/* Calculate branch probabilities, and basic block execution counts.
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
based on some ideas from Dain Samples of UC Berkeley.
Further mangling by Bob Manson, Cygnus Support.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* Generate basic block profile instrumentation and auxiliary files.
Profile generation is optimized, so that not all arcs in the basic
block graph need instrumenting. First, the BB graph is closed with
one entry (function start), and one exit (function exit). Any
ABNORMAL_EDGE cannot be instrumented (because there is no control
path to place the code). We close the graph by inserting fake
EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
edges that do not go to the exit_block. We ignore such abnormal
edges. Naturally these fake edges are never directly traversed,
and so *cannot* be directly instrumented. Some other graph
massaging is done. To optimize the instrumentation we generate the
BB minimal span tree, only edges that are not on the span tree
(plus the entry point) need instrumenting. From that information
all other edge counts can be deduced. By construction all fake
edges must be on the spanning tree. We also attempt to place
EDGE_CRITICAL edges on the spanning tree.
The auxiliary files generated are .gcno (at compile time)
and .gcda (at run time). The format is
described in full in gcov-io.h. */
/* ??? Register allocation should use basic block execution counts to
give preference to the most commonly executed blocks. */
/* ??? Should calculate branch probabilities before instrumenting code, since
then we can use arc counts to help decide which arcs to instrument. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "flags.h"
#include "output.h"
#include "regs.h"
#include "expr.h"
#include "function.h"
#include "basic-block.h"
#include "diagnostic-core.h"
#include "coverage.h"
#include "value-prof.h"
#include "tree.h"
#include "cfghooks.h"
#include "tree-flow.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "profile.h"
struct bb_info {
unsigned int count_valid : 1;
/* Number of successor and predecessor edges. */
gcov_type succ_count;
gcov_type pred_count;
};
#define BB_INFO(b) ((struct bb_info *) (b)->aux)
/* Counter summary from the last set of coverage counts read. */
const struct gcov_ctr_summary *profile_info;
/* Collect statistics on the performance of this pass for the entire source
file. */
static int total_num_blocks;
static int total_num_edges;
static int total_num_edges_ignored;
static int total_num_edges_instrumented;
static int total_num_blocks_created;
static int total_num_passes;
static int total_num_times_called;
static int total_hist_br_prob[20];
static int total_num_branches;
/* Forward declarations. */
static void find_spanning_tree (struct edge_list *);
static unsigned instrument_edges (struct edge_list *);
static void instrument_values (histogram_values);
static void compute_branch_probabilities (void);
static void compute_value_histograms (histogram_values);
static gcov_type * get_exec_counts (void);
static basic_block find_group (basic_block);
static void union_groups (basic_block, basic_block);
/* Add edge instrumentation code to the entire insn chain.
F is the first insn of the chain.
NUM_BLOCKS is the number of basic blocks found in F. */
static unsigned
instrument_edges (struct edge_list *el)
{
unsigned num_instr_edges = 0;
int num_edges = NUM_EDGES (el);
basic_block bb;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
{
struct edge_info *inf = EDGE_INFO (e);
if (!inf->ignore && !inf->on_tree)
{
gcc_assert (!(e->flags & EDGE_ABNORMAL));
if (dump_file)
fprintf (dump_file, "Edge %d to %d instrumented%s\n",
e->src->index, e->dest->index,
EDGE_CRITICAL_P (e) ? " (and split)" : "");
gimple_gen_edge_profiler (num_instr_edges++, e);
}
}
}
total_num_blocks_created += num_edges;
if (dump_file)
fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
return num_instr_edges;
}
/* Add code to measure histograms for values in list VALUES. */
static void
instrument_values (histogram_values values)
{
unsigned i, t;
/* Emit code to generate the histograms before the insns. */
for (i = 0; i < VEC_length (histogram_value, values); i++)
{
histogram_value hist = VEC_index (histogram_value, values, i);
switch (hist->type)
{
case HIST_TYPE_INTERVAL:
t = GCOV_COUNTER_V_INTERVAL;
break;
case HIST_TYPE_POW2:
t = GCOV_COUNTER_V_POW2;
break;
case HIST_TYPE_SINGLE_VALUE:
t = GCOV_COUNTER_V_SINGLE;
break;
case HIST_TYPE_CONST_DELTA:
t = GCOV_COUNTER_V_DELTA;
break;
case HIST_TYPE_INDIR_CALL:
t = GCOV_COUNTER_V_INDIR;
break;
case HIST_TYPE_AVERAGE:
t = GCOV_COUNTER_AVERAGE;
break;
case HIST_TYPE_IOR:
t = GCOV_COUNTER_IOR;
break;
case HIST_TYPE_INDIR_CALL_TOPN:
t = GCOV_COUNTER_ICALL_TOPNV;
break;
default:
gcc_unreachable ();
}
if (!coverage_counter_alloc (t, hist->n_counters))
continue;
switch (hist->type)
{
case HIST_TYPE_INTERVAL:
gimple_gen_interval_profiler (hist, t, 0);
break;
case HIST_TYPE_POW2:
gimple_gen_pow2_profiler (hist, t, 0);
break;
case HIST_TYPE_SINGLE_VALUE:
gimple_gen_one_value_profiler (hist, t, 0);
break;
case HIST_TYPE_CONST_DELTA:
gimple_gen_const_delta_profiler (hist, t, 0);
break;
case HIST_TYPE_INDIR_CALL:
case HIST_TYPE_INDIR_CALL_TOPN:
gimple_gen_ic_profiler (hist, t, 0);
break;
case HIST_TYPE_AVERAGE:
gimple_gen_average_profiler (hist, t, 0);
break;
case HIST_TYPE_IOR:
gimple_gen_ior_profiler (hist, t, 0);
break;
default:
gcc_unreachable ();
}
}
}
/* Computes hybrid profile for all matching entries in da_file. */
static gcov_type *
get_exec_counts (void)
{
unsigned num_edges = 0;
basic_block bb;
gcov_type *counts;
/* Count the edges to be (possibly) instrumented. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
num_edges++;
}
counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, &profile_info);
if (!counts)
return NULL;
if (dump_file && profile_info)
fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
profile_info->runs, (unsigned) profile_info->sum_max);
return counts;
}
static bool
is_edge_inconsistent (VEC(edge,gc) *edges)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, edges)
{
if (!EDGE_INFO (e)->ignore)
{
if (e->count < 0
&& (!(e->flags & EDGE_FAKE)
|| e->src == ENTRY_BLOCK_PTR
|| !block_ends_with_call_p (e->src)))
{
if (dump_file)
{
fprintf (dump_file,
"Edge %i->%i is inconsistent, count"HOST_WIDEST_INT_PRINT_DEC,
e->src->index, e->dest->index, e->count);
dump_bb (e->src, dump_file, 0);
dump_bb (e->dest, dump_file, 0);
}
return true;
}
}
}
return false;
}
static void
correct_negative_edge_counts (void)
{
basic_block bb;
edge e;
edge_iterator ei;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->count < 0)
e->count = 0;
}
}
}
/* Check consistency.
Return true if inconsistency is found. */
static bool
is_inconsistent (void)
{
basic_block bb;
bool inconsistent = false;
FOR_EACH_BB (bb)
{
inconsistent |= is_edge_inconsistent (bb->preds);
if (!dump_file && inconsistent)
return true;
inconsistent |= is_edge_inconsistent (bb->succs);
if (!dump_file && inconsistent)
return true;
if (bb->count < 0)
{
if (dump_file)
{
fprintf (dump_file, "BB %i count is negative "
HOST_WIDEST_INT_PRINT_DEC,
bb->index,
bb->count);
dump_bb (bb, dump_file, 0);
}
inconsistent = true;
}
if (bb->count != sum_edge_counts (bb->preds))
{
if (dump_file)
{
fprintf (dump_file, "BB %i count does not match sum of incoming edges "
HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
bb->index,
bb->count,
sum_edge_counts (bb->preds));
dump_bb (bb, dump_file, 0);
}
inconsistent = true;
}
if (bb->count != sum_edge_counts (bb->succs) &&
! (find_edge (bb, EXIT_BLOCK_PTR) != NULL && block_ends_with_call_p (bb)))
{
if (dump_file)
{
fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
bb->index,
bb->count,
sum_edge_counts (bb->succs));
dump_bb (bb, dump_file, 0);
}
inconsistent = true;
}
if (!dump_file && inconsistent)
return true;
}
return inconsistent;
}
/* Set each basic block count to the sum of its outgoing edge counts */
static void
set_bb_counts (void)
{
basic_block bb;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
bb->count = sum_edge_counts (bb->succs);
gcc_assert (bb->count >= 0);
}
}
/* Reads profile data and returns total number of edge counts read */
static int
read_profile_edge_counts (gcov_type *exec_counts)
{
basic_block bb;
int num_edges = 0;
int exec_counts_pos = 0;
/* For each edge not on the spanning tree, set its execution count from
the .da file. */
/* The first count in the .da file is the number of times that the function
was entered. This is the exec_count for block zero. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
{
num_edges++;
if (exec_counts)
{
e->count = exec_counts[exec_counts_pos++];
if (e->count > profile_info->sum_max)
{
if (flag_profile_correction)
{
static bool informed = 0;
if (!informed)
inform (input_location,
"corrupted profile info: edge count exceeds maximal count");
informed = 1;
}
else
error ("corrupted profile info: edge from %i to %i exceeds maximal count",
bb->index, e->dest->index);
}
}
else
e->count = 0;
EDGE_INFO (e)->count_valid = 1;
BB_INFO (bb)->succ_count--;
BB_INFO (e->dest)->pred_count--;
if (dump_file)
{
fprintf (dump_file, "\nRead edge from %i to %i, count:",
bb->index, e->dest->index);
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
(HOST_WIDEST_INT) e->count);
}
}
}
return num_edges;
}
/* Compute the branch probabilities for the various branches.
Annotate them accordingly. */
static void
compute_branch_probabilities (void)
{
basic_block bb;
int i;
int num_edges = 0;
int changes;
int passes;
int hist_br_prob[20];
int num_branches;
gcov_type *exec_counts = get_exec_counts ();
int inconsistent = 0;
/* Very simple sanity checks so we catch bugs in our profiling code. */
if (!profile_info)
return;
if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
{
error ("corrupted profile info: run_max * runs < sum_max");
exec_counts = NULL;
}
if (profile_info->sum_all < profile_info->sum_max)
{
error ("corrupted profile info: sum_all is smaller than sum_max");
exec_counts = NULL;
}
/* Attach extra info block to each bb. */
alloc_aux_for_blocks (sizeof (struct bb_info));
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!EDGE_INFO (e)->ignore)
BB_INFO (bb)->succ_count++;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!EDGE_INFO (e)->ignore)
BB_INFO (bb)->pred_count++;
}
/* Avoid predicting entry on exit nodes. */
BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
num_edges = read_profile_edge_counts (exec_counts);
if (dump_file)
fprintf (dump_file, "\n%d edge counts read\n", num_edges);
/* For every block in the file,
- if every exit/entrance edge has a known count, then set the block count
- if the block count is known, and every exit/entrance edge but one has
a known execution count, then set the count of the remaining edge
As edge counts are set, decrement the succ/pred count, but don't delete
the edge, that way we can easily tell when all edges are known, or only
one edge is unknown. */
/* The order that the basic blocks are iterated through is important.
Since the code that finds spanning trees starts with block 0, low numbered
edges are put on the spanning tree in preference to high numbered edges.
Hence, most instrumented edges are at the end. Graph solving works much
faster if we propagate numbers from the end to the start.
This takes an average of slightly more than 3 passes. */
changes = 1;
passes = 0;
while (changes)
{
passes++;
changes = 0;
FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
{
struct bb_info *bi = BB_INFO (bb);
if (! bi->count_valid)
{
if (bi->succ_count == 0)
{
edge e;
edge_iterator ei;
gcov_type total = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
total += e->count;
bb->count = total;
bi->count_valid = 1;
changes = 1;
}
else if (bi->pred_count == 0)
{
edge e;
edge_iterator ei;
gcov_type total = 0;
FOR_EACH_EDGE (e, ei, bb->preds)
total += e->count;
bb->count = total;
bi->count_valid = 1;
changes = 1;
}
}
if (bi->count_valid)
{
if (bi->succ_count == 1)
{
edge e;
edge_iterator ei;
gcov_type total = 0;
/* One of the counts will be invalid, but it is zero,
so adding it in also doesn't hurt. */
FOR_EACH_EDGE (e, ei, bb->succs)
total += e->count;
/* Search for the invalid edge, and set its count. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
break;
/* Calculate count for remaining edge by conservation. */
total = bb->count - total;
gcc_assert (e);
EDGE_INFO (e)->count_valid = 1;
e->count = total;
bi->succ_count--;
BB_INFO (e->dest)->pred_count--;
changes = 1;
}
if (bi->pred_count == 1)
{
edge e;
edge_iterator ei;
gcov_type total = 0;
/* One of the counts will be invalid, but it is zero,
so adding it in also doesn't hurt. */
FOR_EACH_EDGE (e, ei, bb->preds)
total += e->count;
/* Search for the invalid edge, and set its count. */
FOR_EACH_EDGE (e, ei, bb->preds)
if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
break;
/* Calculate count for remaining edge by conservation. */
total = bb->count - total + e->count;
gcc_assert (e);
EDGE_INFO (e)->count_valid = 1;
e->count = total;
bi->pred_count--;
BB_INFO (e->src)->succ_count--;
changes = 1;
}
}
}
}
if (dump_file)
dump_flow_info (dump_file, dump_flags);
total_num_passes += passes;
if (dump_file)
fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
/* If the graph has been correctly solved, every block will have a
succ and pred count of zero. */
FOR_EACH_BB (bb)
{
gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
}
/* Check for inconsistent basic block counts */
inconsistent = is_inconsistent ();
if (inconsistent)
{
if (flag_profile_correction)
{
/* Inconsistency detected. Make it flow-consistent. */
static int informed = 0;
if (informed == 0)
{
informed = 1;
inform (input_location, "correcting inconsistent profile data");
}
correct_negative_edge_counts ();
/* Set bb counts to the sum of the outgoing edge counts */
set_bb_counts ();
if (dump_file)
fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
mcf_smooth_cfg ();
}
else
error ("corrupted profile info: profile data is not flow-consistent");
}
/* For every edge, calculate its branch probability and add a reg_note
to the branch insn to indicate this. */
for (i = 0; i < 20; i++)
hist_br_prob[i] = 0;
num_branches = 0;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
edge e;
edge_iterator ei;
if (bb->count < 0)
{
error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
bb->index, (int)bb->count);
bb->count = 0;
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* Function may return twice in the cased the called function is
setjmp or calls fork, but we can't represent this by extra
edge from the entry, since extra edge from the exit is
already present. We get negative frequency from the entry
point. */
if ((e->count < 0
&& e->dest == EXIT_BLOCK_PTR)
|| (e->count > bb->count
&& e->dest != EXIT_BLOCK_PTR))
{
if (block_ends_with_call_p (bb))
e->count = e->count < 0 ? 0 : bb->count;
}
if (e->count < 0 || e->count > bb->count)
{
error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
e->src->index, e->dest->index,
(int)e->count);
e->count = bb->count / 2;
}
}
if (bb->count)
{
FOR_EACH_EDGE (e, ei, bb->succs)
e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
if (bb->index >= NUM_FIXED_BLOCKS
&& block_ends_with_condjump_p (bb)
&& EDGE_COUNT (bb->succs) >= 2)
{
int prob;
edge e;
int index;
/* Find the branch edge. It is possible that we do have fake
edges here. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
break;
prob = e->probability;
index = prob * 20 / REG_BR_PROB_BASE;
if (index == 20)
index = 19;
hist_br_prob[index]++;
num_branches++;
}
}
/* As a last resort, distribute the probabilities evenly.
Use simple heuristics that if there are normal edges,
give all abnormals frequency of 0, otherwise distribute the
frequency over abnormals (this is the case of noreturn
calls). */
else if (profile_status == PROFILE_ABSENT)
{
int total = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
total ++;
if (total)
{
FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
e->probability = REG_BR_PROB_BASE / total;
else
e->probability = 0;
}
else
{
total += EDGE_COUNT (bb->succs);
FOR_EACH_EDGE (e, ei, bb->succs)
e->probability = REG_BR_PROB_BASE / total;
}
if (bb->index >= NUM_FIXED_BLOCKS
&& block_ends_with_condjump_p (bb)
&& EDGE_COUNT (bb->succs) >= 2)
num_branches++;
}
}
counts_to_freqs ();
profile_status = PROFILE_READ;
if (dump_file)
{
fprintf (dump_file, "%d branches\n", num_branches);
if (num_branches)
for (i = 0; i < 10; i++)
fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
(hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
5 * i, 5 * i + 5);
total_num_branches += num_branches;
for (i = 0; i < 20; i++)
total_hist_br_prob[i] += hist_br_prob[i];
fputc ('\n', dump_file);
fputc ('\n', dump_file);
}
free_aux_for_blocks ();
}
/* Load value histograms values whose description is stored in VALUES array
from .gcda file. */
static void
compute_value_histograms (histogram_values values)
{
unsigned i, j, t, any;
unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
gcov_type *aact_count;
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
n_histogram_counters[t] = 0;
for (i = 0; i < VEC_length (histogram_value, values); i++)
{
histogram_value hist = VEC_index (histogram_value, values, i);
n_histogram_counters[(int) hist->type] += hist->n_counters;
}
any = 0;
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
{
if (!n_histogram_counters[t])
{
histogram_counts[t] = NULL;
continue;
}
histogram_counts[t] =
get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
n_histogram_counters[t], NULL);
if (histogram_counts[t])
any = 1;
act_count[t] = histogram_counts[t];
}
if (!any)
return;
for (i = 0; i < VEC_length (histogram_value, values); i++)
{
histogram_value hist = VEC_index (histogram_value, values, i);
gimple stmt = hist->hvalue.stmt;
t = (int) hist->type;
aact_count = act_count[t];
act_count[t] += hist->n_counters;
gimple_add_histogram_value (cfun, stmt, hist);
hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
for (j = 0; j < hist->n_counters; j++)
hist->hvalue.counters[j] = aact_count[j];
}
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
if (histogram_counts[t])
free (histogram_counts[t]);
}
/* The entry basic block will be moved around so that it has index=1,
there is nothing at index 0 and the exit is at n_basic_block. */
#define BB_TO_GCOV_INDEX(bb) ((bb)->index - 1)
/* When passed NULL as file_name, initialize.
When passed something else, output the necessary commands to change
line to LINE and offset to FILE_NAME. */
static void
output_location (char const *file_name, int line,
gcov_position_t *offset, basic_block bb)
{
static char const *prev_file_name;
static int prev_line;
bool name_differs, line_differs;
if (!file_name)
{
prev_file_name = NULL;
prev_line = -1;
return;
}
name_differs = !prev_file_name || strcmp (file_name, prev_file_name);
line_differs = prev_line != line;
if (name_differs || line_differs)
{
if (!*offset)
{
*offset = gcov_write_tag (GCOV_TAG_LINES);
gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
name_differs = line_differs=true;
}
/* If this is a new source file, then output the
file's name to the .bb file. */
if (name_differs)
{
prev_file_name = file_name;
gcov_write_unsigned (0);
gcov_write_string (prev_file_name);
}
if (line_differs)
{
gcov_write_unsigned (line);
prev_line = line;
}
}
}
/* Instrument and/or analyze program behavior based on program flow graph.
In either case, this function builds a flow graph for the function being
compiled. The flow graph is stored in BB_GRAPH.
When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
the flow graph that are needed to reconstruct the dynamic behavior of the
flow graph.
When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
information from a data file containing edge count information from previous
executions of the function being compiled. In this case, the flow graph is
annotated with actual execution counts, which are later propagated into the
rtl for optimization purposes.
Main entry point of this file. */
void
branch_prob (void)
{
basic_block bb;
unsigned i;
unsigned num_edges, ignored_edges;
unsigned num_instrumented;
struct edge_list *el;
histogram_values values = NULL;
total_num_times_called++;
flow_call_edges_add (NULL);
add_noreturn_fake_exit_edges ();
/* We can't handle cyclic regions constructed using abnormal edges.
To avoid these we replace every source of abnormal edge by a fake
edge from entry node and every destination by fake edge to exit.
This keeps graph acyclic and our calculation exact for all normal
edges except for exit and entrance ones.
We also add fake exit edges for each call and asm statement in the
basic, since it may not return. */
FOR_EACH_BB (bb)
{
int need_exit_edge = 0, need_entry_edge = 0;
int have_exit_edge = 0, have_entry_edge = 0;
edge e;
edge_iterator ei;
/* Functions returning multiple times are not handled by extra edges.
Instead we simply allow negative counts on edges from exit to the
block past call and corresponding probabilities. We can't go
with the extra edges because that would result in flowgraph that
needs to have fake edges outside the spanning tree. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
gimple_stmt_iterator gsi;
gimple last = NULL;
/* It may happen that there are compiler generated statements
without a locus at all. Go through the basic block from the
last to the first statement looking for a locus. */
for (gsi = gsi_last_nondebug_bb (bb);
!gsi_end_p (gsi);
gsi_prev_nondebug (&gsi))
{
last = gsi_stmt (gsi);
if (gimple_has_location (last))
break;
}
/* Edge with goto locus might get wrong coverage info unless
it is the only edge out of BB.
Don't do that when the locuses match, so
if (blah) goto something;
is not computed twice. */
if (last
&& gimple_has_location (last)
&& e->goto_locus != UNKNOWN_LOCATION
&& !single_succ_p (bb)
&& (LOCATION_FILE (e->goto_locus)
!= LOCATION_FILE (gimple_location (last))
|| (LOCATION_LINE (e->goto_locus)
!= LOCATION_LINE (gimple_location (last)))))
{
basic_block new_bb = split_edge (e);
edge ne = single_succ_edge (new_bb);
ne->goto_locus = e->goto_locus;
ne->goto_block = e->goto_block;
}
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
&& e->dest != EXIT_BLOCK_PTR)
need_exit_edge = 1;
if (e->dest == EXIT_BLOCK_PTR)
have_exit_edge = 1;
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
&& e->src != ENTRY_BLOCK_PTR)
need_entry_edge = 1;
if (e->src == ENTRY_BLOCK_PTR)
have_entry_edge = 1;
}
if (need_exit_edge && !have_exit_edge)
{
if (dump_file)
fprintf (dump_file, "Adding fake exit edge to bb %i\n",
bb->index);
make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
}
if (need_entry_edge && !have_entry_edge)
{
if (dump_file)
fprintf (dump_file, "Adding fake entry edge to bb %i\n",
bb->index);
make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
}
}
el = create_edge_list ();
num_edges = NUM_EDGES (el);
alloc_aux_for_edges (sizeof (struct edge_info));
/* The basic blocks are expected to be numbered sequentially. */
compact_blocks ();
ignored_edges = 0;
for (i = 0 ; i < num_edges ; i++)
{
edge e = INDEX_EDGE (el, i);
e->count = 0;
/* Mark edges we've replaced by fake edges above as ignored. */
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
&& e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
{
EDGE_INFO (e)->ignore = 1;
ignored_edges++;
}
}
/* Create spanning tree from basic block graph, mark each edge that is
on the spanning tree. We insert as many abnormal and critical edges
as possible to minimize number of edge splits necessary. */
find_spanning_tree (el);
/* Fake edges that are not on the tree will not be instrumented, so
mark them ignored. */
for (num_instrumented = i = 0; i < num_edges; i++)
{
edge e = INDEX_EDGE (el, i);
struct edge_info *inf = EDGE_INFO (e);
if (inf->ignore || inf->on_tree)
/*NOP*/;
else if (e->flags & EDGE_FAKE)
{
inf->ignore = 1;
ignored_edges++;
}
else
num_instrumented++;
}
total_num_blocks += n_basic_blocks;
if (dump_file)
fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);
total_num_edges += num_edges;
if (dump_file)
fprintf (dump_file, "%d edges\n", num_edges);
total_num_edges_ignored += ignored_edges;
if (dump_file)
fprintf (dump_file, "%d ignored edges\n", ignored_edges);
/* Write the data from which gcov can reconstruct the basic block
graph. */
/* Basic block flags */
if (coverage_begin_output ())
{
gcov_position_t offset;
offset = gcov_write_tag (GCOV_TAG_BLOCKS);
for (i = 0; i != (unsigned) (n_basic_blocks); i++)
gcov_write_unsigned (0);
gcov_write_length (offset);
}
/* Keep all basic block indexes nonnegative in the gcov output.
Index 0 is used for entry block, last index is for exit block.
*/
ENTRY_BLOCK_PTR->index = 1;
EXIT_BLOCK_PTR->index = last_basic_block;
/* Arcs */
if (coverage_begin_output ())
{
gcov_position_t offset;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
edge e;
edge_iterator ei;
offset = gcov_write_tag (GCOV_TAG_ARCS);
gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
FOR_EACH_EDGE (e, ei, bb->succs)
{
struct edge_info *i = EDGE_INFO (e);
if (!i->ignore)
{
unsigned flag_bits = 0;
if (i->on_tree)
flag_bits |= GCOV_ARC_ON_TREE;
if (e->flags & EDGE_FAKE)
flag_bits |= GCOV_ARC_FAKE;
if (e->flags & EDGE_FALLTHRU)
flag_bits |= GCOV_ARC_FALLTHROUGH;
/* On trees we don't have fallthru flags, but we can
recompute them from CFG shape. */
if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
&& e->src->next_bb == e->dest)
flag_bits |= GCOV_ARC_FALLTHROUGH;
gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest));
gcov_write_unsigned (flag_bits);
}
}
gcov_write_length (offset);
}
}
/* Line numbers. */
if (coverage_begin_output ())
{
gcov_position_t offset;
/* Initialize the output. */
output_location (NULL, 0, NULL, NULL);
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
offset = 0;
if (bb == ENTRY_BLOCK_PTR->next_bb)
{
expanded_location curr_location =
expand_location (DECL_SOURCE_LOCATION (current_function_decl));
output_location (curr_location.file, curr_location.line,
&offset, bb);
}
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (gimple_has_location (stmt))
output_location (gimple_filename (stmt), gimple_lineno (stmt),
&offset, bb);
}
/* Notice GOTO expressions we eliminated while constructing the
CFG. */
if (single_succ_p (bb)
&& single_succ_edge (bb)->goto_locus != UNKNOWN_LOCATION)
{
location_t curr_location = single_succ_edge (bb)->goto_locus;
/* ??? The FILE/LINE API is inconsistent for these cases. */
output_location (LOCATION_FILE (curr_location),
LOCATION_LINE (curr_location), &offset, bb);
}
if (offset)
{
/* A file of NULL indicates the end of run. */
gcov_write_unsigned (0);
gcov_write_string (NULL);
gcov_write_length (offset);
}
}
}
ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
EXIT_BLOCK_PTR->index = EXIT_BLOCK;
#undef BB_TO_GCOV_INDEX
if (flag_profile_values)
gimple_find_values_to_profile (&values);
if (flag_branch_probabilities)
{
compute_branch_probabilities ();
if (flag_profile_values)
compute_value_histograms (values);
}
remove_fake_edges ();
/* For each edge not on the spanning tree, add counting code. */
if (profile_arc_flag
&& coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
{
unsigned n_instrumented;
gimple_init_edge_profiler ();
n_instrumented = instrument_edges (el);
gcc_assert (n_instrumented == num_instrumented);
if (flag_profile_values)
instrument_values (values);
/* Commit changes done by instrumentation. */
gsi_commit_edge_inserts ();
}
free_aux_for_edges ();
VEC_free (histogram_value, heap, values);
free_edge_list (el);
coverage_end_function ();
}
/* Union find algorithm implementation for the basic blocks using
aux fields. */
static basic_block
find_group (basic_block bb)
{
basic_block group = bb, bb1;
while ((basic_block) group->aux != group)
group = (basic_block) group->aux;
/* Compress path. */
while ((basic_block) bb->aux != group)
{
bb1 = (basic_block) bb->aux;
bb->aux = (void *) group;
bb = bb1;
}
return group;
}
static void
union_groups (basic_block bb1, basic_block bb2)
{
basic_block bb1g = find_group (bb1);
basic_block bb2g = find_group (bb2);
/* ??? I don't have a place for the rank field. OK. Lets go w/o it,
this code is unlikely going to be performance problem anyway. */
gcc_assert (bb1g != bb2g);
bb1g->aux = bb2g;
}
/* This function searches all of the edges in the program flow graph, and puts
as many bad edges as possible onto the spanning tree. Bad edges include
abnormals edges, which can't be instrumented at the moment. Since it is
possible for fake edges to form a cycle, we will have to develop some
better way in the future. Also put critical edges to the tree, since they
are more expensive to instrument. */
static void
find_spanning_tree (struct edge_list *el)
{
int i;
int num_edges = NUM_EDGES (el);
basic_block bb;
/* We use aux field for standard union-find algorithm. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
bb->aux = bb;
/* Add fake edge exit to entry we can't instrument. */
union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
/* First add all abnormal edges to the tree unless they form a cycle. Also
add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
setting return value from function. */
for (i = 0; i < num_edges; i++)
{
edge e = INDEX_EDGE (el, i);
if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
|| e->dest == EXIT_BLOCK_PTR)
&& !EDGE_INFO (e)->ignore
&& (find_group (e->src) != find_group (e->dest)))
{
if (dump_file)
fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
e->src->index, e->dest->index);
EDGE_INFO (e)->on_tree = 1;
union_groups (e->src, e->dest);
}
}
/* Now insert all critical edges to the tree unless they form a cycle. */
for (i = 0; i < num_edges; i++)
{
edge e = INDEX_EDGE (el, i);
if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
&& find_group (e->src) != find_group (e->dest))
{
if (dump_file)
fprintf (dump_file, "Critical edge %d to %d put to tree\n",
e->src->index, e->dest->index);
EDGE_INFO (e)->on_tree = 1;
union_groups (e->src, e->dest);
}
}
/* And now the rest. */
for (i = 0; i < num_edges; i++)
{
edge e = INDEX_EDGE (el, i);
if (!EDGE_INFO (e)->ignore
&& find_group (e->src) != find_group (e->dest))
{
if (dump_file)
fprintf (dump_file, "Normal edge %d to %d put to tree\n",
e->src->index, e->dest->index);
EDGE_INFO (e)->on_tree = 1;
union_groups (e->src, e->dest);
}
}
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
bb->aux = NULL;
}
/* Perform file-level initialization for branch-prob processing. */
void
init_branch_prob (void)
{
int i;
total_num_blocks = 0;
total_num_edges = 0;
total_num_edges_ignored = 0;
total_num_edges_instrumented = 0;
total_num_blocks_created = 0;
total_num_passes = 0;
total_num_times_called = 0;
total_num_branches = 0;
for (i = 0; i < 20; i++)
total_hist_br_prob[i] = 0;
}
/* Performs file-level cleanup after branch-prob processing
is completed. */
void
end_branch_prob (void)
{
if (dump_file)
{
fprintf (dump_file, "\n");
fprintf (dump_file, "Total number of blocks: %d\n",
total_num_blocks);
fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
fprintf (dump_file, "Total number of ignored edges: %d\n",
total_num_edges_ignored);
fprintf (dump_file, "Total number of instrumented edges: %d\n",
total_num_edges_instrumented);
fprintf (dump_file, "Total number of blocks created: %d\n",
total_num_blocks_created);
fprintf (dump_file, "Total number of graph solution passes: %d\n",
total_num_passes);
if (total_num_times_called != 0)
fprintf (dump_file, "Average number of graph solution passes: %d\n",
(total_num_passes + (total_num_times_called >> 1))
/ total_num_times_called);
fprintf (dump_file, "Total number of branches: %d\n",
total_num_branches);
if (total_num_branches)
{
int i;
for (i = 0; i < 10; i++)
fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
(total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
/ total_num_branches, 5*i, 5*i+5);
}
}
}