// Copyright (C) 2020-2023 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-hir-full.h"
#include "rust-hir-type-check-item.h"
#include "rust-hir-type-check-enumitem.h"
#include "rust-hir-type-check-implitem.h"
#include "rust-hir-type-check-type.h"
#include "rust-hir-type-check-stmt.h"
#include "rust-hir-type-check-expr.h"
#include "rust-hir-type-check-pattern.h"
#include "rust-hir-trait-resolve.h"
namespace Rust {
namespace Resolver {
TypeCheckItem::TypeCheckItem () : TypeCheckBase (), infered (nullptr) {}
TyTy::BaseType *
TypeCheckItem::Resolve (HIR::Item &item)
{
// is it already resolved?
auto context = TypeCheckContext::get ();
TyTy::BaseType *resolved = nullptr;
bool already_resolved
= context->lookup_type (item.get_mappings ().get_hirid (), &resolved);
if (already_resolved)
return resolved;
rust_assert (item.get_hir_kind () == HIR::Node::BaseKind::VIS_ITEM);
HIR::VisItem &vis_item = static_cast (item);
TypeCheckItem resolver;
vis_item.accept_vis (resolver);
return resolver.infered;
}
TyTy::BaseType *
TypeCheckItem::ResolveImplItem (HIR::ImplBlock &impl_block, HIR::ImplItem &item)
{
TypeCheckItem resolver;
return resolver.resolve_impl_item (impl_block, item);
}
TyTy::BaseType *
TypeCheckItem::ResolveImplBlockSelf (HIR::ImplBlock &impl_block)
{
TypeCheckItem resolver;
bool failed_flag = false;
std::vector substitutions
= resolver.resolve_impl_block_substitutions (impl_block, failed_flag);
if (failed_flag)
{
return new TyTy::ErrorType (impl_block.get_mappings ().get_hirid ());
}
return resolver.resolve_impl_block_self (impl_block);
}
void
TypeCheckItem::visit (HIR::TypeAlias &alias)
{
TyTy::BaseType *actual_type
= TypeCheckType::Resolve (alias.get_type_aliased ().get ());
context->insert_type (alias.get_mappings (), actual_type);
for (auto &where_clause_item : alias.get_where_clause ().get_items ())
{
ResolveWhereClauseItem::Resolve (*where_clause_item.get ());
}
infered = actual_type;
}
void
TypeCheckItem::visit (HIR::TupleStruct &struct_decl)
{
std::vector substitutions;
if (struct_decl.has_generics ())
resolve_generic_params (struct_decl.get_generic_params (), substitutions);
for (auto &where_clause_item : struct_decl.get_where_clause ().get_items ())
{
ResolveWhereClauseItem::Resolve (*where_clause_item.get ());
}
std::vector fields;
size_t idx = 0;
for (auto &field : struct_decl.get_fields ())
{
TyTy::BaseType *field_type
= TypeCheckType::Resolve (field.get_field_type ().get ());
TyTy::StructFieldType *ty_field
= new TyTy::StructFieldType (field.get_mappings ().get_hirid (),
std::to_string (idx), field_type,
field.get_locus ());
fields.push_back (ty_field);
context->insert_type (field.get_mappings (), ty_field->get_field_type ());
idx++;
}
// get the path
const CanonicalPath *canonical_path = nullptr;
bool ok = mappings->lookup_canonical_path (
struct_decl.get_mappings ().get_nodeid (), &canonical_path);
rust_assert (ok);
RustIdent ident{*canonical_path, struct_decl.get_locus ()};
// its a single variant ADT
std::vector variants;
variants.push_back (new TyTy::VariantDef (
struct_decl.get_mappings ().get_hirid (),
struct_decl.get_mappings ().get_defid (), struct_decl.get_identifier (),
ident, TyTy::VariantDef::VariantType::TUPLE, nullptr, std::move (fields)));
// Process #[repr(X)] attribute, if any
const AST::AttrVec &attrs = struct_decl.get_outer_attrs ();
TyTy::ADTType::ReprOptions repr
= parse_repr_options (attrs, struct_decl.get_locus ());
TyTy::BaseType *type
= new TyTy::ADTType (struct_decl.get_mappings ().get_hirid (),
mappings->get_next_hir_id (),
struct_decl.get_identifier (), ident,
TyTy::ADTType::ADTKind::TUPLE_STRUCT,
std::move (variants), std::move (substitutions), repr);
context->insert_type (struct_decl.get_mappings (), type);
infered = type;
}
void
TypeCheckItem::visit (HIR::StructStruct &struct_decl)
{
std::vector substitutions;
if (struct_decl.has_generics ())
resolve_generic_params (struct_decl.get_generic_params (), substitutions);
for (auto &where_clause_item : struct_decl.get_where_clause ().get_items ())
{
ResolveWhereClauseItem::Resolve (*where_clause_item.get ());
}
std::vector fields;
for (auto &field : struct_decl.get_fields ())
{
TyTy::BaseType *field_type
= TypeCheckType::Resolve (field.get_field_type ().get ());
TyTy::StructFieldType *ty_field
= new TyTy::StructFieldType (field.get_mappings ().get_hirid (),
field.get_field_name (), field_type,
field.get_locus ());
fields.push_back (ty_field);
context->insert_type (field.get_mappings (), ty_field->get_field_type ());
}
// get the path
const CanonicalPath *canonical_path = nullptr;
bool ok = mappings->lookup_canonical_path (
struct_decl.get_mappings ().get_nodeid (), &canonical_path);
rust_assert (ok);
RustIdent ident{*canonical_path, struct_decl.get_locus ()};
// its a single variant ADT
std::vector variants;
variants.push_back (new TyTy::VariantDef (
struct_decl.get_mappings ().get_hirid (),
struct_decl.get_mappings ().get_defid (), struct_decl.get_identifier (),
ident, TyTy::VariantDef::VariantType::STRUCT, nullptr, std::move (fields)));
// Process #[repr(X)] attribute, if any
const AST::AttrVec &attrs = struct_decl.get_outer_attrs ();
TyTy::ADTType::ReprOptions repr
= parse_repr_options (attrs, struct_decl.get_locus ());
TyTy::BaseType *type
= new TyTy::ADTType (struct_decl.get_mappings ().get_hirid (),
mappings->get_next_hir_id (),
struct_decl.get_identifier (), ident,
TyTy::ADTType::ADTKind::STRUCT_STRUCT,
std::move (variants), std::move (substitutions), repr);
context->insert_type (struct_decl.get_mappings (), type);
infered = type;
}
void
TypeCheckItem::visit (HIR::Enum &enum_decl)
{
std::vector substitutions;
if (enum_decl.has_generics ())
resolve_generic_params (enum_decl.get_generic_params (), substitutions);
std::vector variants;
int64_t discriminant_value = 0;
for (auto &variant : enum_decl.get_variants ())
{
TyTy::VariantDef *field_type
= TypeCheckEnumItem::Resolve (variant.get (), discriminant_value);
discriminant_value++;
variants.push_back (field_type);
}
// get the path
const CanonicalPath *canonical_path = nullptr;
bool ok
= mappings->lookup_canonical_path (enum_decl.get_mappings ().get_nodeid (),
&canonical_path);
rust_assert (ok);
RustIdent ident{*canonical_path, enum_decl.get_locus ()};
// multi variant ADT
TyTy::BaseType *type
= new TyTy::ADTType (enum_decl.get_mappings ().get_hirid (),
mappings->get_next_hir_id (),
enum_decl.get_identifier (), ident,
TyTy::ADTType::ADTKind::ENUM, std::move (variants),
std::move (substitutions));
context->insert_type (enum_decl.get_mappings (), type);
infered = type;
}
void
TypeCheckItem::visit (HIR::Union &union_decl)
{
std::vector substitutions;
if (union_decl.has_generics ())
resolve_generic_params (union_decl.get_generic_params (), substitutions);
for (auto &where_clause_item : union_decl.get_where_clause ().get_items ())
{
ResolveWhereClauseItem::Resolve (*where_clause_item.get ());
}
std::vector fields;
for (auto &variant : union_decl.get_variants ())
{
TyTy::BaseType *variant_type
= TypeCheckType::Resolve (variant.get_field_type ().get ());
TyTy::StructFieldType *ty_variant
= new TyTy::StructFieldType (variant.get_mappings ().get_hirid (),
variant.get_field_name (), variant_type,
variant.get_locus ());
fields.push_back (ty_variant);
context->insert_type (variant.get_mappings (),
ty_variant->get_field_type ());
}
// get the path
const CanonicalPath *canonical_path = nullptr;
bool ok
= mappings->lookup_canonical_path (union_decl.get_mappings ().get_nodeid (),
&canonical_path);
rust_assert (ok);
RustIdent ident{*canonical_path, union_decl.get_locus ()};
// there is only a single variant
std::vector variants;
variants.push_back (new TyTy::VariantDef (
union_decl.get_mappings ().get_hirid (),
union_decl.get_mappings ().get_defid (), union_decl.get_identifier (),
ident, TyTy::VariantDef::VariantType::STRUCT, nullptr, std::move (fields)));
TyTy::BaseType *type
= new TyTy::ADTType (union_decl.get_mappings ().get_hirid (),
mappings->get_next_hir_id (),
union_decl.get_identifier (), ident,
TyTy::ADTType::ADTKind::UNION, std::move (variants),
std::move (substitutions));
context->insert_type (union_decl.get_mappings (), type);
infered = type;
}
void
TypeCheckItem::visit (HIR::StaticItem &var)
{
TyTy::BaseType *type = TypeCheckType::Resolve (var.get_type ());
TyTy::BaseType *expr_type = TypeCheckExpr::Resolve (var.get_expr ());
TyTy::BaseType *unified
= coercion_site (var.get_mappings ().get_hirid (),
TyTy::TyWithLocation (type, var.get_type ()->get_locus ()),
TyTy::TyWithLocation (expr_type,
var.get_expr ()->get_locus ()),
var.get_locus ());
context->insert_type (var.get_mappings (), unified);
infered = unified;
}
void
TypeCheckItem::visit (HIR::ConstantItem &constant)
{
TyTy::BaseType *type = TypeCheckType::Resolve (constant.get_type ());
TyTy::BaseType *expr_type = TypeCheckExpr::Resolve (constant.get_expr ());
TyTy::BaseType *unified = unify_site (
constant.get_mappings ().get_hirid (),
TyTy::TyWithLocation (type, constant.get_type ()->get_locus ()),
TyTy::TyWithLocation (expr_type, constant.get_expr ()->get_locus ()),
constant.get_locus ());
context->insert_type (constant.get_mappings (), unified);
infered = unified;
}
void
TypeCheckItem::visit (HIR::ImplBlock &impl_block)
{
bool failed_flag = false;
std::vector substitutions
= resolve_impl_block_substitutions (impl_block, failed_flag);
if (failed_flag)
{
infered = new TyTy::ErrorType (impl_block.get_mappings ().get_hirid ());
return;
}
TyTy::BaseType *self = resolve_impl_block_self (impl_block);
// resolve each impl_item
for (auto &impl_item : impl_block.get_impl_items ())
{
TypeCheckImplItem::Resolve (&impl_block, impl_item.get (), self,
substitutions);
}
// validate the impl items
validate_trait_impl_block (impl_block, self, substitutions);
}
TyTy::BaseType *
TypeCheckItem::resolve_impl_item (HIR::ImplBlock &impl_block,
HIR::ImplItem &item)
{
bool failed_flag = false;
std::vector substitutions
= resolve_impl_block_substitutions (impl_block, failed_flag);
if (failed_flag)
{
return new TyTy::ErrorType (impl_block.get_mappings ().get_hirid ());
}
TyTy::BaseType *self = resolve_impl_block_self (impl_block);
return TypeCheckImplItem::Resolve (&impl_block, &item, self, substitutions);
}
void
TypeCheckItem::visit (HIR::Function &function)
{
std::vector substitutions;
if (function.has_generics ())
resolve_generic_params (function.get_generic_params (), substitutions);
for (auto &where_clause_item : function.get_where_clause ().get_items ())
{
ResolveWhereClauseItem::Resolve (*where_clause_item.get ());
}
TyTy::BaseType *ret_type = nullptr;
if (!function.has_function_return_type ())
ret_type
= TyTy::TupleType::get_unit_type (function.get_mappings ().get_hirid ());
else
{
auto resolved
= TypeCheckType::Resolve (function.get_return_type ().get ());
if (resolved->get_kind () == TyTy::TypeKind::ERROR)
{
rust_error_at (function.get_locus (),
"failed to resolve return type");
return;
}
ret_type = resolved->clone ();
ret_type->set_ref (
function.get_return_type ()->get_mappings ().get_hirid ());
}
std::vector> params;
for (auto ¶m : function.get_function_params ())
{
// get the name as well required for later on
auto param_tyty = TypeCheckType::Resolve (param.get_type ());
params.push_back (
std::pair (param.get_param_name (),
param_tyty));
context->insert_type (param.get_mappings (), param_tyty);
TypeCheckPattern::Resolve (param.get_param_name (), param_tyty);
}
const CanonicalPath *canonical_path = nullptr;
bool ok
= mappings->lookup_canonical_path (function.get_mappings ().get_nodeid (),
&canonical_path);
rust_assert (ok);
RustIdent ident{*canonical_path, function.get_locus ()};
auto fnType = new TyTy::FnType (function.get_mappings ().get_hirid (),
function.get_mappings ().get_defid (),
function.get_function_name (), ident,
TyTy::FnType::FNTYPE_DEFAULT_FLAGS, ABI::RUST,
std::move (params), ret_type,
std::move (substitutions));
context->insert_type (function.get_mappings (), fnType);
// need to get the return type from this
TyTy::FnType *resolved_fn_type = fnType;
auto expected_ret_tyty = resolved_fn_type->get_return_type ();
context->push_return_type (TypeCheckContextItem (&function),
expected_ret_tyty);
auto block_expr_ty
= TypeCheckExpr::Resolve (function.get_definition ().get ());
Location fn_return_locus = function.has_function_return_type ()
? function.get_return_type ()->get_locus ()
: function.get_locus ();
coercion_site (function.get_definition ()->get_mappings ().get_hirid (),
TyTy::TyWithLocation (expected_ret_tyty, fn_return_locus),
TyTy::TyWithLocation (block_expr_ty),
function.get_definition ()->get_locus ());
context->pop_return_type ();
infered = fnType;
}
void
TypeCheckItem::visit (HIR::Module &module)
{
for (auto &item : module.get_items ())
TypeCheckItem::Resolve (*item.get ());
}
void
TypeCheckItem::visit (HIR::Trait &trait)
{
TraitResolver::Resolve (trait);
}
void
TypeCheckItem::visit (HIR::ExternBlock &extern_block)
{
for (auto &item : extern_block.get_extern_items ())
{
TypeCheckTopLevelExternItem::Resolve (item.get (), extern_block);
}
}
std::vector
TypeCheckItem::resolve_impl_block_substitutions (HIR::ImplBlock &impl_block,
bool &failure_flag)
{
std::vector substitutions;
if (impl_block.has_generics ())
resolve_generic_params (impl_block.get_generic_params (), substitutions);
for (auto &where_clause_item : impl_block.get_where_clause ().get_items ())
{
ResolveWhereClauseItem::Resolve (*where_clause_item.get ());
}
auto specified_bound = TyTy::TypeBoundPredicate::error ();
TraitReference *trait_reference = &TraitReference::error_node ();
if (impl_block.has_trait_ref ())
{
std::unique_ptr &ref = impl_block.get_trait_ref ();
trait_reference = TraitResolver::Resolve (*ref.get ());
rust_assert (!trait_reference->is_error ());
// we don't error out here see: gcc/testsuite/rust/compile/traits2.rs
// for example
specified_bound = get_predicate_from_bound (*ref.get ());
}
TyTy::BaseType *self = TypeCheckType::Resolve (impl_block.get_type ().get ());
// inherit the bounds
if (!specified_bound.is_error ())
self->inherit_bounds ({specified_bound});
// check for any unconstrained type-params
const TyTy::SubstitutionArgumentMappings trait_constraints
= specified_bound.get_substitution_arguments ();
const TyTy::SubstitutionArgumentMappings impl_constraints
= GetUsedSubstArgs::From (self);
failure_flag = check_for_unconstrained (substitutions, trait_constraints,
impl_constraints, self);
return substitutions;
}
void
TypeCheckItem::validate_trait_impl_block (
HIR::ImplBlock &impl_block, TyTy::BaseType *self,
std::vector &substitutions)
{
auto specified_bound = TyTy::TypeBoundPredicate::error ();
TraitReference *trait_reference = &TraitReference::error_node ();
if (impl_block.has_trait_ref ())
{
std::unique_ptr &ref = impl_block.get_trait_ref ();
trait_reference = TraitResolver::Resolve (*ref.get ());
rust_assert (!trait_reference->is_error ());
// we don't error out here see: gcc/testsuite/rust/compile/traits2.rs
// for example
specified_bound = get_predicate_from_bound (*ref.get ());
}
bool is_trait_impl_block = !trait_reference->is_error ();
std::vector trait_item_refs;
for (auto &impl_item : impl_block.get_impl_items ())
{
if (!specified_bound.is_error ())
{
auto trait_item_ref
= TypeCheckImplItemWithTrait::Resolve (&impl_block,
impl_item.get (), self,
specified_bound,
substitutions);
trait_item_refs.push_back (trait_item_ref.get_raw_item ());
}
}
bool impl_block_missing_trait_items
= !specified_bound.is_error ()
&& trait_reference->size () != trait_item_refs.size ();
if (impl_block_missing_trait_items)
{
// filter the missing impl_items
std::vector>
missing_trait_items;
for (const auto &trait_item_ref : trait_reference->get_trait_items ())
{
bool found = false;
for (auto implemented_trait_item : trait_item_refs)
{
std::string trait_item_name = trait_item_ref.get_identifier ();
std::string impl_item_name
= implemented_trait_item->get_identifier ();
found = trait_item_name.compare (impl_item_name) == 0;
if (found)
break;
}
bool is_required_trait_item = !trait_item_ref.is_optional ();
if (!found && is_required_trait_item)
missing_trait_items.push_back (trait_item_ref);
}
if (missing_trait_items.size () > 0)
{
std::string missing_items_buf;
RichLocation r (impl_block.get_locus ());
for (size_t i = 0; i < missing_trait_items.size (); i++)
{
bool has_more = (i + 1) < missing_trait_items.size ();
const TraitItemReference &missing_trait_item
= missing_trait_items.at (i);
missing_items_buf += missing_trait_item.get_identifier ()
+ (has_more ? ", " : "");
r.add_range (missing_trait_item.get_locus ());
}
rust_error_at (r, "missing %s in implementation of trait %<%s%>",
missing_items_buf.c_str (),
trait_reference->get_name ().c_str ());
}
}
if (is_trait_impl_block)
{
trait_reference->clear_associated_types ();
AssociatedImplTrait associated (trait_reference, &impl_block, self,
context);
context->insert_associated_trait_impl (
impl_block.get_mappings ().get_hirid (), std::move (associated));
context->insert_associated_impl_mapping (
trait_reference->get_mappings ().get_hirid (), self,
impl_block.get_mappings ().get_hirid ());
}
}
TyTy::BaseType *
TypeCheckItem::resolve_impl_block_self (HIR::ImplBlock &impl_block)
{
return TypeCheckType::Resolve (impl_block.get_type ().get ());
}
} // namespace Resolver
} // namespace Rust