/* Register Transfer Language (RTL) definitions for GCC Copyright (C) 1987, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef GCC_RTL_H #define GCC_RTL_H struct function; #include "machmode.h" #include "input.h" #undef FFS /* Some systems predefine this symbol; don't let it interfere. */ #undef FLOAT /* Likewise. */ #undef ABS /* Likewise. */ #undef PC /* Likewise. */ /* Value used by some passes to "recognize" noop moves as valid instructions. */ #define NOOP_MOVE_INSN_CODE INT_MAX /* Register Transfer Language EXPRESSIONS CODES */ #define RTX_CODE enum rtx_code enum rtx_code { #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM , #include "rtl.def" /* rtl expressions are documented here */ #undef DEF_RTL_EXPR LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for NUM_RTX_CODE. Assumes default enum value assignment. */ #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE) /* The cast here, saves many elsewhere. */ extern const unsigned char rtx_length[NUM_RTX_CODE]; #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)]) extern const char * const rtx_name[NUM_RTX_CODE]; #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)]) extern const char * const rtx_format[NUM_RTX_CODE]; #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)]) extern const char rtx_class[NUM_RTX_CODE]; #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)]) extern const unsigned char rtx_size[NUM_RTX_CODE]; extern const unsigned char rtx_next[NUM_RTX_CODE]; /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label relative to which the offsets are calculated, as explained in rtl.def. */ typedef struct { /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */ unsigned min_align: 8; /* Flags: */ unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */ unsigned min_after_vec: 1; /* minimum address target label is after the ADDR_DIFF_VEC. */ unsigned max_after_vec: 1; /* maximum address target label is after the ADDR_DIFF_VEC. */ unsigned min_after_base: 1; /* minimum address target label is after BASE. */ unsigned max_after_base: 1; /* maximum address target label is after BASE. */ /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */ unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */ unsigned : 2; unsigned scale : 8; } addr_diff_vec_flags; /* Structure used to describe the attributes of a MEM. These are hashed so MEMs that the same attributes share a data structure. This means they cannot be modified in place. If any element is nonzero, it means the value of the corresponding attribute is unknown. */ /* ALIGN and SIZE are the alignment and size of the MEM itself, while EXPR can describe a larger underlying object, which might have a stricter alignment; OFFSET is the offset of the MEM within that object. */ typedef struct mem_attrs GTY(()) { HOST_WIDE_INT alias; /* Memory alias set. */ tree expr; /* expr corresponding to MEM. */ rtx offset; /* Offset from start of DECL, as CONST_INT. */ rtx size; /* Size in bytes, as a CONST_INT. */ unsigned int align; /* Alignment of MEM in bits. */ } mem_attrs; /* Structure used to describe the attributes of a REG in similar way as mem_attrs does for MEM above. */ typedef struct reg_attrs GTY(()) { tree decl; /* decl corresponding to REG. */ HOST_WIDE_INT offset; /* Offset from start of DECL. */ } reg_attrs; /* Common union for an element of an rtx. */ union rtunion_def { int rtint; unsigned int rtuint; const char *rtstr; rtx rtx; rtvec rtvec; enum machine_mode rttype; addr_diff_vec_flags rt_addr_diff_vec_flags; struct cselib_val_struct *rt_cselib; struct bitmap_head_def *rtbit; tree rttree; struct basic_block_def *bb; mem_attrs *rtmem; reg_attrs *rtreg; }; typedef union rtunion_def rtunion; /* RTL expression ("rtx"). */ struct rtx_def GTY((chain_next ("RTX_NEXT (&%h)"), chain_prev ("RTX_PREV (&%h)"))) { /* The kind of expression this is. */ ENUM_BITFIELD(rtx_code) code: 16; /* The kind of value the expression has. */ ENUM_BITFIELD(machine_mode) mode : 8; /* 1 in a MEM if we should keep the alias set for this mem unchanged when we access a component. 1 in a CALL_INSN if it is a sibling call. 1 in a SET that is for a return. In a CODE_LABEL, part of the two-bit alternate entry field. */ unsigned int jump : 1; /* In a CODE_LABEL, part of the two-bit alternate entry field. 1 in a MEM if it cannot trap. */ unsigned int call : 1; /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere. 1 in a SUBREG if it references an unsigned object whose mode has been from a promoted to a wider mode. 1 in a SYMBOL_REF if it addresses something in the per-function constants pool. 1 in a CALL_INSN, NOTE, or EXPR_LIST for a const or pure call. 1 in a JUMP_INSN, CALL_INSN, or INSN of an annulling branch. */ unsigned int unchanging : 1; /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile. 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE if it has been deleted. 1 in a REG expression if corresponds to a variable declared by the user, 0 for an internally generated temporary. 1 in a SUBREG with a negative value. 1 in a LABEL_REF or in a REG_LABEL note for a non-local label. In a SYMBOL_REF, this flag is used for machine-specific purposes. */ unsigned int volatil : 1; /* 1 in a MEM referring to a field of an aggregate. 0 if the MEM was a variable or the result of a * operator in C; 1 if it was the result of a . or -> operator (on a struct) in C. 1 in a REG if the register is used only in exit code a loop. 1 in a SUBREG expression if was generated from a variable with a promoted mode. 1 in a CODE_LABEL if the label is used for nonlocal gotos and must not be deleted even if its count is zero. 1 in a LABEL_REF if this is a reference to a label outside the current loop. 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled together with the preceding insn. Valid only within sched. 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and from the target of a branch. Valid from reorg until end of compilation; cleared before used. 1 in an INSN, JUMP_INSN or CALL_INSN or related rtx if this insn is dead code. Valid only during dead-code elimination phase; cleared before use. */ unsigned int in_struct : 1; /* At the end of RTL generation, 1 if this rtx is used. This is used for copying shared structure. See `unshare_all_rtl'. In a REG, this is not needed for that purpose, and used instead in `leaf_renumber_regs_insn'. 1 in a SYMBOL_REF, means that emit_library_call has used it as the function. */ unsigned int used : 1; /* Nonzero if this rtx came from procedure integration. 1 in a REG or PARALLEL means this rtx refers to the return value of the current function. 1 in a SYMBOL_REF if the symbol is weak. */ unsigned integrated : 1; /* 1 in an INSN or a SET if this rtx is related to the call frame, either changing how we compute the frame address or saving and restoring registers in the prologue and epilogue. 1 in a MEM if the MEM refers to a scalar, rather than a member of an aggregate. 1 in a REG if the register is a pointer. 1 in a SYMBOL_REF if it addresses something in the per-function constant string pool. */ unsigned frame_related : 1; /* The first element of the operands of this rtx. The number of operands and their types are controlled by the `code' field, according to rtl.def. */ union u { rtunion fld[1]; HOST_WIDE_INT hwint[1]; } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u; }; /* The size in bytes of an rtx header (code, mode and flags). */ #define RTX_HDR_SIZE offsetof (struct rtx_def, u) /* The size in bytes of an rtx with code CODE. */ #define RTX_SIZE(CODE) rtx_size[CODE] #define NULL_RTX (rtx) 0 /* The "next" and "previous" RTX, relative to this one. */ #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \ : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)])) /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed. */ #define RTX_PREV(X) ((GET_CODE (X) == INSN \ || GET_CODE (X) == CALL_INSN \ || GET_CODE (X) == JUMP_INSN \ || GET_CODE (X) == NOTE \ || GET_CODE (X) == BARRIER \ || GET_CODE (X) == CODE_LABEL) \ && PREV_INSN (X) != NULL \ && NEXT_INSN (PREV_INSN (X)) == X \ ? PREV_INSN (X) : NULL) /* Define macros to access the `code' field of the rtx. */ #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code) #define PUT_CODE(RTX, CODE) ((RTX)->code = (ENUM_BITFIELD(rtx_code)) (CODE)) #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode) #define PUT_MODE(RTX, MODE) ((RTX)->mode = (ENUM_BITFIELD(machine_mode)) (MODE)) /* RTL vector. These appear inside RTX's when there is a need for a variable number of things. The principle use is inside PARALLEL expressions. */ struct rtvec_def GTY(()) { int num_elem; /* number of elements */ rtx GTY ((length ("%h.num_elem"))) elem[1]; }; #define NULL_RTVEC (rtvec) 0 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem) #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM)) /* Predicate yielding nonzero iff X is an rtl for a register. */ #define REG_P(X) (GET_CODE (X) == REG) /* Predicate yielding nonzero iff X is a label insn. */ #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL) /* Predicate yielding nonzero iff X is a jump insn. */ #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN) /* Predicate yielding nonzero iff X is a note insn. */ #define NOTE_P(X) (GET_CODE (X) == NOTE) /* Predicate yielding nonzero iff X is a barrier insn. */ #define BARRIER_P(X) (GET_CODE (X) == BARRIER) /* Predicate yielding nonzero iff X is a data for a jump table. */ #define JUMP_TABLE_DATA_P(INSN) \ (JUMP_P (INSN) && (GET_CODE (PATTERN (INSN)) == ADDR_VEC || \ GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC)) /* 1 if X is a constant value that is an integer. */ #define CONSTANT_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE \ || GET_CODE (X) == CONST || GET_CODE (X) == HIGH \ || GET_CODE (X) == CONST_VECTOR \ || GET_CODE (X) == CONSTANT_P_RTX) /* General accessor macros for accessing the fields of an rtx. */ #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007) /* The bit with a star outside the statement expr and an & inside is so that N can be evaluated only once. */ #define RTL_CHECK1(RTX, N, C1) __extension__ \ (*({ rtx const _rtx = (RTX); const int _n = (N); \ const enum rtx_code _code = GET_CODE (_rtx); \ if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ __FUNCTION__); \ if (GET_RTX_FORMAT(_code)[_n] != C1) \ rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \ __FUNCTION__); \ &_rtx->u.fld[_n]; })) #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \ (*({ rtx const _rtx = (RTX); const int _n = (N); \ const enum rtx_code _code = GET_CODE (_rtx); \ if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ __FUNCTION__); \ if (GET_RTX_FORMAT(_code)[_n] != C1 \ && GET_RTX_FORMAT(_code)[_n] != C2) \ rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \ __FUNCTION__); \ &_rtx->u.fld[_n]; })) #define RTL_CHECKC1(RTX, N, C) __extension__ \ (*({ rtx const _rtx = (RTX); const int _n = (N); \ if (GET_CODE (_rtx) != (C)) \ rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \ __FUNCTION__); \ &_rtx->u.fld[_n]; })) #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \ (*({ rtx const _rtx = (RTX); const int _n = (N); \ const enum rtx_code _code = GET_CODE (_rtx); \ if (_code != (C1) && _code != (C2)) \ rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \ __FUNCTION__); \ &_rtx->u.fld[_n]; })) #define RTVEC_ELT(RTVEC, I) __extension__ \ (*({ rtvec const _rtvec = (RTVEC); const int _i = (I); \ if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \ rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \ __FUNCTION__); \ &_rtvec->elem[_i]; })) #define XWINT(RTX, N) __extension__ \ (*({ rtx const _rtx = (RTX); const int _n = (N); \ const enum rtx_code _code = GET_CODE (_rtx); \ if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ __FUNCTION__); \ if (GET_RTX_FORMAT(_code)[_n] != 'w') \ rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \ __FUNCTION__); \ &_rtx->u.hwint[_n]; })) #define XCWINT(RTX, N, C) __extension__ \ (*({ rtx const _rtx = (RTX); \ if (GET_CODE (_rtx) != (C)) \ rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \ __FUNCTION__); \ &_rtx->u.hwint[N]; })) extern void rtl_check_failed_bounds (rtx, int, const char *, int, const char *) ATTRIBUTE_NORETURN; extern void rtl_check_failed_type1 (rtx, int, int, const char *, int, const char *) ATTRIBUTE_NORETURN; extern void rtl_check_failed_type2 (rtx, int, int, int, const char *, int, const char *) ATTRIBUTE_NORETURN; extern void rtl_check_failed_code1 (rtx, enum rtx_code, const char *, int, const char *) ATTRIBUTE_NORETURN; extern void rtl_check_failed_code2 (rtx, enum rtx_code, enum rtx_code, const char *, int, const char *) ATTRIBUTE_NORETURN; extern void rtvec_check_failed_bounds (rtvec, int, const char *, int, const char *) ATTRIBUTE_NORETURN; #else /* not ENABLE_RTL_CHECKING */ #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N]) #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N]) #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N]) #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N]) #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I]) #define XWINT(RTX, N) ((RTX)->u.hwint[N]) #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N]) #endif /* General accessor macros for accessing the flags of an rtx. */ /* Access an individual rtx flag, with no checking of any kind. */ #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG) #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007) #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1) \ rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2) \ rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2 \ && GET_CODE(_rtx) != C3) \ rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2 \ && GET_CODE(_rtx) != C3 && GET_CODE(_rtx) != C4) \ rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2 \ && GET_CODE(_rtx) != C3 && GET_CODE(_rtx) != C4 \ && GET_CODE(_rtx) != C5) \ rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \ __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2 \ && GET_CODE(_rtx) != C3 && GET_CODE(_rtx) != C4 \ && GET_CODE(_rtx) != C5 && GET_CODE(_rtx) != C6) \ rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \ __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2 \ && GET_CODE(_rtx) != C3 && GET_CODE(_rtx) != C4 \ && GET_CODE(_rtx) != C5 && GET_CODE(_rtx) != C6 \ && GET_CODE(_rtx) != C7) \ rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) #define RTL_FLAG_CHECK8(NAME, RTX, C1, C2, C3, C4, C5, C6, C7, C8) \ __extension__ \ ({ rtx const _rtx = (RTX); \ if (GET_CODE(_rtx) != C1 && GET_CODE(_rtx) != C2 \ && GET_CODE(_rtx) != C3 && GET_CODE(_rtx) != C4 \ && GET_CODE(_rtx) != C5 && GET_CODE(_rtx) != C6 \ && GET_CODE(_rtx) != C7 && GET_CODE(_rtx) != C8) \ rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ __FUNCTION__); \ _rtx; }) extern void rtl_check_failed_flag (const char *, rtx, const char *, int, const char *) ATTRIBUTE_NORETURN ; #else /* not ENABLE_RTL_FLAG_CHECKING */ #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX) #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX) #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX) #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX) #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX) #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX) #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX) #define RTL_FLAG_CHECK8(NAME, RTX, C1, C2, C3, C4, C5, C6, C7, C8) (RTX) #endif #define CLEAR_RTX_FLAGS(RTX) \ do { \ rtx const _rtx = (RTX); \ _rtx->call = 0; \ _rtx->frame_related = 0; \ _rtx->in_struct = 0; \ _rtx->integrated = 0; \ _rtx->jump = 0; \ _rtx->unchanging = 0; \ _rtx->used = 0; \ _rtx->volatil = 0; \ } while (0) #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rtint) #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rtstr) #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rtx) #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rtvec) #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rttype) #define XBITMAP(RTX, N) (RTL_CHECK1 (RTX, N, 'b').rtbit) #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rttree) #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').bb) #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rtstr) #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M) #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N)) /* These are like XINT, etc. except that they expect a '0' field instead of the normal type code. */ #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rtint) #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rtuint) #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rtstr) #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rtx) #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rtvec) #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rttype) #define X0BITMAP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rtbit) #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rttree) #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').bb) #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags) #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib) #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rtmem) #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rtreg) /* Access a '0' field with any type. */ #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0') #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rtint) #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rtuint) #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rtstr) #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rtx) #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rtvec) #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rttype) #define XCBITMAP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rtbit) #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rttree) #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).bb) #define XCADVFLAGS(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_addr_diff_vec_flags) #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib) #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M) #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C)) #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rtx) /* ACCESS MACROS for particular fields of insns. */ /* Determines whether X is an insn. */ #define INSN_P(X) (GET_RTX_CLASS (GET_CODE(X)) == 'i') /* Holds a unique number for each insn. These are not necessarily sequentially increasing. */ #define INSN_UID(INSN) XINT (INSN, 0) /* Chain insns together in sequence. */ #define PREV_INSN(INSN) XEXP (INSN, 1) #define NEXT_INSN(INSN) XEXP (INSN, 2) #define BLOCK_FOR_INSN(INSN) XBBDEF (INSN, 3) #define INSN_LOCATOR(INSN) XINT (INSN, 4) /* The body of an insn. */ #define PATTERN(INSN) XEXP (INSN, 5) /* Code number of instruction, from when it was recognized. -1 means this instruction has not been recognized yet. */ #define INSN_CODE(INSN) XINT (INSN, 6) /* Set up in flow.c; empty before then. Holds a chain of INSN_LIST rtx's whose first operands point at previous insns with direct data-flow connections to this one. That means that those insns set variables whose next use is in this insn. They are always in the same basic block as this insn. */ #define LOG_LINKS(INSN) XEXP(INSN, 7) #define RTX_INTEGRATED_P(RTX) \ (RTL_FLAG_CHECK8("RTX_INTEGRATED_P", (RTX), INSN, CALL_INSN, \ JUMP_INSN, INSN_LIST, BARRIER, CODE_LABEL, CONST, \ NOTE)->integrated) #define RTX_UNCHANGING_P(RTX) \ (RTL_FLAG_CHECK3("RTX_UNCHANGING_P", (RTX), REG, MEM, CONCAT)->unchanging) #define RTX_FRAME_RELATED_P(RTX) \ (RTL_FLAG_CHECK5("RTX_FRAME_RELATED_P", (RTX), INSN, CALL_INSN, \ JUMP_INSN, BARRIER, SET)->frame_related) /* 1 if RTX is an insn that has been deleted. */ #define INSN_DELETED_P(RTX) \ (RTL_FLAG_CHECK6("INSN_DELETED_P", (RTX), INSN, CALL_INSN, JUMP_INSN, \ CODE_LABEL, BARRIER, NOTE)->volatil) /* 1 if RTX is a call to a const or pure function. */ #define CONST_OR_PURE_CALL_P(RTX) \ (RTL_FLAG_CHECK3("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN, NOTE, \ EXPR_LIST)->unchanging) /* 1 if RTX is a call_insn for a sibling call. */ #define SIBLING_CALL_P(RTX) \ (RTL_FLAG_CHECK1("SIBLING_CALL_P", (RTX), CALL_INSN)->jump) /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */ #define INSN_ANNULLED_BRANCH_P(RTX) \ (RTL_FLAG_CHECK3("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN, CALL_INSN, INSN)->unchanging) /* 1 if RTX is an insn that is dead code. Valid only for dead-code elimination phase. */ #define INSN_DEAD_CODE_P(RTX) \ (RTL_FLAG_CHECK3("INSN_DEAD_CODE_P", (RTX), INSN, CALL_INSN, JUMP_INSN)->in_struct) /* 1 if RTX is an insn in a delay slot and is from the target of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be executed if the branch is taken. For annulled branches with this bit clear, the insn should be executed only if the branch is not taken. */ #define INSN_FROM_TARGET_P(RTX) \ (RTL_FLAG_CHECK3("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, CALL_INSN)->in_struct) #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS(RTX, 4) #define CSELIB_VAL_PTR(RTX) X0CSELIB(RTX, 0) /* Holds a list of notes on what this insn does to various REGs. It is a chain of EXPR_LIST rtx's, where the second operand is the chain pointer and the first operand is the REG being described. The mode field of the EXPR_LIST contains not a real machine mode but a value from enum reg_note. */ #define REG_NOTES(INSN) XEXP(INSN, 8) /* Don't forget to change reg_note_name in rtl.c. */ enum reg_note { /* The value in REG dies in this insn (i.e., it is not needed past this insn). If REG is set in this insn, the REG_DEAD note may, but need not, be omitted. */ REG_DEAD = 1, /* The REG is autoincremented or autodecremented. */ REG_INC, /* Describes the insn as a whole; it says that the insn sets a register to a constant value or to be equivalent to a memory address. If the register is spilled to the stack then the constant value should be substituted for it. The contents of the REG_EQUIV is the constant value or memory address, which may be different from the source of the SET although it has the same value. A REG_EQUIV note may also appear on an insn which copies a register parameter to a pseudo-register, if there is a memory address which could be used to hold that pseudo-register throughout the function. */ REG_EQUIV, /* Like REG_EQUIV except that the destination is only momentarily equal to the specified rtx. Therefore, it cannot be used for substitution; but it can be used for cse. */ REG_EQUAL, /* This insn copies the return-value of a library call out of the hard reg for return values. This note is actually an INSN_LIST and it points to the first insn involved in setting up arguments for the call. flow.c uses this to delete the entire library call when its result is dead. */ REG_RETVAL, /* The inverse of REG_RETVAL: it goes on the first insn of the library call and points at the one that has the REG_RETVAL. This note is also an INSN_LIST. */ REG_LIBCALL, /* The register is always nonnegative during the containing loop. This is used in branches so that decrement and branch instructions terminating on zero can be matched. There must be an insn pattern in the md file named `decrement_and_branch_until_zero' or else this will never be added to any instructions. */ REG_NONNEG, /* There is no conflict *after this insn* between the register in the note and the destination of this insn. */ REG_NO_CONFLICT, /* Identifies a register set in this insn and never used. */ REG_UNUSED, /* REG_CC_SETTER and REG_CC_USER link a pair of insns that set and use CC0, respectively. Normally, these are required to be consecutive insns, but we permit putting a cc0-setting insn in the delay slot of a branch as long as only one copy of the insn exists. In that case, these notes point from one to the other to allow code generation to determine what any require information and to properly update CC_STATUS. These notes are INSN_LISTs. */ REG_CC_SETTER, REG_CC_USER, /* Points to a CODE_LABEL. Used by non-JUMP_INSNs to say that the CODE_LABEL contained in the REG_LABEL note is used by the insn. This note is an INSN_LIST. */ REG_LABEL, /* REG_DEP_ANTI and REG_DEP_OUTPUT are used in LOG_LINKS to represent write-after-read and write-after-write dependencies respectively. Data dependencies, which are the only type of LOG_LINK created by flow, are represented by a 0 reg note kind. */ REG_DEP_ANTI, REG_DEP_OUTPUT, /* REG_BR_PROB is attached to JUMP_INSNs and CALL_INSNs. It has an integer value. For jumps, it is the probability that this is a taken branch. For calls, it is the probability that this call won't return. */ REG_BR_PROB, /* REG_VALUE_PROFILE is attached when the profile is read in to an insn before that the code to profile the value is inserted. It contains the results of profiling. */ REG_VALUE_PROFILE, /* Attached to a call insn; indicates that the call is malloc-like and that the pointer returned cannot alias anything else. */ REG_NOALIAS, /* Used to optimize rtl generated by dynamic stack allocations for targets where SETJMP_VIA_SAVE_AREA is true. */ REG_SAVE_AREA, /* REG_BR_PRED is attached to JUMP_INSNs and CALL_INSNSs. It contains CONCAT of two integer value. First specifies the branch predictor that added the note, second specifies the predicted hitrate of branch in the same format as REG_BR_PROB note uses. */ REG_BR_PRED, /* Attached to insns that are RTX_FRAME_RELATED_P, but are too complex for DWARF to interpret what they imply. The attached rtx is used instead of intuition. */ REG_FRAME_RELATED_EXPR, /* Indicates that REG holds the exception context for the function. This context is shared by inline functions, so the code to acquire the real exception context is delayed until after inlining. */ REG_EH_CONTEXT, /* Indicates what exception region an INSN belongs in. This is used to indicate what region to which a call may throw. REGION 0 indicates that a call cannot throw at all. REGION -1 indicates that it cannot throw, nor will it execute a non-local goto. */ REG_EH_REGION, /* Used by haifa-sched to save NOTE_INSN notes across scheduling. */ REG_SAVE_NOTE, /* Indicates that this insn (which is part of the prologue) computes a value which might not be used later, and if so it's OK to delete the insn. Normally, deleting any insn in the prologue is an error. At present the parameter is unused and set to (const_int 0). */ REG_MAYBE_DEAD, /* Indicates that a call does not return. */ REG_NORETURN, /* Indicates that an indirect jump is a non-local goto instead of a computed goto. */ REG_NON_LOCAL_GOTO, /* This kind of note is generated at each to `setjmp', and similar functions that can return twice. */ REG_SETJMP, /* Indicate calls that always returns. */ REG_ALWAYS_RETURN, /* Indicate that the memory load references a vtable. The expression is of the form (plus (symbol_ref vtable_sym) (const_int offset)). */ REG_VTABLE_REF }; /* The base value for branch probability notes. */ #define REG_BR_PROB_BASE 10000 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */ #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK)) #define PUT_REG_NOTE_KIND(LINK, KIND) \ PUT_MODE (LINK, (enum machine_mode) (KIND)) /* Names for REG_NOTE's in EXPR_LIST insn's. */ extern const char * const reg_note_name[]; #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)]) /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of USE and CLOBBER expressions. USE expressions list the registers filled with arguments that are passed to the function. CLOBBER expressions document the registers explicitly clobbered by this CALL_INSN. Pseudo registers can not be mentioned in this list. */ #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 9) /* The label-number of a code-label. The assembler label is made from `L' and the label-number printed in decimal. Label numbers are unique in a compilation. */ #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 6) #define LINE_NUMBER NOTE /* In a NOTE that is a line number, this is a string for the file name that the line is in. We use the same field to record block numbers temporarily in NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts between ints and pointers if we use a different macro for the block number.) */ /* Opaque data. */ #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 4, NOTE) #define NOTE_SOURCE_FILE(INSN) XCSTR (INSN, 4, NOTE) #define NOTE_BLOCK(INSN) XCTREE (INSN, 4, NOTE) #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 4, NOTE) #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 4, NOTE) #define NOTE_EXPECTED_VALUE(INSN) XCEXP (INSN, 4, NOTE) #define NOTE_PREDICTION(INSN) XCINT (INSN, 4, NOTE) #define NOTE_PRECONDITIONED(INSN) XCINT (INSN, 4, NOTE) /* In a NOTE that is a line number, this is the line number. Other kinds of NOTEs are identified by negative numbers here. */ #define NOTE_LINE_NUMBER(INSN) XCINT (INSN, 5, NOTE) /* Nonzero if INSN is a note marking the beginning of a basic block. */ #define NOTE_INSN_BASIC_BLOCK_P(INSN) \ (GET_CODE (INSN) == NOTE \ && NOTE_LINE_NUMBER (INSN) == NOTE_INSN_BASIC_BLOCK) /* Algorithm and flags for prediction. */ #define NOTE_PREDICTION_ALG(INSN) (XCINT(INSN, 4, NOTE)>>8) #define NOTE_PREDICTION_FLAGS(INSN) (XCINT(INSN, 4, NOTE)&0xff) #define NOTE_PREDICT(ALG,FLAGS) ((ALG<<8)+(FLAGS)) /* Codes that appear in the NOTE_LINE_NUMBER field for kinds of notes that are not line numbers. Notice that we do not try to use zero here for any of the special note codes because sometimes the source line actually can be zero! This happens (for example) when we are generating code for the per-translation-unit constructor and destructor routines for some C++ translation unit. If you should change any of the following values, or if you should add a new value here, don't forget to change the note_insn_name array in rtl.c. */ enum insn_note { /* Keep all of these numbers negative. Adjust as needed. */ NOTE_INSN_BIAS = -100, /* This note is used to get rid of an insn when it isn't safe to patch the insn out of the chain. */ NOTE_INSN_DELETED, /* These are used to mark the beginning and end of a lexical block. See NOTE_BLOCK, identify_blocks and reorder_blocks. */ NOTE_INSN_BLOCK_BEG, NOTE_INSN_BLOCK_END, /* These mark the extremes of a loop. */ NOTE_INSN_LOOP_BEG, NOTE_INSN_LOOP_END, /* Generated at the place in a loop that `continue' jumps to. */ NOTE_INSN_LOOP_CONT, /* Generated at the start of a duplicated exit test. */ NOTE_INSN_LOOP_VTOP, /* Generated at the end of a conditional at the top of the loop. This is used to perform a lame form of loop rotation in lieu of actually understanding the loop structure. The note is discarded after rotation is complete. */ NOTE_INSN_LOOP_END_TOP_COND, /* This kind of note is generated at the end of the function body, just before the return insn or return label. In an optimizing compilation it is deleted by the first jump optimization, after enabling that optimizer to determine whether control can fall off the end of the function body without a return statement. */ NOTE_INSN_FUNCTION_END, /* This marks the point immediately after the last prologue insn. */ NOTE_INSN_PROLOGUE_END, /* This marks the point immediately prior to the first epilogue insn. */ NOTE_INSN_EPILOGUE_BEG, /* Generated in place of user-declared labels when they are deleted. */ NOTE_INSN_DELETED_LABEL, /* This note indicates the start of the real body of the function, i.e. the point just after all of the parms have been moved into their homes, etc. */ NOTE_INSN_FUNCTION_BEG, /* These note where exception handling regions begin and end. Uses NOTE_EH_HANDLER to identify the region in question. */ NOTE_INSN_EH_REGION_BEG, NOTE_INSN_EH_REGION_END, /* Generated whenever a duplicate line number note is output. For example, one is output after the end of an inline function, in order to prevent the line containing the inline call from being counted twice in gcov. */ NOTE_INSN_REPEATED_LINE_NUMBER, /* Record the struct for the following basic block. Uses NOTE_BASIC_BLOCK. */ NOTE_INSN_BASIC_BLOCK, /* Record the expected value of a register at a location. Uses NOTE_EXPECTED_VALUE; stored as (eq (reg) (const_int)). */ NOTE_INSN_EXPECTED_VALUE, /* Record a prediction. Uses NOTE_PREDICTION. */ NOTE_INSN_PREDICTION, NOTE_INSN_MAX }; /* Names for NOTE insn's other than line numbers. */ extern const char * const note_insn_name[NOTE_INSN_MAX - NOTE_INSN_BIAS]; #define GET_NOTE_INSN_NAME(NOTE_CODE) \ (note_insn_name[(NOTE_CODE) - (int) NOTE_INSN_BIAS]) /* The name of a label, in case it corresponds to an explicit label in the input source code. */ #define LABEL_NAME(RTX) XCSTR (RTX, 7, CODE_LABEL) /* In jump.c, each label contains a count of the number of LABEL_REFs that point at it, so unused labels can be deleted. */ #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL) /* Labels carry a two-bit field composed of the ->jump and ->call bits. This field indicates whether the label is an alternate entry point, and if so, what kind. */ enum label_kind { LABEL_NORMAL = 0, /* ordinary label */ LABEL_STATIC_ENTRY, /* alternate entry point, not exported */ LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */ LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */ }; #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007) /* Retrieve the kind of LABEL. */ #define LABEL_KIND(LABEL) __extension__ \ ({ rtx const _label = (LABEL); \ if (GET_CODE (_label) != CODE_LABEL) \ rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \ __FUNCTION__); \ (enum label_kind) ((_label->jump << 1) | _label->call); }) /* Set the kind of LABEL. */ #define SET_LABEL_KIND(LABEL, KIND) do { \ rtx _label = (LABEL); \ unsigned int _kind = (KIND); \ if (GET_CODE (_label) != CODE_LABEL) \ rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \ __FUNCTION__); \ _label->jump = ((_kind >> 1) & 1); \ _label->call = (_kind & 1); \ } while (0) #else /* Retrieve the kind of LABEL. */ #define LABEL_KIND(LABEL) \ ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call)) /* Set the kind of LABEL. */ #define SET_LABEL_KIND(LABEL, KIND) do { \ rtx _label = (LABEL); \ unsigned int _kind = (KIND); \ _label->jump = ((_kind >> 1) & 1); \ _label->call = (_kind & 1); \ } while (0) #endif /* rtl flag checking */ #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL) /* The original regno this ADDRESSOF was built for. */ #define ADDRESSOF_REGNO(RTX) XCUINT (RTX, 1, ADDRESSOF) /* The variable in the register we took the address of. */ #define ADDRESSOF_DECL(RTX) XCTREE (RTX, 2, ADDRESSOF) /* In jump.c, each JUMP_INSN can point to a label that it can jump to, so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can be decremented and possibly the label can be deleted. */ #define JUMP_LABEL(INSN) XCEXP (INSN, 9, JUMP_INSN) /* Once basic blocks are found in flow.c, each CODE_LABEL starts a chain that goes through all the LABEL_REFs that jump to that label. The chain eventually winds up at the CODE_LABEL: it is circular. */ #define LABEL_REFS(LABEL) XCEXP (LABEL, 5, CODE_LABEL) /* This is the field in the LABEL_REF through which the circular chain of references to a particular label is linked. This chain is set up in flow.c. */ #define LABEL_NEXTREF(REF) XCEXP (REF, 1, LABEL_REF) /* Once basic blocks are found in flow.c, Each LABEL_REF points to its containing instruction with this field. */ #define CONTAINING_INSN(RTX) XCEXP (RTX, 2, LABEL_REF) /* For a REG rtx, REGNO extracts the register number. ORIGINAL_REGNO holds the number the register originally had; for a pseudo register turned into a hard reg this will hold the old pseudo register number. */ #define REGNO(RTX) XCUINT (RTX, 0, REG) #define ORIGINAL_REGNO(RTX) X0UINT (RTX, 1) /* 1 if RTX is a reg or parallel that is the current function's return value. */ #define REG_FUNCTION_VALUE_P(RTX) \ (RTL_FLAG_CHECK2("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->integrated) /* 1 if RTX is a reg that corresponds to a variable declared by the user. */ #define REG_USERVAR_P(RTX) \ (RTL_FLAG_CHECK1("REG_USERVAR_P", (RTX), REG)->volatil) /* 1 if RTX is a reg that holds a pointer value. */ #define REG_POINTER(RTX) \ (RTL_FLAG_CHECK1("REG_POINTER", (RTX), REG)->frame_related) /* 1 if the given register REG corresponds to a hard register. */ #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG))) /* 1 if the given register number REG_NO corresponds to a hard register. */ #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER) /* For a CONST_INT rtx, INTVAL extracts the integer. */ #define INTVAL(RTX) XCWINT(RTX, 0, CONST_INT) /* For a CONST_DOUBLE: For a DImode, there are two integers CONST_DOUBLE_LOW is the low-order word and ..._HIGH the high-order. For a float, there is a REAL_VALUE_TYPE structure, and CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */ #define CONST_DOUBLE_LOW(r) XCWINT (r, 0, CONST_DOUBLE) #define CONST_DOUBLE_HIGH(r) XCWINT (r, 1, CONST_DOUBLE) #define CONST_DOUBLE_REAL_VALUE(r) ((struct real_value *)&CONST_DOUBLE_LOW(r)) /* For a CONST_VECTOR, return element #n. */ #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR) /* For a CONST_VECTOR, return the number of elements in a vector. */ #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR) /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of. SUBREG_BYTE extracts the byte-number. */ #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG) #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG) /* in rtlanal.c */ extern unsigned int subreg_lsb (rtx); extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode, unsigned int, enum machine_mode); extern bool subreg_offset_representable_p (unsigned int, enum machine_mode, unsigned int, enum machine_mode); extern unsigned int subreg_regno (rtx); /* 1 if RTX is a subreg containing a reg that is already known to be sign- or zero-extended from the mode of the subreg to the mode of the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the extension. When used as a LHS, is means that this extension must be done when assigning to SUBREG_REG. */ #define SUBREG_PROMOTED_VAR_P(RTX) \ (RTL_FLAG_CHECK1("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct) #define SUBREG_PROMOTED_UNSIGNED_SET(RTX, VAL) \ do { \ rtx const _rtx = RTL_FLAG_CHECK1("SUBREG_PROMOTED_UNSIGNED_SET", (RTX), SUBREG); \ if ((VAL) < 0) \ _rtx->volatil = 1; \ else { \ _rtx->volatil = 0; \ _rtx->unchanging = (VAL); \ } \ } while (0) #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \ ((RTL_FLAG_CHECK1("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil) \ ? -1 : (RTX)->unchanging) /* Access various components of an ASM_OPERANDS rtx. */ #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS) #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS) #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS) #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS) #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS) #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS) #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS) #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \ XCVECEXP (RTX, 4, N, ASM_OPERANDS) #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \ XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0) #define ASM_OPERANDS_INPUT_MODE(RTX, N) \ GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS)) #define ASM_OPERANDS_SOURCE_FILE(RTX) XCSTR (RTX, 5, ASM_OPERANDS) #define ASM_OPERANDS_SOURCE_LINE(RTX) XCINT (RTX, 6, ASM_OPERANDS) /* 1 if RTX is a mem and we should keep the alias set for this mem unchanged when we access a component. Set to 1, or example, when we are already in a non-addressable component of an aggregate. */ #define MEM_KEEP_ALIAS_SET_P(RTX) \ (RTL_FLAG_CHECK1("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump) /* 1 if RTX is a mem or asm_operand for a volatile reference. */ #define MEM_VOLATILE_P(RTX) \ (RTL_FLAG_CHECK3("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \ ASM_INPUT)->volatil) /* 1 if RTX is a mem that refers to an aggregate, either to the aggregate itself of to a field of the aggregate. If zero, RTX may or may not be such a reference. */ #define MEM_IN_STRUCT_P(RTX) \ (RTL_FLAG_CHECK1("MEM_IN_STRUCT_P", (RTX), MEM)->in_struct) /* 1 if RTX is a mem that refers to a scalar. If zero, RTX may or may not refer to a scalar. */ #define MEM_SCALAR_P(RTX) \ (RTL_FLAG_CHECK1("MEM_SCALAR_P", (RTX), MEM)->frame_related) /* 1 if RTX is a mem that cannot trap. */ #define MEM_NOTRAP_P(RTX) \ (RTL_FLAG_CHECK1("MEM_NOTRAP_P", (RTX), MEM)->call) /* If VAL is nonzero, set MEM_IN_STRUCT_P and clear MEM_SCALAR_P in RTX. Otherwise, vice versa. Use this macro only when you are *sure* that you know that the MEM is in a structure, or is a scalar. VAL is evaluated only once. */ #define MEM_SET_IN_STRUCT_P(RTX, VAL) \ do { \ if (VAL) \ { \ MEM_IN_STRUCT_P (RTX) = 1; \ MEM_SCALAR_P (RTX) = 0; \ } \ else \ { \ MEM_IN_STRUCT_P (RTX) = 0; \ MEM_SCALAR_P (RTX) = 1; \ } \ } while (0) /* The memory attribute block. We provide access macros for each value in the block and provide defaults if none specified. */ #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1) /* The register attribute block. We provide access macros for each value in the block and provide defaults if none specified. */ #define REG_ATTRS(RTX) X0REGATTR (RTX, 2) /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias set, and may alias anything. Otherwise, the MEM can only alias MEMs in a conflicting alias set. This value is set in a language-dependent manner in the front-end, and should not be altered in the back-end. These set numbers are tested with alias_sets_conflict_p. */ #define MEM_ALIAS_SET(RTX) (MEM_ATTRS (RTX) == 0 ? 0 : MEM_ATTRS (RTX)->alias) /* For a MEM rtx, the decl it is known to refer to, if it is known to refer to part of a DECL. It may also be a COMPONENT_REF. */ #define MEM_EXPR(RTX) (MEM_ATTRS (RTX) == 0 ? 0 : MEM_ATTRS (RTX)->expr) /* For a MEM rtx, the offset from the start of MEM_EXPR, if known, as a RTX that is always a CONST_INT. */ #define MEM_OFFSET(RTX) (MEM_ATTRS (RTX) == 0 ? 0 : MEM_ATTRS (RTX)->offset) /* For a MEM rtx, the size in bytes of the MEM, if known, as an RTX that is always a CONST_INT. */ #define MEM_SIZE(RTX) \ (MEM_ATTRS (RTX) != 0 ? MEM_ATTRS (RTX)->size \ : GET_MODE (RTX) != BLKmode ? GEN_INT (GET_MODE_SIZE (GET_MODE (RTX))) \ : 0) /* For a MEM rtx, the alignment in bits. We can use the alignment of the mode as a default when STRICT_ALIGNMENT, but not if not. */ #define MEM_ALIGN(RTX) \ (MEM_ATTRS (RTX) != 0 ? MEM_ATTRS (RTX)->align \ : (STRICT_ALIGNMENT && GET_MODE (RTX) != BLKmode \ ? GET_MODE_ALIGNMENT (GET_MODE (RTX)) : BITS_PER_UNIT)) /* For a REG rtx, the decl it is known to refer to, if it is known to refer to part of a DECL. */ #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl) /* For a MEM rtx, the offset from the start of MEM_DECL, if known, as a RTX that is always a CONST_INT. */ #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset) /* Copy the attributes that apply to memory locations from RHS to LHS. */ #define MEM_COPY_ATTRIBUTES(LHS, RHS) \ (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \ MEM_IN_STRUCT_P (LHS) = MEM_IN_STRUCT_P (RHS), \ MEM_SCALAR_P (LHS) = MEM_SCALAR_P (RHS), \ MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \ RTX_UNCHANGING_P (LHS) = RTX_UNCHANGING_P (RHS), \ MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \ MEM_ATTRS (LHS) = MEM_ATTRS (RHS)) /* 1 if RTX is a label_ref to a label outside the loop containing the reference. */ #define LABEL_OUTSIDE_LOOP_P(RTX) \ (RTL_FLAG_CHECK1("LABEL_OUTSIDE_LOOP_P", (RTX), LABEL_REF)->in_struct) /* 1 if RTX is a label_ref for a nonlocal label. */ /* Likewise in an expr_list for a reg_label note. */ #define LABEL_REF_NONLOCAL_P(RTX) \ (RTL_FLAG_CHECK2("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF, \ REG_LABEL)->volatil) /* 1 if RTX is a code_label that should always be considered to be needed. */ #define LABEL_PRESERVE_P(RTX) \ (RTL_FLAG_CHECK2("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct) /* 1 if RTX is a reg that is used only in an exit test of a loop. */ #define REG_LOOP_TEST_P(RTX) \ (RTL_FLAG_CHECK1("REG_LOOP_TEST_P", (RTX), REG)->in_struct) /* During sched, 1 if RTX is an insn that must be scheduled together with the preceding insn. */ #define SCHED_GROUP_P(RTX) \ (RTL_FLAG_CHECK3("SCHED_GROUP_P", (RTX), INSN, JUMP_INSN, CALL_INSN \ )->in_struct) /* For a SET rtx, SET_DEST is the place that is set and SET_SRC is the value it is set to. */ #define SET_DEST(RTX) XC2EXP(RTX, 0, SET, CLOBBER) #define SET_SRC(RTX) XCEXP(RTX, 1, SET) #define SET_IS_RETURN_P(RTX) \ (RTL_FLAG_CHECK1("SET_IS_RETURN_P", (RTX), SET)->jump) /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */ #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF) #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF) /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base conditionally executing the code on, COND_EXEC_CODE is the code to execute if the condition is true. */ #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC) #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC) /* 1 if RTX is a symbol_ref that addresses this function's rtl constants pool. */ #define CONSTANT_POOL_ADDRESS_P(RTX) \ (RTL_FLAG_CHECK1("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging) /* 1 if RTX is a symbol_ref that addresses a value in the file's tree constant pool. This information is private to varasm.c. */ #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \ (RTL_FLAG_CHECK1("TREE_CONSTANT_POOL_ADDRESS_P", \ (RTX), SYMBOL_REF)->frame_related) /* Used if RTX is a symbol_ref, for machine-specific purposes. */ #define SYMBOL_REF_FLAG(RTX) \ (RTL_FLAG_CHECK1("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil) /* 1 if RTX is a symbol_ref that has been the library function in emit_library_call. */ #define SYMBOL_REF_USED(RTX) \ (RTL_FLAG_CHECK1("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used) /* 1 if RTX is a symbol_ref for a weak symbol. */ #define SYMBOL_REF_WEAK(RTX) \ (RTL_FLAG_CHECK1("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->integrated) /* The tree (decl or constant) associated with the symbol, or null. */ #define SYMBOL_REF_DECL(RTX) X0TREE ((RTX), 2) /* A set of flags on a symbol_ref that are, in some respects, redundant with information derivable from the tree decl associated with this symbol. Except that we build a *lot* of SYMBOL_REFs that aren't associated with a decl. In some cases this is a bug. But beyond that, it's nice to cache this information to avoid recomputing it. Finally, this allows space for the target to store more than one bit of information, as with SYMBOL_REF_FLAG. */ #define SYMBOL_REF_FLAGS(RTX) X0INT ((RTX), 1) /* These flags are common enough to be defined for all targets. They are computed by the default version of targetm.encode_section_info. */ /* Set if this symbol is a function. */ #define SYMBOL_FLAG_FUNCTION (1 << 0) #define SYMBOL_REF_FUNCTION_P(RTX) \ ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0) /* Set if targetm.binds_local_p is true. */ #define SYMBOL_FLAG_LOCAL (1 << 1) #define SYMBOL_REF_LOCAL_P(RTX) \ ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0) /* Set if targetm.in_small_data_p is true. */ #define SYMBOL_FLAG_SMALL (1 << 2) #define SYMBOL_REF_SMALL_P(RTX) \ ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0) /* The three-bit field at [5:3] is true for TLS variables; use SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */ #define SYMBOL_FLAG_TLS_SHIFT 3 #define SYMBOL_REF_TLS_MODEL(RTX) \ ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7)) /* Set if this symbol is not defined in this translation unit. */ #define SYMBOL_FLAG_EXTERNAL (1 << 6) #define SYMBOL_REF_EXTERNAL_P(RTX) \ ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0) /* Subsequent bits are available for the target to use. */ #define SYMBOL_FLAG_MACH_DEP_SHIFT 7 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT) /* Define a macro to look for REG_INC notes, but save time on machines where they never exist. */ #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT)) #define FIND_REG_INC_NOTE(INSN, REG) \ ((REG) != NULL_RTX && REG_P ((REG)) \ ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \ : find_reg_note ((INSN), REG_INC, (REG))) #else #define FIND_REG_INC_NOTE(INSN, REG) 0 #endif /* Indicate whether the machine has any sort of auto increment addressing. If not, we can avoid checking for REG_INC notes. */ #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT)) #define AUTO_INC_DEC #endif #ifndef HAVE_PRE_INCREMENT #define HAVE_PRE_INCREMENT 0 #endif #ifndef HAVE_PRE_DECREMENT #define HAVE_PRE_DECREMENT 0 #endif #ifndef HAVE_POST_INCREMENT #define HAVE_POST_INCREMENT 0 #endif #ifndef HAVE_POST_DECREMENT #define HAVE_POST_DECREMENT 0 #endif #ifndef HAVE_POST_MODIFY_DISP #define HAVE_POST_MODIFY_DISP 0 #endif #ifndef HAVE_POST_MODIFY_REG #define HAVE_POST_MODIFY_REG 0 #endif #ifndef HAVE_PRE_MODIFY_DISP #define HAVE_PRE_MODIFY_DISP 0 #endif #ifndef HAVE_PRE_MODIFY_REG #define HAVE_PRE_MODIFY_REG 0 #endif /* Some architectures do not have complete pre/post increment/decrement instruction sets, or only move some modes efficiently. These macros allow us to tune autoincrement generation. */ #ifndef USE_LOAD_POST_INCREMENT #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT #endif #ifndef USE_LOAD_POST_DECREMENT #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT #endif #ifndef USE_LOAD_PRE_INCREMENT #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT #endif #ifndef USE_LOAD_PRE_DECREMENT #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT #endif #ifndef USE_STORE_POST_INCREMENT #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT #endif #ifndef USE_STORE_POST_DECREMENT #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT #endif #ifndef USE_STORE_PRE_INCREMENT #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT #endif #ifndef USE_STORE_PRE_DECREMENT #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT #endif /* Determine if the insn is a PHI node. */ #define PHI_NODE_P(X) \ ((X) && GET_CODE (X) == INSN \ && GET_CODE (PATTERN (X)) == SET \ && GET_CODE (SET_SRC (PATTERN (X))) == PHI) /* Nonzero if we need to distinguish between the return value of this function and the return value of a function called by this function. This helps integrate.c. This is 1 until after the rtl generation pass. */ extern int rtx_equal_function_value_matters; /* Nonzero when we are generating CONCATs. */ extern int generating_concat_p; /* Generally useful functions. */ /* In expmed.c */ extern int ceil_log2 (unsigned HOST_WIDE_INT); #define plus_constant(X, C) plus_constant_wide ((X), (HOST_WIDE_INT) (C)) /* In builtins.c */ extern rtx expand_builtin_expect_jump (tree, rtx, rtx); extern void purge_builtin_constant_p (void); /* In explow.c */ extern void set_stack_check_libfunc (rtx); extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode); extern rtx plus_constant_wide (rtx, HOST_WIDE_INT); extern rtx plus_constant_for_output_wide (rtx, HOST_WIDE_INT); extern void optimize_save_area_alloca (rtx); /* In emit-rtl.c */ extern rtx gen_rtx (enum rtx_code, enum machine_mode, ...); extern rtvec gen_rtvec (int, ...); extern rtx copy_insn_1 (rtx); extern rtx copy_insn (rtx); extern rtx gen_int_mode (HOST_WIDE_INT, enum machine_mode); extern rtx emit_copy_of_insn_after (rtx, rtx); extern void set_reg_attrs_from_mem (rtx, rtx); extern void set_mem_attrs_from_reg (rtx, rtx); extern void set_reg_attrs_for_parm (rtx, rtx); /* In rtl.c */ extern rtx rtx_alloc (RTX_CODE); extern rtvec rtvec_alloc (int); extern rtx copy_rtx (rtx); /* In emit-rtl.c */ extern rtx copy_rtx_if_shared (rtx); /* In rtl.c */ extern rtx copy_most_rtx (rtx, rtx); extern rtx shallow_copy_rtx (rtx); extern int rtx_equal_p (rtx, rtx); /* In emit-rtl.c */ extern rtvec gen_rtvec_v (int, rtx *); extern rtx gen_reg_rtx (enum machine_mode); extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int); extern rtx gen_label_rtx (void); extern int subreg_hard_regno (rtx, int); extern rtx gen_lowpart_common (enum machine_mode, rtx); extern rtx gen_lowpart (enum machine_mode, rtx); /* In cse.c */ extern rtx gen_lowpart_if_possible (enum machine_mode, rtx); /* In emit-rtl.c */ extern rtx gen_highpart (enum machine_mode, rtx); extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx); extern rtx gen_realpart (enum machine_mode, rtx); extern rtx gen_imagpart (enum machine_mode, rtx); extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode); extern rtx constant_subword (rtx, int, enum machine_mode); /* In emit-rtl.c */ extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode); extern int subreg_lowpart_p (rtx); extern unsigned int subreg_lowpart_offset (enum machine_mode, enum machine_mode); extern unsigned int subreg_highpart_offset (enum machine_mode, enum machine_mode); extern rtx make_safe_from (rtx, rtx); extern rtx convert_memory_address (enum machine_mode, rtx); extern rtx get_insns (void); extern const char *get_insn_name (int); extern rtx get_last_insn (void); extern rtx get_last_insn_anywhere (void); extern rtx get_first_nonnote_insn (void); extern rtx get_last_nonnote_insn (void); extern void start_sequence (void); extern void push_to_sequence (rtx); extern void end_sequence (void); extern void push_to_full_sequence (rtx, rtx); extern void end_full_sequence (rtx*, rtx*); /* In varasm.c */ extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode); extern rtx force_const_mem (enum machine_mode, rtx); /* In varasm.c */ extern rtx get_pool_constant (rtx); extern rtx get_pool_constant_mark (rtx, bool *); extern enum machine_mode get_pool_mode (rtx); extern rtx get_pool_constant_for_function (struct function *, rtx); extern enum machine_mode get_pool_mode_for_function (struct function *, rtx); extern int get_pool_offset (rtx); extern rtx simplify_subtraction (rtx); /* In function.c */ extern rtx assign_stack_local (enum machine_mode, HOST_WIDE_INT, int); extern rtx assign_stack_temp (enum machine_mode, HOST_WIDE_INT, int); extern rtx assign_stack_temp_for_type (enum machine_mode, HOST_WIDE_INT, int, tree); extern rtx assign_temp (tree, int, int, int); /* In emit-rtl.c */ extern rtx emit_insn_before (rtx, rtx); extern rtx emit_insn_before_setloc (rtx, rtx, int); extern rtx emit_jump_insn_before (rtx, rtx); extern rtx emit_jump_insn_before_setloc (rtx, rtx, int); extern rtx emit_call_insn_before (rtx, rtx); extern rtx emit_call_insn_before_setloc (rtx, rtx, int); extern rtx emit_barrier_before (rtx); extern rtx emit_label_before (rtx, rtx); extern rtx emit_note_before (int, rtx); extern rtx emit_insn_after (rtx, rtx); extern rtx emit_insn_after_setloc (rtx, rtx, int); extern rtx emit_jump_insn_after (rtx, rtx); extern rtx emit_jump_insn_after_setloc (rtx, rtx, int); extern rtx emit_call_insn_after (rtx, rtx); extern rtx emit_call_insn_after_setloc (rtx, rtx, int); extern rtx emit_barrier_after (rtx); extern rtx emit_label_after (rtx, rtx); extern rtx emit_note_after (int, rtx); extern rtx emit_note_copy_after (rtx, rtx); extern rtx emit_insn (rtx); extern rtx emit_jump_insn (rtx); extern rtx emit_call_insn (rtx); extern rtx emit_label (rtx); extern rtx emit_barrier (void); extern rtx emit_note (int); extern rtx emit_note_copy (rtx); extern rtx emit_line_note (location_t); extern rtx make_insn_raw (rtx); extern void add_function_usage_to (rtx, rtx); extern rtx last_call_insn (void); extern rtx previous_insn (rtx); extern rtx next_insn (rtx); extern rtx prev_nonnote_insn (rtx); extern rtx next_nonnote_insn (rtx); extern rtx prev_real_insn (rtx); extern rtx next_real_insn (rtx); extern rtx prev_active_insn (rtx); extern rtx next_active_insn (rtx); extern int active_insn_p (rtx); extern rtx prev_label (rtx); extern rtx next_label (rtx); extern rtx next_cc0_user (rtx); extern rtx prev_cc0_setter (rtx); /* In cfglayout.c */ extern tree choose_inner_scope (tree, tree); extern int insn_line (rtx); extern const char * insn_file (rtx); extern int locator_line (int); extern const char * locator_file (int); extern int prologue_locator, epilogue_locator; /* In jump.c */ extern enum rtx_code reverse_condition (enum rtx_code); extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code); extern enum rtx_code swap_condition (enum rtx_code); extern enum rtx_code unsigned_condition (enum rtx_code); extern enum rtx_code signed_condition (enum rtx_code); extern void mark_jump_label (rtx, rtx, int); extern void cleanup_barriers (void); /* In jump.c */ extern bool squeeze_notes (rtx *, rtx *); extern rtx delete_related_insns (rtx); extern void delete_jump (rtx); extern void delete_barrier (rtx); extern rtx get_label_before (rtx); extern rtx get_label_after (rtx); extern rtx follow_jumps (rtx); /* In recog.c */ extern rtx *find_constant_term_loc (rtx *); /* In emit-rtl.c */ extern rtx try_split (rtx, rtx, int); extern int split_branch_probability; /* In unknown file */ extern rtx split_insns (rtx, rtx); /* In simplify-rtx.c */ extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx, enum machine_mode); extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx, rtx); extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode, enum machine_mode, rtx, rtx, rtx); extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode, rtx, rtx); extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx); extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx, enum machine_mode); extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode, enum machine_mode, rtx, rtx, rtx); extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode, enum machine_mode, rtx, rtx); extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode, unsigned int); extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode, unsigned int); extern rtx simplify_replace_rtx (rtx, rtx, rtx); extern rtx simplify_rtx (rtx); extern rtx avoid_constant_pool_reference (rtx); /* In function.c */ extern rtx gen_mem_addressof (rtx, tree, int); /* In regclass.c */ extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int, bool); /* In emit-rtl.c */ extern rtx set_unique_reg_note (rtx, enum reg_note, rtx); /* Functions in rtlanal.c */ /* Single set is implemented as macro for performance reasons. */ #define single_set(I) (INSN_P (I) \ ? (GET_CODE (PATTERN (I)) == SET \ ? PATTERN (I) : single_set_1 (I)) \ : NULL_RTX) #define single_set_1(I) single_set_2 (I, PATTERN (I)) /* Structure used for passing data to REPLACE_LABEL. */ typedef struct replace_label_data { rtx r1; rtx r2; bool update_label_nuses; } replace_label_data; extern int rtx_addr_can_trap_p (rtx); extern bool nonzero_address_p (rtx); extern int rtx_unstable_p (rtx); extern int rtx_varies_p (rtx, int); extern int rtx_addr_varies_p (rtx, int); extern HOST_WIDE_INT get_integer_term (rtx); extern rtx get_related_value (rtx); extern rtx get_jump_table_offset (rtx, rtx *); extern int global_reg_mentioned_p (rtx); extern int reg_mentioned_p (rtx, rtx); extern int count_occurrences (rtx, rtx, int); extern int reg_referenced_p (rtx, rtx); extern int reg_used_between_p (rtx, rtx, rtx); extern int reg_referenced_between_p (rtx, rtx, rtx); extern int reg_set_between_p (rtx, rtx, rtx); extern int regs_set_between_p (rtx, rtx, rtx); extern int commutative_operand_precedence (rtx); extern int swap_commutative_operands_p (rtx, rtx); extern int modified_between_p (rtx, rtx, rtx); extern int no_labels_between_p (rtx, rtx); extern int no_jumps_between_p (rtx, rtx); extern int modified_in_p (rtx, rtx); extern int insn_dependent_p (rtx, rtx); extern int reg_set_p (rtx, rtx); extern rtx single_set_2 (rtx, rtx); extern int multiple_sets (rtx); extern int set_noop_p (rtx); extern int noop_move_p (rtx); extern rtx find_last_value (rtx, rtx *, rtx, int); extern int refers_to_regno_p (unsigned int, unsigned int, rtx, rtx *); extern int reg_overlap_mentioned_p (rtx, rtx); extern rtx set_of (rtx, rtx); extern void note_stores (rtx, void (*) (rtx, rtx, void *), void *); extern void note_uses (rtx *, void (*) (rtx *, void *), void *); extern rtx reg_set_last (rtx, rtx); extern int dead_or_set_p (rtx, rtx); extern int dead_or_set_regno_p (rtx, unsigned int); extern rtx find_reg_note (rtx, enum reg_note, rtx); extern rtx find_regno_note (rtx, enum reg_note, unsigned int); extern rtx find_reg_equal_equiv_note (rtx); extern int find_reg_fusage (rtx, enum rtx_code, rtx); extern int find_regno_fusage (rtx, enum rtx_code, unsigned int); extern int pure_call_p (rtx); extern void remove_note (rtx, rtx); extern int side_effects_p (rtx); extern int volatile_refs_p (rtx); extern int volatile_insn_p (rtx); extern int may_trap_p (rtx); extern int inequality_comparisons_p (rtx); extern rtx replace_rtx (rtx, rtx, rtx); extern rtx replace_regs (rtx, rtx *, unsigned int, int); extern int replace_label (rtx *, void *); extern int rtx_referenced_p (rtx, rtx); extern bool tablejump_p (rtx, rtx *, rtx *); extern int computed_jump_p (rtx); typedef int (*rtx_function) (rtx *, void *); extern int for_each_rtx (rtx *, rtx_function, void *); extern rtx regno_use_in (unsigned int, rtx); extern int auto_inc_p (rtx); extern int in_expr_list_p (rtx, rtx); extern void remove_node_from_expr_list (rtx, rtx *); extern int insns_safe_to_move_p (rtx, rtx, rtx *); extern int loc_mentioned_in_p (rtx *, rtx); extern rtx find_first_parameter_load (rtx, rtx); extern bool keep_with_call_p (rtx); /* flow.c */ extern rtx find_use_as_address (rtx, rtx, HOST_WIDE_INT); /* lists.c */ void free_EXPR_LIST_list (rtx *); void free_INSN_LIST_list (rtx *); void free_EXPR_LIST_node (rtx); void free_INSN_LIST_node (rtx); rtx alloc_INSN_LIST (rtx, rtx); rtx alloc_EXPR_LIST (int, rtx, rtx); /* regclass.c */ /* Maximum number of parallel sets and clobbers in any insn in this fn. Always at least 3, since the combiner could put that many together and we want this to remain correct for all the remaining passes. */ extern int max_parallel; /* Free up register info memory. */ extern void free_reg_info (void); /* recog.c */ extern int asm_noperands (rtx); extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **, enum machine_mode *); extern enum reg_class reg_preferred_class (int); extern enum reg_class reg_alternate_class (int); extern rtx get_first_nonparm_insn (void); extern void split_all_insns (int); extern void split_all_insns_noflow (void); #define MAX_SAVED_CONST_INT 64 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT]) #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1]) #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2]) #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1]) extern GTY(()) rtx const_true_rtx; extern GTY(()) rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE]; /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the same as VOIDmode. */ #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)]) /* Likewise, for the constants 1 and 2. */ #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)]) #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)]) /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg is used to represent the frame pointer. This is because the hard frame pointer and the automatic variables are separated by an amount that cannot be determined until after register allocation. We can assume that in this case ELIMINABLE_REGS will be defined, one action of which will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */ #ifndef HARD_FRAME_POINTER_REGNUM #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM #endif /* Index labels for global_rtl. */ enum global_rtl_index { GR_PC, GR_CC0, GR_STACK_POINTER, GR_FRAME_POINTER, /* For register elimination to work properly these hard_frame_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to the same register. */ #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM GR_ARG_POINTER = GR_FRAME_POINTER, #endif #if HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM GR_HARD_FRAME_POINTER = GR_FRAME_POINTER, #else GR_HARD_FRAME_POINTER, #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM #if HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM GR_ARG_POINTER = GR_HARD_FRAME_POINTER, #else GR_ARG_POINTER, #endif #endif GR_VIRTUAL_INCOMING_ARGS, GR_VIRTUAL_STACK_ARGS, GR_VIRTUAL_STACK_DYNAMIC, GR_VIRTUAL_OUTGOING_ARGS, GR_VIRTUAL_CFA, GR_MAX }; /* Pointers to standard pieces of rtx are stored here. */ extern GTY(()) rtx global_rtl[GR_MAX]; /* Standard pieces of rtx, to be substituted directly into things. */ #define pc_rtx (global_rtl[GR_PC]) #define cc0_rtx (global_rtl[GR_CC0]) /* All references to certain hard regs, except those created by allocating pseudo regs into them (when that's possible), go through these unique rtx objects. */ #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER]) #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER]) #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER]) #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER]) extern GTY(()) rtx pic_offset_table_rtx; extern GTY(()) rtx static_chain_rtx; extern GTY(()) rtx static_chain_incoming_rtx; extern GTY(()) rtx return_address_pointer_rtx; /* Include the RTL generation functions. */ #ifndef NO_GENRTL_H #include "genrtl.h" #endif /* There are some RTL codes that require special attention; the generation functions included above do the raw handling. If you add to this list, modify special_rtx in gengenrtl.c as well. You should also modify gen_rtx to use the special function. */ extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT); extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec); extern rtx gen_raw_REG (enum machine_mode, int); extern rtx gen_rtx_REG (enum machine_mode, unsigned); extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int); extern rtx gen_rtx_MEM (enum machine_mode, rtx); extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx); /* We need the cast here to ensure that we get the same result both with and without prototypes. */ #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (HOST_WIDE_INT) (N)) /* Virtual registers are used during RTL generation to refer to locations into the stack frame when the actual location isn't known until RTL generation is complete. The routine instantiate_virtual_regs replaces these with the proper value, which is normally {frame,arg,stack}_pointer_rtx plus a constant. */ #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER) /* This points to the first word of the incoming arguments passed on the stack, either by the caller or by the callee when pretending it was passed by the caller. */ #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS]) #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER) /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. */ #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS]) #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1) /* This points to the location of dynamically-allocated memory on the stack immediately after the stack pointer has been adjusted by the amount desired. */ #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC]) #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2) /* This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns always use sp). */ #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS]) #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3) /* This points to the Canonical Frame Address of the function. This should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET, but is calculated relative to the arg pointer for simplicity; the frame pointer nor stack pointer are necessarily fixed relative to the CFA until after reload. */ #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA]) #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4) #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4) /* Nonzero if REGNUM is a pointer into the stack frame. */ #define REGNO_PTR_FRAME_P(REGNUM) \ ((REGNUM) == STACK_POINTER_REGNUM \ || (REGNUM) == FRAME_POINTER_REGNUM \ || (REGNUM) == HARD_FRAME_POINTER_REGNUM \ || (REGNUM) == ARG_POINTER_REGNUM \ || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \ && (REGNUM) <= LAST_VIRTUAL_REGISTER)) /* REGNUM never really appearing in the INSN stream. */ #define INVALID_REGNUM (~(unsigned int) 0) extern rtx output_constant_def (tree, int); extern rtx lookup_constant_def (tree); /* Called from integrate.c when a deferred constant is inlined. */ extern void notice_rtl_inlining_of_deferred_constant (void); /* Nonzero after the second flow pass has completed. Set to 1 or 0 by toplev.c */ extern int flow2_completed; /* Nonzero after end of reload pass. Set to 1 or 0 by reload1.c. */ extern int reload_completed; /* Nonzero after thread_prologue_and_epilogue_insns has run. */ extern int epilogue_completed; /* Set to 1 while reload_as_needed is operating. Required by some machines to handle any generated moves differently. */ extern int reload_in_progress; /* If this is nonzero, we do not bother generating VOLATILE around volatile memory references, and we are willing to output indirect addresses. If cse is to follow, we reject indirect addresses so a useful potential cse is generated; if it is used only once, instruction combination will produce the same indirect address eventually. */ extern int cse_not_expected; /* Set to nonzero before life analysis to indicate that it is unsafe to generate any new pseudo registers. */ extern int no_new_pseudos; /* Translates rtx code to tree code, for those codes needed by REAL_ARITHMETIC. The function returns an int because the caller may not know what `enum tree_code' means. */ extern int rtx_to_tree_code (enum rtx_code); /* In cse.c */ struct cse_basic_block_data; /* Return the right cost to give to an operation to make the cost of the corresponding register-to-register instruction N times that of a fast register-to-register instruction. */ #define COSTS_N_INSNS(N) ((N) * 4) /* Maximum cost of a rtl expression. This value has the special meaning not to use an rtx with this cost under any circumstances. */ #define MAX_COST INT_MAX extern int rtx_cost (rtx, enum rtx_code); extern int address_cost (rtx, enum machine_mode); extern int delete_trivially_dead_insns (rtx, int); #ifdef BUFSIZ extern int cse_main (rtx, int, int, FILE *); #endif extern void cse_end_of_basic_block (rtx, struct cse_basic_block_data *, int, int, int); /* In jump.c */ extern int comparison_dominates_p (enum rtx_code, enum rtx_code); extern int condjump_p (rtx); extern int any_condjump_p (rtx); extern int any_uncondjump_p (rtx); extern int safe_to_remove_jump_p (rtx); extern rtx pc_set (rtx); extern rtx condjump_label (rtx); extern int simplejump_p (rtx); extern int returnjump_p (rtx); extern int onlyjump_p (rtx); extern int only_sets_cc0_p (rtx); extern int sets_cc0_p (rtx); extern int invert_jump_1 (rtx, rtx); extern int invert_jump (rtx, rtx, int); extern int rtx_renumbered_equal_p (rtx, rtx); extern int true_regnum (rtx); extern unsigned int reg_or_subregno (rtx); extern int redirect_jump_1 (rtx, rtx); extern int redirect_jump (rtx, rtx, int); extern void rebuild_jump_labels (rtx); extern enum rtx_code reversed_comparison_code (rtx, rtx); extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, rtx, rtx, rtx); extern void delete_for_peephole (rtx, rtx); extern int condjump_in_parallel_p (rtx); extern void never_reached_warning (rtx, rtx); extern void purge_line_number_notes (rtx); extern void copy_loop_headers (rtx); /* In emit-rtl.c. */ extern int max_reg_num (void); extern int max_label_num (void); extern int get_first_label_num (void); extern void delete_insns_since (rtx); extern void mark_reg_pointer (rtx, int); extern void mark_user_reg (rtx); extern void reset_used_flags (rtx); extern void set_used_flags (rtx); extern void reorder_insns (rtx, rtx, rtx); extern void reorder_insns_nobb (rtx, rtx, rtx); extern int get_max_uid (void); extern int in_sequence_p (void); extern void force_next_line_note (void); extern void init_emit (void); extern void init_emit_once (int); extern void push_topmost_sequence (void); extern void pop_topmost_sequence (void); extern int subreg_realpart_p (rtx); extern void reverse_comparison (rtx); extern void set_new_first_and_last_insn (rtx, rtx); extern void set_new_first_and_last_label_num (int, int); extern void set_new_last_label_num (int); extern void unshare_all_rtl_again (rtx); extern void unshare_all_rtl_in_chain (rtx); extern void verify_rtl_sharing (void); extern void set_first_insn (rtx); extern void set_last_insn (rtx); extern void link_cc0_insns (rtx); extern void add_insn (rtx); extern void add_insn_before (rtx, rtx); extern void add_insn_after (rtx, rtx); extern void remove_insn (rtx); extern void reorder_insns_with_line_notes (rtx, rtx, rtx); extern void emit_insn_after_with_line_notes (rtx, rtx, rtx); extern enum rtx_code classify_insn (rtx); extern rtx emit (rtx); /* Query and clear/ restore no_line_numbers. This is used by the switch / case handling in stmt.c to give proper line numbers in warnings about unreachable code. */ int force_line_numbers (void); void restore_line_number_status (int old_value); extern void renumber_insns (FILE *); extern void remove_unnecessary_notes (void); extern rtx delete_insn (rtx); extern void delete_insn_chain (rtx, rtx); extern rtx unlink_insn_chain (rtx, rtx); extern rtx delete_insn_and_edges (rtx); extern void delete_insn_chain_and_edges (rtx, rtx); /* In combine.c */ extern int combine_instructions (rtx, unsigned int); extern unsigned int extended_count (rtx, enum machine_mode, int); extern rtx remove_death (unsigned int, rtx); #ifdef BUFSIZ extern void dump_combine_stats (FILE *); extern void dump_combine_total_stats (FILE *); #endif /* In web.c */ extern void web_main (void); /* In sched.c. */ #ifdef BUFSIZ extern void schedule_insns (FILE *); extern void schedule_ebbs (FILE *); #endif extern void fix_sched_param (const char *, const char *); /* In print-rtl.c */ extern const char *print_rtx_head; extern void debug_rtx (rtx); extern void debug_rtx_list (rtx, int); extern void debug_rtx_range (rtx, rtx); extern rtx debug_rtx_find (rtx, int); #ifdef BUFSIZ extern void print_mem_expr (FILE *, tree); extern void print_rtl (FILE *, rtx); extern void print_simple_rtl (FILE *, rtx); extern int print_rtl_single (FILE *, rtx); extern void print_inline_rtx (FILE *, rtx, int); #endif /* In loop.c */ extern void init_loop (void); extern rtx libcall_other_reg (rtx, rtx); #ifdef BUFSIZ extern void loop_optimize (rtx, FILE *, int); #endif extern void branch_target_load_optimize (rtx, bool); extern void record_excess_regs (rtx, rtx, rtx *); /* In function.c */ extern void reposition_prologue_and_epilogue_notes (rtx); extern void thread_prologue_and_epilogue_insns (rtx); extern int prologue_epilogue_contains (rtx); extern int sibcall_epilogue_contains (rtx); extern void preserve_rtl_expr_result (rtx); extern void mark_temp_addr_taken (rtx); extern void update_temp_slot_address (rtx, rtx); extern void purge_addressof (rtx); extern void purge_hard_subreg_sets (rtx); /* In stmt.c */ extern void set_file_and_line_for_stmt (location_t); extern void expand_null_return (void); extern void emit_jump (rtx); extern int preserve_subexpressions_p (void); /* In expr.c */ extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT, unsigned int, int); /* In flow.c */ extern void recompute_reg_usage (rtx, int); extern int initialize_uninitialized_subregs (void); extern void delete_dead_jumptables (void); #ifdef BUFSIZ extern void print_rtl_with_bb (FILE *, rtx); extern void dump_flow_info (FILE *); #endif /* In expmed.c */ extern void init_expmed (void); extern void expand_inc (rtx, rtx); extern void expand_dec (rtx, rtx); extern rtx expand_mult_highpart (enum machine_mode, rtx, unsigned HOST_WIDE_INT, rtx, int, int); /* In gcse.c */ extern bool can_copy_p (enum machine_mode); extern rtx fis_get_condition (rtx); #ifdef BUFSIZ extern int gcse_main (rtx, FILE *); extern int bypass_jumps (FILE *); #endif /* In global.c */ extern void mark_elimination (int, int); #ifdef BUFSIZ extern int global_alloc (FILE *); extern void dump_global_regs (FILE *); #endif #ifdef HARD_CONST /* Yes, this ifdef is silly, but HARD_REG_SET is not always defined. */ extern void retry_global_alloc (int, HARD_REG_SET); #endif extern void build_insn_chain (rtx); /* In regclass.c */ extern int reg_classes_intersect_p (enum reg_class, enum reg_class); extern int reg_class_subset_p (enum reg_class, enum reg_class); extern void globalize_reg (int); extern void init_reg_modes_once (void); extern void init_regs (void); extern void init_fake_stack_mems (void); extern void init_reg_sets (void); extern void regset_release_memory (void); extern void regclass_init (void); extern void regclass (rtx, int, FILE *); extern void reg_scan (rtx, unsigned int, int); extern void reg_scan_update (rtx, rtx, unsigned int); extern void fix_register (const char *, int, int); #ifdef HARD_CONST extern void cannot_change_mode_set_regs (HARD_REG_SET *, enum machine_mode, unsigned int); #endif extern bool invalid_mode_change_p (unsigned int, enum reg_class, enum machine_mode); extern int delete_null_pointer_checks (rtx); /* In regmove.c */ #ifdef BUFSIZ extern void regmove_optimize (rtx, int, FILE *); #endif extern void combine_stack_adjustments (void); /* In reorg.c */ #ifdef BUFSIZ extern void dbr_schedule (rtx, FILE *); #endif /* In local-alloc.c */ #ifdef BUFSIZ extern void dump_local_alloc (FILE *); #endif extern int local_alloc (void); extern int function_invariant_p (rtx); /* In profile.c */ extern void init_branch_prob (void); extern void branch_prob (void); extern void end_branch_prob (void); /* In reg-stack.c */ #ifdef BUFSIZ extern bool reg_to_stack (rtx, FILE *); #endif /* In calls.c */ enum libcall_type { LCT_NORMAL = 0, LCT_CONST = 1, LCT_PURE = 2, LCT_CONST_MAKE_BLOCK = 3, LCT_PURE_MAKE_BLOCK = 4, LCT_NORETURN = 5, LCT_THROW = 6, LCT_ALWAYS_RETURN = 7, LCT_RETURNS_TWICE = 8 }; extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int, ...); extern rtx emit_library_call_value (rtx, rtx, enum libcall_type, enum machine_mode, int, ...); /* In unroll.c */ extern int set_dominates_use (int, int, int, rtx, rtx); /* In varasm.c */ extern int in_data_section (void); extern void init_varasm_once (void); /* In rtl.c */ extern void init_rtl (void); extern void traverse_md_constants (int (*) (void **, void *), void *); struct md_constant { char *name, *value; }; #ifdef BUFSIZ extern int read_skip_spaces (FILE *); extern rtx read_rtx (FILE *); #endif extern const char *read_rtx_filename; extern int read_rtx_lineno; /* Redefine abort to report an internal error w/o coredump, and reporting the location of the error in the source file. This logic is duplicated in rtl.h and tree.h because every file that needs the special abort includes one or both. toplev.h gets too few files, system.h gets too many. */ extern void fancy_abort (const char *, int, const char *) ATTRIBUTE_NORETURN; #define abort() fancy_abort (__FILE__, __LINE__, __FUNCTION__) /* In alias.c */ extern void clear_reg_alias_info (rtx); extern rtx canon_rtx (rtx); extern int true_dependence (rtx, enum machine_mode, rtx, int (*)(rtx, int)); extern rtx get_addr (rtx); extern int canon_true_dependence (rtx, enum machine_mode, rtx, rtx, int (*)(rtx, int)); extern int read_dependence (rtx, rtx); extern int anti_dependence (rtx, rtx); extern int output_dependence (rtx, rtx); extern int unchanging_anti_dependence (rtx, rtx); extern void mark_constant_function (void); extern void init_alias_once (void); extern void init_alias_analysis (void); extern void end_alias_analysis (void); extern rtx addr_side_effect_eval (rtx, int, int); extern bool memory_modified_in_insn_p (rtx, rtx); extern rtx find_base_term (rtx); /* In sibcall.c */ typedef enum { sibcall_use_normal = 1, sibcall_use_tail_recursion, sibcall_use_sibcall } sibcall_use_t; extern void optimize_sibling_and_tail_recursive_calls (void); extern void replace_call_placeholder (rtx, sibcall_use_t); #ifdef STACK_REGS extern int stack_regs_mentioned (rtx insn); #endif /* In toplev.c */ extern GTY(()) rtx stack_limit_rtx; /* In regrename.c */ extern void regrename_optimize (void); extern void copyprop_hardreg_forward (void); /* In ifcvt.c */ extern void if_convert (int); /* In predict.c */ extern void invert_br_probabilities (rtx); extern bool expensive_function_p (int); /* In tracer.c */ extern void tracer (void); #endif /* ! GCC_RTL_H */