// Copyright (C) 2020-2023 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-hir-path-probe.h"
#include "rust-hir-type-check-item.h"
#include "rust-hir-trait-resolve.h"
namespace Rust {
namespace Resolver {
// PathProbeCandidate
PathProbeCandidate::Candidate::Candidate (EnumItemCandidate enum_field)
: enum_field (enum_field)
{}
PathProbeCandidate::Candidate::Candidate (ImplItemCandidate impl) : impl (impl)
{}
PathProbeCandidate::Candidate::Candidate (TraitItemCandidate trait)
: trait (trait)
{}
PathProbeCandidate::PathProbeCandidate (CandidateType type, TyTy::BaseType *ty,
Location locus,
EnumItemCandidate enum_field)
: type (type), ty (ty), locus (locus), item (enum_field)
{}
PathProbeCandidate::PathProbeCandidate (CandidateType type, TyTy::BaseType *ty,
Location locus, ImplItemCandidate impl)
: type (type), ty (ty), locus (locus), item (impl)
{}
PathProbeCandidate::PathProbeCandidate (CandidateType type, TyTy::BaseType *ty,
Location locus,
TraitItemCandidate trait)
: type (type), ty (ty), locus (locus), item (trait)
{}
std::string
PathProbeCandidate::as_string () const
{
return "PathProbe candidate TODO - as_string";
}
bool
PathProbeCandidate::is_enum_candidate () const
{
return type == ENUM_VARIANT;
}
bool
PathProbeCandidate::is_impl_candidate () const
{
return type == IMPL_CONST || type == IMPL_TYPE_ALIAS || type == IMPL_FUNC;
}
bool
PathProbeCandidate::is_trait_candidate () const
{
return type == TRAIT_ITEM_CONST || type == TRAIT_TYPE_ALIAS
|| type == TRAIT_FUNC;
}
bool
PathProbeCandidate::is_full_trait_item_candidate () const
{
return is_trait_candidate () && item.trait.impl == nullptr;
}
PathProbeCandidate
PathProbeCandidate::get_error ()
{
return PathProbeCandidate (ERROR, nullptr, Location (),
ImplItemCandidate{nullptr, nullptr});
}
bool
PathProbeCandidate::is_error () const
{
return type == ERROR;
}
DefId
PathProbeCandidate::get_defid () const
{
switch (type)
{
case ENUM_VARIANT:
return item.enum_field.variant->get_defid ();
break;
case IMPL_CONST:
case IMPL_TYPE_ALIAS:
case IMPL_FUNC:
return item.impl.impl_item->get_impl_mappings ().get_defid ();
break;
case TRAIT_ITEM_CONST:
case TRAIT_TYPE_ALIAS:
case TRAIT_FUNC:
return item.trait.item_ref->get_mappings ().get_defid ();
break;
case ERROR:
default:
return UNKNOWN_DEFID;
}
return UNKNOWN_DEFID;
}
bool
PathProbeCandidate::operator< (const PathProbeCandidate &c) const
{
return get_defid () < c.get_defid ();
}
// PathProbeType
PathProbeType::PathProbeType (const TyTy::BaseType *receiver,
const HIR::PathIdentSegment &query,
DefId specific_trait_id)
: TypeCheckBase (), receiver (receiver), search (query),
current_impl (nullptr), specific_trait_id (specific_trait_id)
{}
std::set
PathProbeType::Probe (const TyTy::BaseType *receiver,
const HIR::PathIdentSegment &segment_name,
bool probe_impls, bool probe_bounds,
bool ignore_mandatory_trait_items,
DefId specific_trait_id)
{
PathProbeType probe (receiver, segment_name, specific_trait_id);
if (probe_impls)
{
if (receiver->get_kind () == TyTy::TypeKind::ADT)
{
const TyTy::ADTType *adt
= static_cast (receiver);
if (adt->is_enum ())
probe.process_enum_item_for_candiates (adt);
}
probe.process_impl_items_for_candidates ();
}
if (!probe_bounds)
return probe.candidates;
if (!probe.is_reciever_generic ())
{
std::vector> probed_bounds
= TypeBoundsProbe::Probe (receiver);
for (auto &candidate : probed_bounds)
{
const TraitReference *trait_ref = candidate.first;
if (specific_trait_id != UNKNOWN_DEFID)
{
if (trait_ref->get_mappings ().get_defid () != specific_trait_id)
continue;
}
HIR::ImplBlock *impl = candidate.second;
probe.process_associated_trait_for_candidates (
trait_ref, impl, ignore_mandatory_trait_items);
}
}
for (const TyTy::TypeBoundPredicate &predicate :
receiver->get_specified_bounds ())
{
const TraitReference *trait_ref = predicate.get ();
if (specific_trait_id != UNKNOWN_DEFID)
{
if (trait_ref->get_mappings ().get_defid () != specific_trait_id)
continue;
}
probe.process_predicate_for_candidates (predicate,
ignore_mandatory_trait_items);
}
return probe.candidates;
}
void
PathProbeType::visit (HIR::TypeAlias &alias)
{
Identifier name = alias.get_new_type_name ();
if (search.as_string ().compare (name) == 0)
{
HirId tyid = alias.get_mappings ().get_hirid ();
TyTy::BaseType *ty = nullptr;
bool ok = query_type (tyid, &ty);
rust_assert (ok);
PathProbeCandidate::ImplItemCandidate impl_item_candidate{&alias,
current_impl};
PathProbeCandidate candidate{
PathProbeCandidate::CandidateType::IMPL_TYPE_ALIAS, ty,
alias.get_locus (), impl_item_candidate};
candidates.insert (std::move (candidate));
}
}
void
PathProbeType::visit (HIR::ConstantItem &constant)
{
Identifier name = constant.get_identifier ();
if (search.as_string ().compare (name) == 0)
{
HirId tyid = constant.get_mappings ().get_hirid ();
TyTy::BaseType *ty = nullptr;
bool ok = query_type (tyid, &ty);
rust_assert (ok);
PathProbeCandidate::ImplItemCandidate impl_item_candidate{&constant,
current_impl};
PathProbeCandidate candidate{
PathProbeCandidate::CandidateType::IMPL_CONST, ty,
constant.get_locus (), impl_item_candidate};
candidates.insert (std::move (candidate));
}
}
void
PathProbeType::visit (HIR::Function &function)
{
Identifier name = function.get_function_name ();
if (search.as_string ().compare (name) == 0)
{
HirId tyid = function.get_mappings ().get_hirid ();
TyTy::BaseType *ty = nullptr;
bool ok = query_type (tyid, &ty);
rust_assert (ok);
PathProbeCandidate::ImplItemCandidate impl_item_candidate{&function,
current_impl};
PathProbeCandidate candidate{PathProbeCandidate::CandidateType::IMPL_FUNC,
ty, function.get_locus (),
impl_item_candidate};
candidates.insert (std::move (candidate));
}
}
void
PathProbeType::process_enum_item_for_candiates (const TyTy::ADTType *adt)
{
if (specific_trait_id != UNKNOWN_DEFID)
return;
TyTy::VariantDef *v;
if (!adt->lookup_variant (search.as_string (), &v))
return;
PathProbeCandidate::EnumItemCandidate enum_item_candidate{adt, v};
PathProbeCandidate candidate{PathProbeCandidate::CandidateType::ENUM_VARIANT,
receiver->clone (),
mappings->lookup_location (adt->get_ty_ref ()),
enum_item_candidate};
candidates.insert (std::move (candidate));
}
void
PathProbeType::process_impl_items_for_candidates ()
{
mappings->iterate_impl_items (
[&] (HirId id, HIR::ImplItem *item, HIR::ImplBlock *impl) mutable -> bool {
process_impl_item_candidate (id, item, impl);
return true;
});
}
void
PathProbeType::process_impl_item_candidate (HirId id, HIR::ImplItem *item,
HIR::ImplBlock *impl)
{
current_impl = impl;
HirId impl_ty_id = impl->get_type ()->get_mappings ().get_hirid ();
TyTy::BaseType *impl_block_ty = nullptr;
if (!query_type (impl_ty_id, &impl_block_ty))
return;
if (!receiver->can_eq (impl_block_ty, false))
{
if (!impl_block_ty->can_eq (receiver, false))
return;
}
// lets visit the impl_item
item->accept_vis (*this);
}
void
PathProbeType::process_associated_trait_for_candidates (
const TraitReference *trait_ref, HIR::ImplBlock *impl,
bool ignore_mandatory_trait_items)
{
const TraitItemReference *trait_item_ref = nullptr;
if (!trait_ref->lookup_trait_item (search.as_string (), &trait_item_ref))
return;
bool trait_item_needs_implementation = !trait_item_ref->is_optional ();
if (ignore_mandatory_trait_items && trait_item_needs_implementation)
return;
PathProbeCandidate::CandidateType candidate_type;
switch (trait_item_ref->get_trait_item_type ())
{
case TraitItemReference::TraitItemType::FN:
candidate_type = PathProbeCandidate::CandidateType::TRAIT_FUNC;
break;
case TraitItemReference::TraitItemType::CONST:
candidate_type = PathProbeCandidate::CandidateType::TRAIT_ITEM_CONST;
break;
case TraitItemReference::TraitItemType::TYPE:
candidate_type = PathProbeCandidate::CandidateType::TRAIT_TYPE_ALIAS;
break;
case TraitItemReference::TraitItemType::ERROR:
default:
gcc_unreachable ();
break;
}
TyTy::BaseType *trait_item_tyty = trait_item_ref->get_tyty ();
// we can substitute the Self with the receiver here
if (trait_item_tyty->get_kind () == TyTy::TypeKind::FNDEF)
{
TyTy::FnType *fn = static_cast (trait_item_tyty);
TyTy::SubstitutionParamMapping *param = nullptr;
for (auto ¶m_mapping : fn->get_substs ())
{
const HIR::TypeParam &type_param = param_mapping.get_generic_param ();
if (type_param.get_type_representation ().compare ("Self") == 0)
{
param = ¶m_mapping;
break;
}
}
rust_assert (param != nullptr);
std::vector mappings;
mappings.push_back (TyTy::SubstitutionArg (param, receiver->clone ()));
Location locus; // FIXME
TyTy::SubstitutionArgumentMappings args (std::move (mappings), {}, locus);
trait_item_tyty = SubstMapperInternal::Resolve (trait_item_tyty, args);
}
PathProbeCandidate::TraitItemCandidate trait_item_candidate{trait_ref,
trait_item_ref,
impl};
PathProbeCandidate candidate{candidate_type, trait_item_tyty,
trait_item_ref->get_locus (),
trait_item_candidate};
candidates.insert (std::move (candidate));
}
void
PathProbeType::process_predicate_for_candidates (
const TyTy::TypeBoundPredicate &predicate, bool ignore_mandatory_trait_items)
{
const TraitReference *trait_ref = predicate.get ();
TyTy::TypeBoundPredicateItem item
= predicate.lookup_associated_item (search.as_string ());
if (item.is_error ())
return;
if (ignore_mandatory_trait_items && item.needs_implementation ())
return;
const TraitItemReference *trait_item_ref = item.get_raw_item ();
PathProbeCandidate::CandidateType candidate_type;
switch (trait_item_ref->get_trait_item_type ())
{
case TraitItemReference::TraitItemType::FN:
candidate_type = PathProbeCandidate::CandidateType::TRAIT_FUNC;
break;
case TraitItemReference::TraitItemType::CONST:
candidate_type = PathProbeCandidate::CandidateType::TRAIT_ITEM_CONST;
break;
case TraitItemReference::TraitItemType::TYPE:
candidate_type = PathProbeCandidate::CandidateType::TRAIT_TYPE_ALIAS;
break;
case TraitItemReference::TraitItemType::ERROR:
default:
gcc_unreachable ();
break;
}
TyTy::BaseType *trait_item_tyty = item.get_tyty_for_receiver (receiver);
PathProbeCandidate::TraitItemCandidate trait_item_candidate{trait_ref,
trait_item_ref,
nullptr};
PathProbeCandidate candidate{candidate_type, trait_item_tyty,
trait_item_ref->get_locus (),
trait_item_candidate};
candidates.insert (std::move (candidate));
}
std::vector>
PathProbeType::union_bounds (
const std::vector> a,
const std::vector> b)
const
{
std::map> mapper;
for (auto &ref : a)
{
mapper.insert ({ref.first->get_mappings ().get_defid (), ref});
}
for (auto &ref : b)
{
mapper.insert ({ref.first->get_mappings ().get_defid (), ref});
}
std::vector> union_set;
for (auto it = mapper.begin (); it != mapper.end (); it++)
{
union_set.push_back ({it->second.first, it->second.second});
}
return union_set;
}
bool
PathProbeType::is_reciever_generic () const
{
const TyTy::BaseType *root = receiver->get_root ();
bool receiver_is_type_param = root->get_kind () == TyTy::TypeKind::PARAM;
bool receiver_is_dyn = root->get_kind () == TyTy::TypeKind::DYNAMIC;
return receiver_is_type_param || receiver_is_dyn;
}
// PathProbImplTrait
PathProbeImplTrait::PathProbeImplTrait (const TyTy::BaseType *receiver,
const HIR::PathIdentSegment &query,
const TraitReference *trait_reference)
: PathProbeType (receiver, query, UNKNOWN_DEFID),
trait_reference (trait_reference)
{}
std::set
PathProbeImplTrait::Probe (const TyTy::BaseType *receiver,
const HIR::PathIdentSegment &segment_name,
const TraitReference *trait_reference)
{
PathProbeImplTrait probe (receiver, segment_name, trait_reference);
// iterate all impls for this trait and receiver
// then search for possible candidates using base class behaviours
probe.process_trait_impl_items_for_candidates ();
return probe.candidates;
}
void
PathProbeImplTrait::process_trait_impl_items_for_candidates ()
{
mappings->iterate_impl_items (
[&] (HirId id, HIR::ImplItem *item, HIR::ImplBlock *impl) mutable -> bool {
// just need to check if this is an impl block for this trait the next
// function checks the receiver
if (!impl->has_trait_ref ())
return true;
TraitReference *resolved
= TraitResolver::Lookup (*(impl->get_trait_ref ().get ()));
if (!trait_reference->is_equal (*resolved))
return true;
process_impl_item_candidate (id, item, impl);
return true;
});
}
} // namespace Resolver
} // namespace Rust