_sync_long_long { } { if { [istarget x86_64-*-*] || [istarget i?86-*-*]) || [istarget aarch64*-*-*] || [istarget arm*-*-*] || [istarget alpha*-*-*] || ([istarget sparc*-*-*] && [check_effective_target_lp64]) || [istarget s390*-*-*] || [istarget spu-*-*] } { return 1 } else { return 0 } } # Return 1 if the target supports atomic operations on "long long" # and can execute them. # # Note: 32bit x86 targets require -march=pentium in dg-options. proc check_effective_target_sync_long_long_runtime { } { if { [istarget x86_64-*-*] || [istarget i?86-*-*] } { return [check_cached_effective_target sync_long_long_available { check_runtime_nocache sync_long_long_available { #include "cpuid.h" int main () { unsigned int eax, ebx, ecx, edx; if (__get_cpuid (1, &eax, &ebx, &ecx, &edx)) return !(edx & bit_CMPXCHG8B); return 1; } } "" }] } elseif { [istarget aarch64*-*-*] } { return 1 } elseif { [istarget arm*-*-linux-*] } { return [check_runtime sync_longlong_runtime { #include int main () { long long l1; if (sizeof (long long) != 8) exit (1); /* Just check for native; checking for kernel fallback is tricky. */ asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1"); exit (0); } } "" ] } elseif { [istarget alpha*-*-*] } { return 1 } elseif { ([istarget sparc*-*-*] && [check_effective_target_lp64] && [check_effective_target_ultrasparc_hw]) } { return 1 } elseif { [istarget spu-*-*] } { return 1 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } { return 1 } else { return 0 } } # Return 1 if the target supports byte swap instructions. proc check_effective_target_bswap { } { global et_bswap_saved if [info exists et_bswap_saved] { verbose "check_effective_target_bswap: using cached result" 2 } else { set et_bswap_saved 0 if { [istarget aarch64*-*-*] || [istarget alpha*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget m68k-*-*] || [istarget powerpc*-*-*] || [istarget rs6000-*-*] || [istarget s390*-*-*] } { set et_bswap_saved 1 } else { if { [istarget arm*-*-*] && [check_no_compiler_messages_nocache arm_v6_or_later object { #if __ARM_ARCH < 6 #error not armv6 or later #endif int i; } ""] } { set et_bswap_saved 1 } } } verbose "check_effective_target_bswap: returning $et_bswap_saved" 2 return $et_bswap_saved } # Return 1 if the target supports 16-bit byte swap instructions. proc check_effective_target_bswap16 { } { global et_bswap16_saved if [info exists et_bswap16_saved] { verbose "check_effective_target_bswap16: using cached result" 2 } else { set et_bswap16_saved 0 if { [is-effective-target bswap] && ![istarget alpha*-*-*] && !([istarget i?86-*-*] || [istarget x86_64-*-*]) } { set et_bswap16_saved 1 } } verbose "check_effective_target_bswap16: returning $et_bswap16_saved" 2 return $et_bswap16_saved } # Return 1 if the target supports 32-bit byte swap instructions. proc check_effective_target_bswap32 { } { global et_bswap32_saved if [info exists et_bswap32_saved] { verbose "check_effective_target_bswap32: using cached result" 2 } else { set et_bswap32_saved 0 if { [is-effective-target bswap] } { set et_bswap32_saved 1 } } verbose "check_effective_target_bswap32: returning $et_bswap32_saved" 2 return $et_bswap32_saved } # Return 1 if the target supports 64-bit byte swap instructions. # # Note: 32bit s390 targets require -mzarch in dg-options. proc check_effective_target_bswap64 { } { global et_bswap64_saved # expand_unop can expand 64-bit byte swap on 32-bit targets if { [is-effective-target bswap] && [is-effective-target int32plus] } { return 1 } return 0 } # Return 1 if the target supports atomic operations on "int" and "long". proc check_effective_target_sync_int_long { } { global et_sync_int_long_saved if [info exists et_sync_int_long_saved] { verbose "check_effective_target_sync_int_long: using cached result" 2 } else { set et_sync_int_long_saved 0 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget aarch64*-*-*] || [istarget alpha*-*-*] || [istarget arm*-*-linux-*] || ([istarget arm*-*-*] && [check_effective_target_arm_acq_rel]) || [istarget bfin*-*linux*] || [istarget hppa*-*linux*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9]) || [istarget spu-*-*] || ([istarget arc*-*-*] && [check_effective_target_arc_atomic]) || [check_effective_target_mips_llsc] } { set et_sync_int_long_saved 1 } } verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2 return $et_sync_int_long_saved } # Return 1 if the target supports atomic operations on "char" and "short". proc check_effective_target_sync_char_short { } { global et_sync_char_short_saved if [info exists et_sync_char_short_saved] { verbose "check_effective_target_sync_char_short: using cached result" 2 } else { set et_sync_char_short_saved 0 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. if { [istarget aarch64*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget alpha*-*-*] || [istarget arm*-*-linux-*] || ([istarget arm*-*-*] && [check_effective_target_arm_acq_rel]) || [istarget hppa*-*linux*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9]) || [istarget spu-*-*] || ([istarget arc*-*-*] && [check_effective_target_arc_atomic]) || [check_effective_target_mips_llsc] } { set et_sync_char_short_saved 1 } } verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2 return $et_sync_char_short_saved } # Return 1 if the target uses a ColdFire FPU. proc check_effective_target_coldfire_fpu { } { return [check_no_compiler_messages coldfire_fpu assembly { #ifndef __mcffpu__ #error !__mcffpu__ #endif }] } # Return true if this is a uClibc target. proc check_effective_target_uclibc {} { return [check_no_compiler_messages uclibc object { #include #if !defined (__UCLIBC__) #error !__UCLIBC__ #endif }] } # Return true if this is a uclibc target and if the uclibc feature # described by __$feature__ is not present. proc check_missing_uclibc_feature {feature} { return [check_no_compiler_messages $feature object " #include #if !defined (__UCLIBC) || defined (__${feature}__) #error FOO #endif "] } # Return true if this is a Newlib target. proc check_effective_target_newlib {} { return [check_no_compiler_messages newlib object { #include }] } # Return true if this is NOT a Bionic target. proc check_effective_target_non_bionic {} { return [check_no_compiler_messages non_bionic object { #include #if defined (__BIONIC__) #error FOO #endif }] } # Return true if this target has error.h header. proc check_effective_target_error_h {} { return [check_no_compiler_messages error_h object { #include }] } # Return true if this target has tgmath.h header. proc check_effective_target_tgmath_h {} { return [check_no_compiler_messages tgmath_h object { #include }] } # Return true if target's libc supports complex functions. proc check_effective_target_libc_has_complex_functions {} { return [check_no_compiler_messages libc_has_complex_functions object { #include }] } # Return 1 if # (a) an error of a few ULP is expected in string to floating-point # conversion functions; and # (b) overflow is not always detected correctly by those functions. proc check_effective_target_lax_strtofp {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if this is a target for which wcsftime is a dummy # function that always returns 0. proc check_effective_target_dummy_wcsftime {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if constructors with initialization priority arguments are # supposed on this target. proc check_effective_target_init_priority {} { return [check_no_compiler_messages init_priority assembly " void f() __attribute__((constructor (1000))); void f() \{\} "] } # Return 1 if the target matches the effective target 'arg', 0 otherwise. # This can be used with any check_* proc that takes no argument and # returns only 1 or 0. It could be used with check_* procs that take # arguments with keywords that pass particular arguments. proc is-effective-target { arg } { set selected 0 if { [info procs check_effective_target_${arg}] != [list] } { set selected [check_effective_target_${arg}] } else { switch $arg { "vmx_hw" { set selected [check_vmx_hw_available] } "vsx_hw" { set selected [check_vsx_hw_available] } "p8vector_hw" { set selected [check_p8vector_hw_available] } "p9vector_hw" { set selected [check_p9vector_hw_available] } "p9modulo_hw" { set selected [check_p9modulo_hw_available] } "ppc_float128_sw" { set selected [check_ppc_float128_sw_available] } "ppc_float128_hw" { set selected [check_ppc_float128_hw_available] } "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] } "dfp_hw" { set selected [check_dfp_hw_available] } "htm_hw" { set selected [check_htm_hw_available] } "named_sections" { set selected [check_named_sections_available] } "gc_sections" { set selected [check_gc_sections_available] } "cxa_atexit" { set selected [check_cxa_atexit_available] } default { error "unknown effective target keyword `$arg'" } } } verbose "is-effective-target: $arg $selected" 2 return $selected } # Return 1 if the argument is an effective-target keyword, 0 otherwise. proc is-effective-target-keyword { arg } { if { [info procs check_effective_target_${arg}] != [list] } { return 1 } else { # These have different names for their check_* procs. switch $arg { "vmx_hw" { return 1 } "vsx_hw" { return 1 } "p8vector_hw" { return 1 } "p9vector_hw" { return 1 } "p9modulo_hw" { return 1 } "ppc_float128_sw" { return 1 } "ppc_float128_hw" { return 1 } "ppc_recip_hw" { return 1 } "dfp_hw" { return 1 } "htm_hw" { return 1 } "named_sections" { return 1 } "gc_sections" { return 1 } "cxa_atexit" { return 1 } default { return 0 } } } } # Return 1 if target default to short enums proc check_effective_target_short_enums { } { return [check_no_compiler_messages short_enums assembly { enum foo { bar }; int s[sizeof (enum foo) == 1 ? 1 : -1]; }] } # Return 1 if target supports merging string constants at link time. proc check_effective_target_string_merging { } { return [check_no_messages_and_pattern string_merging \ "rodata\\.str" assembly { const char *var = "String"; } {-O2}] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. This will be obsolete when GCC ensures a # working for all targets. proc check_effective_target_stdint_types { } { return [check_no_compiler_messages stdint_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. This is for tests that GCC's notions of # these types agree with those in the header, as some systems have # only . proc check_effective_target_inttypes_types { } { return [check_no_compiler_messages inttypes_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if programs are intended to be run on a simulator # (i.e. slowly) rather than hardware (i.e. fast). proc check_effective_target_simulator { } { # All "src/sim" simulators set this one. if [board_info target exists is_simulator] { return [board_info target is_simulator] } # The "sid" simulators don't set that one, but at least they set # this one. if [board_info target exists slow_simulator] { return [board_info target slow_simulator] } return 0 } # Return 1 if programs are intended to be run on hardware rather than # on a simulator proc check_effective_target_hw { } { # All "src/sim" simulators set this one. if [board_info target exists is_simulator] { if [board_info target is_simulator] { return 0 } else { return 1 } } # The "sid" simulators don't set that one, but at least they set # this one. if [board_info target exists slow_simulator] { if [board_info target slow_simulator] { return 0 } else { return 1 } } return 1 } # Return 1 if the target is a VxWorks kernel. proc check_effective_target_vxworks_kernel { } { return [check_no_compiler_messages vxworks_kernel assembly { #if !defined __vxworks || defined __RTP__ #error NO #endif }] } # Return 1 if the target is a VxWorks RTP. proc check_effective_target_vxworks_rtp { } { return [check_no_compiler_messages vxworks_rtp assembly { #if !defined __vxworks || !defined __RTP__ #error NO #endif }] } # Return 1 if the target is expected to provide wide character support. proc check_effective_target_wchar { } { if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} { return 0 } return [check_no_compiler_messages wchar assembly { #include }] } # Return 1 if the target has . proc check_effective_target_pthread_h { } { return [check_no_compiler_messages pthread_h assembly { #include }] } # Return 1 if the target can truncate a file from a file-descriptor, # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or # chsize. We test for a trivially functional truncation; no stubs. # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a # different function to be used. proc check_effective_target_fd_truncate { } { set prog { #define _FILE_OFFSET_BITS 64 #include #include #include #include int main () { FILE *f = fopen ("tst.tmp", "wb"); int fd; const char t[] = "test writing more than ten characters"; char s[11]; int status = 0; fd = fileno (f); write (fd, t, sizeof (t) - 1); lseek (fd, 0, 0); if (ftruncate (fd, 10) != 0) status = 1; close (fd); fclose (f); if (status) { unlink ("tst.tmp"); exit (status); } f = fopen ("tst.tmp", "rb"); if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0) status = 1; fclose (f); unlink ("tst.tmp"); exit (status); } } if { [check_runtime ftruncate $prog] } { return 1; } regsub "ftruncate" $prog "chsize" prog return [check_runtime chsize $prog] } # Add to FLAGS all the target-specific flags needed to access the c99 runtime. proc add_options_for_c99_runtime { flags } { if { [istarget *-*-solaris2*] } { return "$flags -std=c99" } if { [istarget powerpc-*-darwin*] } { return "$flags -mmacosx-version-min=10.3" } return $flags } # Add to FLAGS all the target-specific flags needed to enable # full IEEE compliance mode. proc add_options_for_ieee { flags } { if { [istarget alpha*-*-*] || [istarget sh*-*-*] } { return "$flags -mieee" } if { [istarget rx-*-*] } { return "$flags -mnofpu" } return $flags } if {![info exists flags_to_postpone]} { set flags_to_postpone "" } # Add to FLAGS the flags needed to enable functions to bind locally # when using pic/PIC passes in the testsuite. proc add_options_for_bind_pic_locally { flags } { global flags_to_postpone # Instead of returning 'flags' with the -fPIE or -fpie appended, we save it # in 'flags_to_postpone' and append it later in gcc_target_compile procedure in # order to make sure that the multilib_flags doesn't override this. if {[check_no_compiler_messages using_pic2 assembly { #if __PIC__ != 2 #error __PIC__ != 2 #endif }]} { set flags_to_postpone "-fPIE" return $flags } if {[check_no_compiler_messages using_pic1 assembly { #if __PIC__ != 1 #error __PIC__ != 1 #endif }]} { set flags_to_postpone "-fpie" return $flags } return $flags } # Add to FLAGS the flags needed to enable 64-bit vectors. proc add_options_for_double_vectors { flags } { if [is-effective-target arm_neon_ok] { return "$flags -mvectorize-with-neon-double" } return $flags } # Return 1 if the target provides a full C99 runtime. proc check_effective_target_c99_runtime { } { return [check_cached_effective_target c99_runtime { global srcdir set file [open "$srcdir/gcc.dg/builtins-config.h"] set contents [read $file] close $file append contents { #ifndef HAVE_C99_RUNTIME #error !HAVE_C99_RUNTIME #endif } check_no_compiler_messages_nocache c99_runtime assembly \ $contents [add_options_for_c99_runtime ""] }] } # Return 1 if target wchar_t is at least 4 bytes. proc check_effective_target_4byte_wchar_t { } { return [check_no_compiler_messages 4byte_wchar_t object { int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1]; }] } # Return 1 if the target supports automatic stack alignment. proc check_effective_target_automatic_stack_alignment { } { # Ordinarily x86 supports automatic stack alignment ... if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then { if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } { # ... except Win64 SEH doesn't. Succeed for Win32 though. return [check_effective_target_ilp32]; } return 1; } return 0; } # Return true if we are compiling for AVX target. proc check_avx_available { } { if { [check_no_compiler_messages avx_available assembly { #ifndef __AVX__ #error unsupported #endif } ""] } { return 1; } return 0; } # Return true if 32- and 16-bytes vectors are available. proc check_effective_target_vect_sizes_32B_16B { } { if { [check_avx_available] && ![check_prefer_avx128] } { return 1; } else { return 0; } } # Return true if 128-bits vectors are preferred even if 256-bits vectors # are available. proc check_prefer_avx128 { } { if ![check_avx_available] { return 0; } return [check_no_messages_and_pattern avx_explicit "xmm" assembly { float a[1024],b[1024],c[1024]; void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];} } "-O2 -ftree-vectorize"] } # Return 1 if avx512f instructions can be compiled. proc check_effective_target_avx512f { } { return [check_no_compiler_messages avx512f object { typedef double __m512d __attribute__ ((__vector_size__ (64))); __m512d _mm512_add (__m512d a) { return __builtin_ia32_addpd512_mask (a, a, a, 1, 4); } } "-O2 -mavx512f" ] } # Return 1 if avx instructions can be compiled. proc check_effective_target_avx { } { if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { return 0 } return [check_no_compiler_messages avx object { void _mm256_zeroall (void) { __builtin_ia32_vzeroall (); } } "-O2 -mavx" ] } # Return 1 if avx2 instructions can be compiled. proc check_effective_target_avx2 { } { return [check_no_compiler_messages avx2 object { typedef long long __v4di __attribute__ ((__vector_size__ (32))); __v4di mm256_is32_andnotsi256 (__v4di __X, __v4di __Y) { return __builtin_ia32_andnotsi256 (__X, __Y); } } "-O0 -mavx2" ] } # Return 1 if sse instructions can be compiled. proc check_effective_target_sse { } { return [check_no_compiler_messages sse object { int main () { __builtin_ia32_stmxcsr (); return 0; } } "-O2 -msse" ] } # Return 1 if sse2 instructions can be compiled. proc check_effective_target_sse2 { } { return [check_no_compiler_messages sse2 object { typedef long long __m128i __attribute__ ((__vector_size__ (16))); __m128i _mm_srli_si128 (__m128i __A, int __N) { return (__m128i)__builtin_ia32_psrldqi128 (__A, 8); } } "-O2 -msse2" ] } # Return 1 if F16C instructions can be compiled. proc check_effective_target_f16c { } { return [check_no_compiler_messages f16c object { #include "immintrin.h" float foo (unsigned short val) { return _cvtsh_ss (val); } } "-O2 -mf16c" ] } # Return 1 if C wchar_t type is compatible with char16_t. proc check_effective_target_wchar_t_char16_t_compatible { } { return [check_no_compiler_messages wchar_t_char16_t object { __WCHAR_TYPE__ wc; __CHAR16_TYPE__ *p16 = &wc; char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1]; }] } # Return 1 if C wchar_t type is compatible with char32_t. proc check_effective_target_wchar_t_char32_t_compatible { } { return [check_no_compiler_messages wchar_t_char32_t object { __WCHAR_TYPE__ wc; __CHAR32_TYPE__ *p32 = &wc; char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1]; }] } # Return 1 if pow10 function exists. proc check_effective_target_pow10 { } { return [check_runtime pow10 { #include int main () { double x; x = pow10 (1); return 0; } } "-lm" ] } # Return 1 if issignaling function exists. proc check_effective_target_issignaling {} { return [check_runtime issignaling { #define _GNU_SOURCE #include int main () { return issignaling (0.0); } } "-lm" ] } # Return 1 if current options generate DFP instructions, 0 otherwise. proc check_effective_target_hard_dfp {} { return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly { typedef float d64 __attribute__((mode(DD))); d64 x, y, z; void foo (void) { z = x + y; } }] } # Return 1 if string.h and wchar.h headers provide C++ requires overloads # for strchr etc. functions. proc check_effective_target_correct_iso_cpp_string_wchar_protos { } { return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly { #include #include #if !defined(__cplusplus) \ || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \ || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO) ISO C++ correct string.h and wchar.h protos not supported. #else int i; #endif }] } # Return 1 if GNU as is used. proc check_effective_target_gas { } { global use_gas_saved global tool if {![info exists use_gas_saved]} { # Check if the as used by gcc is GNU as. set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0] # Provide /dev/null as input, otherwise gas times out reading from # stdin. set status [remote_exec host "$gcc_as" "-v /dev/null"] set as_output [lindex $status 1] if { [ string first "GNU" $as_output ] >= 0 } { set use_gas_saved 1 } else { set use_gas_saved 0 } } return $use_gas_saved } # Return 1 if GNU ld is used. proc check_effective_target_gld { } { global use_gld_saved global tool if {![info exists use_gld_saved]} { # Check if the ld used by gcc is GNU ld. set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0] set status [remote_exec host "$gcc_ld" "--version"] set ld_output [lindex $status 1] if { [ string first "GNU" $ld_output ] >= 0 } { set use_gld_saved 1 } else { set use_gld_saved 0 } } return $use_gld_saved } # Return 1 if the compiler has been configure with link-time optimization # (LTO) support. proc check_effective_target_lto { } { if { [istarget nvptx-*-*] } { return 0; } return [check_no_compiler_messages lto object { void foo (void) { } } "-flto"] } # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise. proc check_effective_target_maybe_x32 { } { return [check_no_compiler_messages maybe_x32 object { void foo (void) {} } "-mx32 -maddress-mode=short"] } # Return 1 if this target supports the -fsplit-stack option, 0 # otherwise. proc check_effective_target_split_stack {} { return [check_no_compiler_messages split_stack object { void foo (void) { } } "-fsplit-stack"] } # Return 1 if this target supports the -masm=intel option, 0 # otherwise proc check_effective_target_masm_intel {} { return [check_no_compiler_messages masm_intel object { extern void abort (void); } "-masm=intel"] } # Return 1 if the language for the compiler under test is C. proc check_effective_target_c { } { global tool if [string match $tool "gcc"] { return 1 } return 0 } # Return 1 if the language for the compiler under test is C++. proc check_effective_target_c++ { } { global tool if [string match $tool "g++"] { return 1 } return 0 } set cxx_default "c++14" # Check whether the current active language standard supports the features # of C++11/C++14 by checking for the presence of one of the -std flags. # This assumes that the default for the compiler is $cxx_default, and that # there will never be multiple -std= arguments on the command line. proc check_effective_target_c++11_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }] { return 1 } if { $cxx_default == "c++11" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++11 { } { if [check_effective_target_c++11_only] { return 1 } return [check_effective_target_c++14] } proc check_effective_target_c++11_down { } { if ![check_effective_target_c++] { return 0 } return [expr ![check_effective_target_c++14] ] } proc check_effective_target_c++14_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++14 -std=gnu++14 -std=c++14 -std=gnu++14 } }] { return 1 } if { $cxx_default == "c++14" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++14 { } { if [check_effective_target_c++14_only] { return 1 } return [check_effective_target_c++1z] } proc check_effective_target_c++14_down { } { if ![check_effective_target_c++] { return 0 } return [expr ![check_effective_target_c++1z] ] } proc check_effective_target_c++98_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++98 -std=gnu++98 -std=c++03 -std=gnu++03 } }] { return 1 } if { $cxx_default == "c++98" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++1z_only { } { global cxx_default if ![check_effective_target_c++] { return 0 } if [check-flags { { } { } { -std=c++17 -std=gnu++17 -std=c++1z -std=gnu++1z } }] { return 1 } if { $cxx_default == "c++17" && [check-flags { { } { } { } { -std=* } }] } { return 1 } return 0 } proc check_effective_target_c++1z { } { return [check_effective_target_c++1z_only] } # Check for C++ Concepts TS support, i.e. -fconcepts flag. proc check_effective_target_concepts { } { return [check-flags { "" { } { -fconcepts } }] } # Return 1 if expensive testcases should be run. proc check_effective_target_run_expensive_tests { } { if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } { return 1 } return 0 } # Returns 1 if "mempcpy" is available on the target system. proc check_effective_target_mempcpy {} { return [check_function_available "mempcpy"] } # Returns 1 if "stpcpy" is available on the target system. proc check_effective_target_stpcpy {} { return [check_function_available "stpcpy"] } # Check whether the vectorizer tests are supported by the target and # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS. # Set dg-do-what-default to either compile or run, depending on target # capabilities. Return 1 if vectorizer tests are supported by # target, 0 otherwise. proc check_vect_support_and_set_flags { } { global DEFAULT_VECTCFLAGS global dg-do-what-default if [istarget powerpc-*paired*] { lappend DEFAULT_VECTCFLAGS "-mpaired" if [check_750cl_hw_available] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget powerpc*-*-*] { # Skip targets not supporting -maltivec. if ![is-effective-target powerpc_altivec_ok] { return 0 } lappend DEFAULT_VECTCFLAGS "-maltivec" if [check_p9vector_hw_available] { lappend DEFAULT_VECTCFLAGS "-mpower9-vector" } elseif [check_p8vector_hw_available] { lappend DEFAULT_VECTCFLAGS "-mpower8-vector" } elseif [check_vsx_hw_available] { lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign" } if [check_vmx_hw_available] { set dg-do-what-default run } else { if [is-effective-target ilp32] { # Specify a cpu that supports VMX for compile-only tests. lappend DEFAULT_VECTCFLAGS "-mcpu=970" } set dg-do-what-default compile } } elseif { [istarget spu-*-*] } { set dg-do-what-default run } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } { lappend DEFAULT_VECTCFLAGS "-msse2" if { [check_effective_target_sse2_runtime] } { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif { [istarget mips*-*-*] && ([check_effective_target_mpaired_single] || [check_effective_target_mips_loongson]) && [check_effective_target_nomips16] } { if { [check_effective_target_mpaired_single] } { lappend DEFAULT_VECTCFLAGS "-mpaired-single" } set dg-do-what-default run } elseif [istarget sparc*-*-*] { lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis" if [check_effective_target_ultrasparc_hw] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget alpha*-*-*] { # Alpha's vectorization capabilities are extremely limited. # It's more effort than its worth disabling all of the tests # that it cannot pass. But if you actually want to see what # does work, command out the return. return 0 lappend DEFAULT_VECTCFLAGS "-mmax" if [check_alpha_max_hw_available] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget ia64-*-*] { set dg-do-what-default run } elseif [is-effective-target arm_neon_ok] { eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""] # NEON does not support denormals, so is not used for vectorization by # default to avoid loss of precision. We must pass -ffast-math to test # vectorization of float operations. lappend DEFAULT_VECTCFLAGS "-ffast-math" if [is-effective-target arm_neon_hw] { set dg-do-what-default run } else { set dg-do-what-default compile } } elseif [istarget "aarch64*-*-*"] { set dg-do-what-default run } else { return 0 } return 1 } # Return 1 if the target does *not* require strict alignment. proc check_effective_target_non_strict_align {} { # On ARM, the default is to use STRICT_ALIGNMENT, but there # are interfaces defined for misaligned access and thus # depending on the architecture levels unaligned access is # available. if [istarget "arm*-*-*"] { return [check_effective_target_arm_unaligned] } return [check_no_compiler_messages non_strict_align assembly { char *y; typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c; c *z; void foo(void) { z = (c *) y; } } "-Wcast-align"] } # Return 1 if the target has . proc check_effective_target_ucontext_h { } { return [check_no_compiler_messages ucontext_h assembly { #include }] } proc check_effective_target_aarch64_tiny { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_tiny object { #ifdef __AARCH64_CMODEL_TINY__ int dummy; #else #error target not AArch64 tiny code model #endif }] } else { return 0 } } # Create functions to check that the AArch64 assembler supports the # various architecture extensions via the .arch_extension pseudo-op. foreach { aarch64_ext } { "fp" "simd" "crypto" "crc" "lse"} { eval [string map [list FUNC $aarch64_ext] { proc check_effective_target_aarch64_asm_FUNC_ok { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_FUNC_assembler object { __asm__ (".arch_extension FUNC"); } "-march=armv8-a+FUNC"] } else { return 0 } } }] } proc check_effective_target_aarch64_small { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_small object { #ifdef __AARCH64_CMODEL_SMALL__ int dummy; #else #error target not AArch64 small code model #endif }] } else { return 0 } } proc check_effective_target_aarch64_large { } { if { [istarget aarch64*-*-*] } { return [check_no_compiler_messages aarch64_large object { #ifdef __AARCH64_CMODEL_LARGE__ int dummy; #else #error target not AArch64 large code model #endif }] } else { return 0 } } # Return 1 if is available with all the standard IEEE # exceptions and floating-point exceptions are raised by arithmetic # operations. (If the target requires special options for "inexact" # exceptions, those need to be specified in the testcases.) proc check_effective_target_fenv_exceptions {} { return [check_runtime fenv_exceptions { #include #include #ifndef FE_DIVBYZERO # error Missing FE_DIVBYZERO #endif #ifndef FE_INEXACT # error Missing FE_INEXACT #endif #ifndef FE_INVALID # error Missing FE_INVALID #endif #ifndef FE_OVERFLOW # error Missing FE_OVERFLOW #endif #ifndef FE_UNDERFLOW # error Missing FE_UNDERFLOW #endif volatile float a = 0.0f, r; int main (void) { r = a / a; if (fetestexcept (FE_INVALID)) exit (0); else abort (); } } [add_options_for_ieee "-std=gnu99"]] } proc check_effective_target_tiny {} { global et_target_tiny_saved if [info exists et_target_tine_saved] { verbose "check_effective_target_tiny: using cached result" 2 } else { set et_target_tiny_saved 0 if { [istarget aarch64*-*-*] && [check_effective_target_aarch64_tiny] } { set et_target_tiny_saved 1 } } return $et_target_tiny_saved } # Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target. proc check_effective_target_logical_op_short_circuit {} { if { [istarget mips*-*-*] || [istarget arc*-*-*] || [istarget avr*-*-*] || [istarget crisv32-*-*] || [istarget cris-*-*] || [istarget mmix-*-*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget nios2*-*-*] || [istarget visium-*-*] || [check_effective_target_arm_cortex_m] } { return 1 } return 0 } # Record that dg-final test TEST requires convential compilation. proc force_conventional_output_for { test } { if { [info proc $test] == "" } { perror "$test does not exist" exit 1 } proc ${test}_required_options {} { global gcc_force_conventional_output return $gcc_force_conventional_output } } # Return 1 if the x86-64 target supports PIE with copy reloc, 0 # otherwise. Cache the result. proc check_effective_target_pie_copyreloc { } { global pie_copyreloc_available_saved global tool global GCC_UNDER_TEST if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } { return 0 } # Need auto-host.h to check linker support. if { ![file exists ../../auto-host.h ] } { return 0 } if [info exists pie_copyreloc_available_saved] { verbose "check_effective_target_pie_copyreloc returning saved $pie_copyreloc_available_saved" 2 } else { # Set up and compile to see if linker supports PIE with copy # reloc. Include the current process ID in the file names to # prevent conflicts with invocations for multiple testsuites. set src pie[pid].c set obj pie[pid].o set f [open $src "w"] puts $f "#include \"../../auto-host.h\"" puts $f "#if HAVE_LD_PIE_COPYRELOC == 0" puts $f "# error Linker does not support PIE with copy reloc." puts $f "#endif" close $f verbose "check_effective_target_pie_copyreloc compiling testfile $src" 2 set lines [${tool}_target_compile $src $obj object ""] file delete $src file delete $obj if [string match "" $lines] then { verbose "check_effective_target_pie_copyreloc testfile compilation passed" 2 set pie_copyreloc_available_saved 1 } else { verbose "check_effective_target_pie_copyreloc testfile compilation failed" 2 set pie_copyreloc_available_saved 0 } } return $pie_copyreloc_available_saved } # Return 1 if the target uses comdat groups. proc check_effective_target_comdat_group {} { return [check_no_messages_and_pattern comdat_group "\.section\[^\n\r]*,comdat" assembly { // C++ inline int foo () { return 1; } int (*fn) () = foo; }] } # Return 1 if target supports __builtin_eh_return proc check_effective_target_builtin_eh_return { } { return [check_no_compiler_messages builtin_eh_return object { void test (long l, void *p) { __builtin_eh_return (l, p); } } "" ] } # Return 1 if the target supports max reduction for vectors. proc check_effective_target_vect_max_reduc { } { if { [istarget aarch64*-*-*] || [istarget arm*-*-*] } { return 1 } return 0 } # Return 1 if there is an nvptx offload compiler. proc check_effective_target_offload_nvptx { } { return [check_no_compiler_messages offload_nvptx object { int main () {return 0;} } "-foffload=nvptx-none" ] } # Return 1 if the compiler has been configured with hsa offloading. proc check_effective_target_offload_hsa { } { return [check_no_compiler_messages offload_hsa assembly { int main () {return 0;} } "-foffload=hsa" ] }