/* Expand the basic unary and binary arithmetic operations, for GNU compiler. Copyright (C) 1987-2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "diagnostic-core.h" /* Include insn-config.h before expr.h so that HAVE_conditional_move is properly defined. */ #include "insn-config.h" #include "rtl.h" #include "tree.h" #include "stor-layout.h" #include "stringpool.h" #include "varasm.h" #include "tm_p.h" #include "flags.h" #include "function.h" #include "except.h" #include "expr.h" #include "optabs.h" #include "libfuncs.h" #include "recog.h" #include "reload.h" #include "ggc.h" #include "basic-block.h" #include "target.h" struct target_optabs default_target_optabs; struct target_libfuncs default_target_libfuncs; struct target_optabs *this_fn_optabs = &default_target_optabs; #if SWITCHABLE_TARGET struct target_optabs *this_target_optabs = &default_target_optabs; struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs; #endif #define libfunc_hash \ (this_target_libfuncs->x_libfunc_hash) static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *, enum machine_mode *); static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int); static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool); /* Debug facility for use in GDB. */ void debug_optab_libfuncs (void); /* Prefixes for the current version of decimal floating point (BID vs. DPD) */ #if ENABLE_DECIMAL_BID_FORMAT #define DECIMAL_PREFIX "bid_" #else #define DECIMAL_PREFIX "dpd_" #endif /* Used for libfunc_hash. */ static hashval_t hash_libfunc (const void *p) { const struct libfunc_entry *const e = (const struct libfunc_entry *) p; return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op); } /* Used for libfunc_hash. */ static int eq_libfunc (const void *p, const void *q) { const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p; const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q; return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2; } /* Return libfunc corresponding operation defined by OPTAB converting from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL if no libfunc is available. */ rtx convert_optab_libfunc (convert_optab optab, enum machine_mode mode1, enum machine_mode mode2) { struct libfunc_entry e; struct libfunc_entry **slot; /* ??? This ought to be an assert, but not all of the places that we expand optabs know about the optabs that got moved to being direct. */ if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB)) return NULL_RTX; e.op = optab; e.mode1 = mode1; e.mode2 = mode2; slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT); if (!slot) { const struct convert_optab_libcall_d *d = &convlib_def[optab - FIRST_CONV_OPTAB]; if (d->libcall_gen == NULL) return NULL; d->libcall_gen (optab, d->libcall_basename, mode1, mode2); slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT); if (!slot) return NULL; } return (*slot)->libfunc; } /* Return libfunc corresponding operation defined by OPTAB in MODE. Trigger lazy initialization if needed, return NULL if no libfunc is available. */ rtx optab_libfunc (optab optab, enum machine_mode mode) { struct libfunc_entry e; struct libfunc_entry **slot; /* ??? This ought to be an assert, but not all of the places that we expand optabs know about the optabs that got moved to being direct. */ if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB)) return NULL_RTX; e.op = optab; e.mode1 = mode; e.mode2 = VOIDmode; slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT); if (!slot) { const struct optab_libcall_d *d = &normlib_def[optab - FIRST_NORM_OPTAB]; if (d->libcall_gen == NULL) return NULL; d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode); slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT); if (!slot) return NULL; } return (*slot)->libfunc; } /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to the result of operation CODE applied to OP0 (and OP1 if it is a binary operation). If the last insn does not set TARGET, don't do anything, but return 1. If the last insn or a previous insn sets TARGET and TARGET is one of OP0 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then try again, ensuring that TARGET is not one of the operands. */ static int add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1) { rtx last_insn, set; rtx note; gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns)); if (GET_RTX_CLASS (code) != RTX_COMM_ARITH && GET_RTX_CLASS (code) != RTX_BIN_ARITH && GET_RTX_CLASS (code) != RTX_COMM_COMPARE && GET_RTX_CLASS (code) != RTX_COMPARE && GET_RTX_CLASS (code) != RTX_UNARY) return 1; if (GET_CODE (target) == ZERO_EXTRACT) return 1; for (last_insn = insns; NEXT_INSN (last_insn) != NULL_RTX; last_insn = NEXT_INSN (last_insn)) ; /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing a value changing in the insn, so the note would be invalid for CSE. */ if (reg_overlap_mentioned_p (target, op0) || (op1 && reg_overlap_mentioned_p (target, op1))) { if (MEM_P (target) && (rtx_equal_p (target, op0) || (op1 && rtx_equal_p (target, op1)))) { /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note over expanding it as temp = MEM op X, MEM = temp. If the target supports MEM = MEM op X instructions, it is sometimes too hard to reconstruct that form later, especially if X is also a memory, and due to multiple occurrences of addresses the address might be forced into register unnecessarily. Note that not emitting the REG_EQUIV note might inhibit CSE in some cases. */ set = single_set (last_insn); if (set && GET_CODE (SET_SRC (set)) == code && MEM_P (SET_DEST (set)) && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0)) || (op1 && rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 1))))) return 1; } return 0; } set = single_set (last_insn); if (set == NULL_RTX) return 1; if (! rtx_equal_p (SET_DEST (set), target) /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */ && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target))) return 1; if (GET_RTX_CLASS (code) == RTX_UNARY) switch (code) { case FFS: case CLZ: case CTZ: case CLRSB: case POPCOUNT: case PARITY: case BSWAP: if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0)) { note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0)); if (GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (GET_MODE (target))) note = simplify_gen_unary (TRUNCATE, GET_MODE (target), note, GET_MODE (op0)); else note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target), note, GET_MODE (op0)); break; } /* FALLTHRU */ default: note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0)); break; } else note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1)); set_unique_reg_note (last_insn, REG_EQUAL, note); return 1; } /* Given two input operands, OP0 and OP1, determine what the correct from_mode for a widening operation would be. In most cases this would be OP0, but if that's a constant it'll be VOIDmode, which isn't useful. */ static enum machine_mode widened_mode (enum machine_mode to_mode, rtx op0, rtx op1) { enum machine_mode m0 = GET_MODE (op0); enum machine_mode m1 = GET_MODE (op1); enum machine_mode result; if (m0 == VOIDmode && m1 == VOIDmode) return to_mode; else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1)) result = m1; else result = m0; if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode)) return to_mode; return result; } /* Find a widening optab even if it doesn't widen as much as we want. E.g. if from_mode is HImode, and to_mode is DImode, and there is no direct HI->SI insn, then return SI->DI, if that exists. If PERMIT_NON_WIDENING is non-zero then this can be used with non-widening optabs also. */ enum insn_code find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode, enum machine_mode from_mode, int permit_non_widening, enum machine_mode *found_mode) { for (; (permit_non_widening || from_mode != to_mode) && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode) && from_mode != VOIDmode; from_mode = GET_MODE_WIDER_MODE (from_mode)) { enum insn_code handler = widening_optab_handler (op, to_mode, from_mode); if (handler != CODE_FOR_nothing) { if (found_mode) *found_mode = from_mode; return handler; } } return CODE_FOR_nothing; } /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need not actually do a sign-extend or zero-extend, but can leave the higher-order bits of the result rtx undefined, for example, in the case of logical operations, but not right shifts. */ static rtx widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode, int unsignedp, int no_extend) { rtx result; /* If we don't have to extend and this is a constant, return it. */ if (no_extend && GET_MODE (op) == VOIDmode) return op; /* If we must extend do so. If OP is a SUBREG for a promoted object, also extend since it will be more efficient to do so unless the signedness of a promoted object differs from our extension. */ if (! no_extend || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op) && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp)) return convert_modes (mode, oldmode, op, unsignedp); /* If MODE is no wider than a single word, we return a lowpart or paradoxical SUBREG. */ if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) return gen_lowpart (mode, force_reg (GET_MODE (op), op)); /* Otherwise, get an object of MODE, clobber it, and set the low-order part to OP. */ result = gen_reg_rtx (mode); emit_clobber (result); emit_move_insn (gen_lowpart (GET_MODE (op), result), op); return result; } /* Return the optab used for computing the operation given by the tree code, CODE and the tree EXP. This function is not always usable (for example, it cannot give complete results for multiplication or division) but probably ought to be relied on more widely throughout the expander. */ optab optab_for_tree_code (enum tree_code code, const_tree type, enum optab_subtype subtype) { bool trapv; switch (code) { case BIT_AND_EXPR: return and_optab; case BIT_IOR_EXPR: return ior_optab; case BIT_NOT_EXPR: return one_cmpl_optab; case BIT_XOR_EXPR: return xor_optab; case MULT_HIGHPART_EXPR: return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab; case TRUNC_MOD_EXPR: case CEIL_MOD_EXPR: case FLOOR_MOD_EXPR: case ROUND_MOD_EXPR: return TYPE_UNSIGNED (type) ? umod_optab : smod_optab; case RDIV_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: if (TYPE_SATURATING (type)) return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab; return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab; case LSHIFT_EXPR: if (TREE_CODE (type) == VECTOR_TYPE) { if (subtype == optab_vector) return TYPE_SATURATING (type) ? unknown_optab : vashl_optab; gcc_assert (subtype == optab_scalar); } if (TYPE_SATURATING (type)) return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab; return ashl_optab; case RSHIFT_EXPR: if (TREE_CODE (type) == VECTOR_TYPE) { if (subtype == optab_vector) return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab; gcc_assert (subtype == optab_scalar); } return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab; case LROTATE_EXPR: if (TREE_CODE (type) == VECTOR_TYPE) { if (subtype == optab_vector) return vrotl_optab; gcc_assert (subtype == optab_scalar); } return rotl_optab; case RROTATE_EXPR: if (TREE_CODE (type) == VECTOR_TYPE) { if (subtype == optab_vector) return vrotr_optab; gcc_assert (subtype == optab_scalar); } return rotr_optab; case MAX_EXPR: return TYPE_UNSIGNED (type) ? umax_optab : smax_optab; case MIN_EXPR: return TYPE_UNSIGNED (type) ? umin_optab : smin_optab; case REALIGN_LOAD_EXPR: return vec_realign_load_optab; case WIDEN_SUM_EXPR: return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab; case DOT_PROD_EXPR: return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab; case WIDEN_MULT_PLUS_EXPR: return (TYPE_UNSIGNED (type) ? (TYPE_SATURATING (type) ? usmadd_widen_optab : umadd_widen_optab) : (TYPE_SATURATING (type) ? ssmadd_widen_optab : smadd_widen_optab)); case WIDEN_MULT_MINUS_EXPR: return (TYPE_UNSIGNED (type) ? (TYPE_SATURATING (type) ? usmsub_widen_optab : umsub_widen_optab) : (TYPE_SATURATING (type) ? ssmsub_widen_optab : smsub_widen_optab)); case FMA_EXPR: return fma_optab; case REDUC_MAX_EXPR: return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab; case REDUC_MIN_EXPR: return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab; case REDUC_PLUS_EXPR: return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab; case VEC_LSHIFT_EXPR: return vec_shl_optab; case VEC_RSHIFT_EXPR: return vec_shr_optab; case VEC_WIDEN_MULT_HI_EXPR: return TYPE_UNSIGNED (type) ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab; case VEC_WIDEN_MULT_LO_EXPR: return TYPE_UNSIGNED (type) ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab; case VEC_WIDEN_MULT_EVEN_EXPR: return TYPE_UNSIGNED (type) ? vec_widen_umult_even_optab : vec_widen_smult_even_optab; case VEC_WIDEN_MULT_ODD_EXPR: return TYPE_UNSIGNED (type) ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab; case VEC_WIDEN_LSHIFT_HI_EXPR: return TYPE_UNSIGNED (type) ? vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab; case VEC_WIDEN_LSHIFT_LO_EXPR: return TYPE_UNSIGNED (type) ? vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab; case VEC_UNPACK_HI_EXPR: return TYPE_UNSIGNED (type) ? vec_unpacku_hi_optab : vec_unpacks_hi_optab; case VEC_UNPACK_LO_EXPR: return TYPE_UNSIGNED (type) ? vec_unpacku_lo_optab : vec_unpacks_lo_optab; case VEC_UNPACK_FLOAT_HI_EXPR: /* The signedness is determined from input operand. */ return TYPE_UNSIGNED (type) ? vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab; case VEC_UNPACK_FLOAT_LO_EXPR: /* The signedness is determined from input operand. */ return TYPE_UNSIGNED (type) ? vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab; case VEC_PACK_TRUNC_EXPR: return vec_pack_trunc_optab; case VEC_PACK_SAT_EXPR: return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab; case VEC_PACK_FIX_TRUNC_EXPR: /* The signedness is determined from output operand. */ return TYPE_UNSIGNED (type) ? vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab; default: break; } trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type); switch (code) { case POINTER_PLUS_EXPR: case PLUS_EXPR: if (TYPE_SATURATING (type)) return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab; return trapv ? addv_optab : add_optab; case MINUS_EXPR: if (TYPE_SATURATING (type)) return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab; return trapv ? subv_optab : sub_optab; case MULT_EXPR: if (TYPE_SATURATING (type)) return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab; return trapv ? smulv_optab : smul_optab; case NEGATE_EXPR: if (TYPE_SATURATING (type)) return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab; return trapv ? negv_optab : neg_optab; case ABS_EXPR: return trapv ? absv_optab : abs_optab; default: return unknown_optab; } } /* Expand vector widening operations. There are two different classes of operations handled here: 1) Operations whose result is wider than all the arguments to the operation. Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR In this case OP0 and optionally OP1 would be initialized, but WIDE_OP wouldn't (not relevant for this case). 2) Operations whose result is of the same size as the last argument to the operation, but wider than all the other arguments to the operation. Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR. In the case WIDE_OP, OP0 and optionally OP1 would be initialized. E.g, when called to expand the following operations, this is how the arguments will be initialized: nops OP0 OP1 WIDE_OP widening-sum 2 oprnd0 - oprnd1 widening-dot-product 3 oprnd0 oprnd1 oprnd2 widening-mult 2 oprnd0 oprnd1 - type-promotion (vec-unpack) 1 oprnd0 - - */ rtx expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op, rtx target, int unsignedp) { struct expand_operand eops[4]; tree oprnd0, oprnd1, oprnd2; enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode; optab widen_pattern_optab; enum insn_code icode; int nops = TREE_CODE_LENGTH (ops->code); int op; oprnd0 = ops->op0; tmode0 = TYPE_MODE (TREE_TYPE (oprnd0)); widen_pattern_optab = optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default); if (ops->code == WIDEN_MULT_PLUS_EXPR || ops->code == WIDEN_MULT_MINUS_EXPR) icode = find_widening_optab_handler (widen_pattern_optab, TYPE_MODE (TREE_TYPE (ops->op2)), tmode0, 0); else icode = optab_handler (widen_pattern_optab, tmode0); gcc_assert (icode != CODE_FOR_nothing); if (nops >= 2) { oprnd1 = ops->op1; tmode1 = TYPE_MODE (TREE_TYPE (oprnd1)); } /* The last operand is of a wider mode than the rest of the operands. */ if (nops == 2) wmode = tmode1; else if (nops == 3) { gcc_assert (tmode1 == tmode0); gcc_assert (op1); oprnd2 = ops->op2; wmode = TYPE_MODE (TREE_TYPE (oprnd2)); } op = 0; create_output_operand (&eops[op++], target, TYPE_MODE (ops->type)); create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp); if (op1) create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp); if (wide_op) create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp); expand_insn (icode, op, eops); return eops[0].value; } /* Generate code to perform an operation specified by TERNARY_OPTAB on operands OP0, OP1 and OP2, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0, rtx op1, rtx op2, rtx target, int unsignedp) { struct expand_operand ops[4]; enum insn_code icode = optab_handler (ternary_optab, mode); gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing); create_output_operand (&ops[0], target, mode); create_convert_operand_from (&ops[1], op0, mode, unsignedp); create_convert_operand_from (&ops[2], op1, mode, unsignedp); create_convert_operand_from (&ops[3], op2, mode, unsignedp); expand_insn (icode, 4, ops); return ops[0].value; } /* Like expand_binop, but return a constant rtx if the result can be calculated at compile time. The arguments and return value are otherwise the same as for expand_binop. */ rtx simplify_expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods) { if (CONSTANT_P (op0) && CONSTANT_P (op1)) { rtx x = simplify_binary_operation (optab_to_code (binoptab), mode, op0, op1); if (x) return x; } return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods); } /* Like simplify_expand_binop, but always put the result in TARGET. Return true if the expansion succeeded. */ bool force_expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods) { rtx x = simplify_expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods); if (x == 0) return false; if (x != target) emit_move_insn (target, x); return true; } /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */ rtx expand_vec_shift_expr (sepops ops, rtx target) { struct expand_operand eops[3]; enum insn_code icode; rtx rtx_op1, rtx_op2; enum machine_mode mode = TYPE_MODE (ops->type); tree vec_oprnd = ops->op0; tree shift_oprnd = ops->op1; optab shift_optab; switch (ops->code) { case VEC_RSHIFT_EXPR: shift_optab = vec_shr_optab; break; case VEC_LSHIFT_EXPR: shift_optab = vec_shl_optab; break; default: gcc_unreachable (); } icode = optab_handler (shift_optab, mode); gcc_assert (icode != CODE_FOR_nothing); rtx_op1 = expand_normal (vec_oprnd); rtx_op2 = expand_normal (shift_oprnd); create_output_operand (&eops[0], target, mode); create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1)); create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd)); expand_insn (icode, 3, eops); return eops[0].value; } /* Create a new vector value in VMODE with all elements set to OP. The mode of OP must be the element mode of VMODE. If OP is a constant, then the return value will be a constant. */ static rtx expand_vector_broadcast (enum machine_mode vmode, rtx op) { enum insn_code icode; rtvec vec; rtx ret; int i, n; gcc_checking_assert (VECTOR_MODE_P (vmode)); n = GET_MODE_NUNITS (vmode); vec = rtvec_alloc (n); for (i = 0; i < n; ++i) RTVEC_ELT (vec, i) = op; if (CONSTANT_P (op)) return gen_rtx_CONST_VECTOR (vmode, vec); /* ??? If the target doesn't have a vec_init, then we have no easy way of performing this operation. Most of this sort of generic support is hidden away in the vector lowering support in gimple. */ icode = optab_handler (vec_init_optab, vmode); if (icode == CODE_FOR_nothing) return NULL; ret = gen_reg_rtx (vmode); emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec))); return ret; } /* This subroutine of expand_doubleword_shift handles the cases in which the effective shift value is >= BITS_PER_WORD. The arguments and return value are the same as for the parent routine, except that SUPERWORD_OP1 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET. INTO_TARGET may be null if the caller has decided to calculate it. */ static bool expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods) { if (into_target != 0) if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1, into_target, unsignedp, methods)) return false; if (outof_target != 0) { /* For a signed right shift, we must fill OUTOF_TARGET with copies of the sign bit, otherwise we must fill it with zeros. */ if (binoptab != ashr_optab) emit_move_insn (outof_target, CONST0_RTX (word_mode)); else if (!force_expand_binop (word_mode, binoptab, outof_input, GEN_INT (BITS_PER_WORD - 1), outof_target, unsignedp, methods)) return false; } return true; } /* This subroutine of expand_doubleword_shift handles the cases in which the effective shift value is < BITS_PER_WORD. The arguments and return value are the same as for the parent routine. */ static bool expand_subword_shift (enum machine_mode op1_mode, optab binoptab, rtx outof_input, rtx into_input, rtx op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods, unsigned HOST_WIDE_INT shift_mask) { optab reverse_unsigned_shift, unsigned_shift; rtx tmp, carries; reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab); unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab); /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT. We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in the opposite direction to BINOPTAB. */ if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD) { carries = outof_input; tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode); tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1, 0, true, methods); } else { /* We must avoid shifting by BITS_PER_WORD bits since that is either the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or has unknown behavior. Do a single shift first, then shift by the remainder. It's OK to use ~OP1 as the remainder if shift counts are truncated to the mode size. */ carries = expand_binop (word_mode, reverse_unsigned_shift, outof_input, const1_rtx, 0, unsignedp, methods); if (shift_mask == BITS_PER_WORD - 1) { tmp = immed_wide_int_const (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode); tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp, 0, true, methods); } else { tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1, op1_mode), op1_mode); tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1, 0, true, methods); } } if (tmp == 0 || carries == 0) return false; carries = expand_binop (word_mode, reverse_unsigned_shift, carries, tmp, 0, unsignedp, methods); if (carries == 0) return false; /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT so the result can go directly into INTO_TARGET if convenient. */ tmp = expand_binop (word_mode, unsigned_shift, into_input, op1, into_target, unsignedp, methods); if (tmp == 0) return false; /* Now OR in the bits carried over from OUTOF_INPUT. */ if (!force_expand_binop (word_mode, ior_optab, tmp, carries, into_target, unsignedp, methods)) return false; /* Use a standard word_mode shift for the out-of half. */ if (outof_target != 0) if (!force_expand_binop (word_mode, binoptab, outof_input, op1, outof_target, unsignedp, methods)) return false; return true; } #ifdef HAVE_conditional_move /* Try implementing expand_doubleword_shift using conditional moves. The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true, otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1 are the shift counts to use in the former and latter case. All other arguments are the same as the parent routine. */ static bool expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab, enum rtx_code cmp_code, rtx cmp1, rtx cmp2, rtx outof_input, rtx into_input, rtx subword_op1, rtx superword_op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods, unsigned HOST_WIDE_INT shift_mask) { rtx outof_superword, into_superword; /* Put the superword version of the output into OUTOF_SUPERWORD and INTO_SUPERWORD. */ outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0; if (outof_target != 0 && subword_op1 == superword_op1) { /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */ into_superword = outof_target; if (!expand_superword_shift (binoptab, outof_input, superword_op1, outof_superword, 0, unsignedp, methods)) return false; } else { into_superword = gen_reg_rtx (word_mode); if (!expand_superword_shift (binoptab, outof_input, superword_op1, outof_superword, into_superword, unsignedp, methods)) return false; } /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */ if (!expand_subword_shift (op1_mode, binoptab, outof_input, into_input, subword_op1, outof_target, into_target, unsignedp, methods, shift_mask)) return false; /* Select between them. Do the INTO half first because INTO_SUPERWORD might be the current value of OUTOF_TARGET. */ if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode, into_target, into_superword, word_mode, false)) return false; if (outof_target != 0) if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode, outof_target, outof_superword, word_mode, false)) return false; return true; } #endif /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts. OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first input operand; the shift moves bits in the direction OUTOF_INPUT-> INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words of the target. OP1 is the shift count and OP1_MODE is its mode. If OP1 is constant, it will have been truncated as appropriate and is known to be nonzero. If SHIFT_MASK is zero, the result of word shifts is undefined when the shift count is outside the range [0, BITS_PER_WORD). This routine must avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2). If SHIFT_MASK is nonzero, all word-mode shift counts are effectively masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will fill with zeros or sign bits as appropriate. If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1. Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED. In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2) are undefined. BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function may not use INTO_INPUT after modifying INTO_TARGET, and similarly for OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent function wants to calculate it itself. Return true if the shift could be successfully synthesized. */ static bool expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab, rtx outof_input, rtx into_input, rtx op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods, unsigned HOST_WIDE_INT shift_mask) { rtx superword_op1, tmp, cmp1, cmp2; rtx subword_label, done_label; enum rtx_code cmp_code; /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will fill the result with sign or zero bits as appropriate. If so, the value of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT and INTO_INPUT), then emit code to set up OUTOF_TARGET. This isn't worthwhile for constant shifts since the optimizers will cope better with in-range shift counts. */ if (shift_mask >= BITS_PER_WORD && outof_target != 0 && !CONSTANT_P (op1)) { if (!expand_doubleword_shift (op1_mode, binoptab, outof_input, into_input, op1, 0, into_target, unsignedp, methods, shift_mask)) return false; if (!force_expand_binop (word_mode, binoptab, outof_input, op1, outof_target, unsignedp, methods)) return false; return true; } /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2) is true when the effective shift value is less than BITS_PER_WORD. Set SUPERWORD_OP1 to the shift count that should be used to shift OUTOF_INPUT into INTO_TARGET when the condition is false. */ tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode); if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1) { /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1 is a subword shift count. */ cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp, 0, true, methods); cmp2 = CONST0_RTX (op1_mode); cmp_code = EQ; superword_op1 = op1; } else { /* Set CMP1 to OP1 - BITS_PER_WORD. */ cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp, 0, true, methods); cmp2 = CONST0_RTX (op1_mode); cmp_code = LT; superword_op1 = cmp1; } if (cmp1 == 0) return false; /* If we can compute the condition at compile time, pick the appropriate subroutine. */ tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2); if (tmp != 0 && CONST_INT_P (tmp)) { if (tmp == const0_rtx) return expand_superword_shift (binoptab, outof_input, superword_op1, outof_target, into_target, unsignedp, methods); else return expand_subword_shift (op1_mode, binoptab, outof_input, into_input, op1, outof_target, into_target, unsignedp, methods, shift_mask); } #ifdef HAVE_conditional_move /* Try using conditional moves to generate straight-line code. */ { rtx start = get_last_insn (); if (expand_doubleword_shift_condmove (op1_mode, binoptab, cmp_code, cmp1, cmp2, outof_input, into_input, op1, superword_op1, outof_target, into_target, unsignedp, methods, shift_mask)) return true; delete_insns_since (start); } #endif /* As a last resort, use branches to select the correct alternative. */ subword_label = gen_label_rtx (); done_label = gen_label_rtx (); NO_DEFER_POP; do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode, 0, 0, subword_label, -1); OK_DEFER_POP; if (!expand_superword_shift (binoptab, outof_input, superword_op1, outof_target, into_target, unsignedp, methods)) return false; emit_jump_insn (gen_jump (done_label)); emit_barrier (); emit_label (subword_label); if (!expand_subword_shift (op1_mode, binoptab, outof_input, into_input, op1, outof_target, into_target, unsignedp, methods, shift_mask)) return false; emit_label (done_label); return true; } /* Subroutine of expand_binop. Perform a double word multiplication of operands OP0 and OP1 both of mode MODE, which is exactly twice as wide as the target's word_mode. This function return NULL_RTX if anything goes wrong, in which case it may have already emitted instructions which need to be deleted. If we want to multiply two two-word values and have normal and widening multiplies of single-word values, we can do this with three smaller multiplications. The multiplication proceeds as follows: _______________________ [__op0_high_|__op0_low__] _______________________ * [__op1_high_|__op1_low__] _______________________________________________ _______________________ (1) [__op0_low__*__op1_low__] _______________________ (2a) [__op0_low__*__op1_high_] _______________________ (2b) [__op0_high_*__op1_low__] _______________________ (3) [__op0_high_*__op1_high_] This gives a 4-word result. Since we are only interested in the lower 2 words, partial result (3) and the upper words of (2a) and (2b) don't need to be calculated. Hence (2a) and (2b) can be calculated using non-widening multiplication. (1), however, needs to be calculated with an unsigned widening multiplication. If this operation is not directly supported we try using a signed widening multiplication and adjust the result. This adjustment works as follows: If both operands are positive then no adjustment is needed. If the operands have different signs, for example op0_low < 0 and op1_low >= 0, the instruction treats the most significant bit of op0_low as a sign bit instead of a bit with significance 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low with 2**BITS_PER_WORD - op0_low, and two's complements the result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to the result. Similarly, if both operands are negative, we need to add (op0_low + op1_low) * 2**BITS_PER_WORD. We use a trick to adjust quickly. We logically shift op0_low right (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to op0_high (op1_high) before it is used to calculate 2b (2a). If no logical shift exists, we do an arithmetic right shift and subtract the 0 or -1. */ static rtx expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target, bool umulp, enum optab_methods methods) { int low = (WORDS_BIG_ENDIAN ? 1 : 0); int high = (WORDS_BIG_ENDIAN ? 0 : 1); rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1); rtx product, adjust, product_high, temp; rtx op0_high = operand_subword_force (op0, high, mode); rtx op0_low = operand_subword_force (op0, low, mode); rtx op1_high = operand_subword_force (op1, high, mode); rtx op1_low = operand_subword_force (op1, low, mode); /* If we're using an unsigned multiply to directly compute the product of the low-order words of the operands and perform any required adjustments of the operands, we begin by trying two more multiplications and then computing the appropriate sum. We have checked above that the required addition is provided. Full-word addition will normally always succeed, especially if it is provided at all, so we don't worry about its failure. The multiplication may well fail, however, so we do handle that. */ if (!umulp) { /* ??? This could be done with emit_store_flag where available. */ temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1, NULL_RTX, 1, methods); if (temp) op0_high = expand_binop (word_mode, add_optab, op0_high, temp, NULL_RTX, 0, OPTAB_DIRECT); else { temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1, NULL_RTX, 0, methods); if (!temp) return NULL_RTX; op0_high = expand_binop (word_mode, sub_optab, op0_high, temp, NULL_RTX, 0, OPTAB_DIRECT); } if (!op0_high) return NULL_RTX; } adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low, NULL_RTX, 0, OPTAB_DIRECT); if (!adjust) return NULL_RTX; /* OP0_HIGH should now be dead. */ if (!umulp) { /* ??? This could be done with emit_store_flag where available. */ temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1, NULL_RTX, 1, methods); if (temp) op1_high = expand_binop (word_mode, add_optab, op1_high, temp, NULL_RTX, 0, OPTAB_DIRECT); else { temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1, NULL_RTX, 0, methods); if (!temp) return NULL_RTX; op1_high = expand_binop (word_mode, sub_optab, op1_high, temp, NULL_RTX, 0, OPTAB_DIRECT); } if (!op1_high) return NULL_RTX; } temp = expand_binop (word_mode, smul_optab, op1_high, op0_low, NULL_RTX, 0, OPTAB_DIRECT); if (!temp) return NULL_RTX; /* OP1_HIGH should now be dead. */ adjust = expand_binop (word_mode, add_optab, adjust, temp, NULL_RTX, 0, OPTAB_DIRECT); if (target && !REG_P (target)) target = NULL_RTX; if (umulp) product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, target, 1, OPTAB_DIRECT); else product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, target, 1, OPTAB_DIRECT); if (!product) return NULL_RTX; product_high = operand_subword (product, high, 1, mode); adjust = expand_binop (word_mode, add_optab, product_high, adjust, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (product_high, adjust); return product; } /* Wrapper around expand_binop which takes an rtx code to specify the operation to perform, not an optab pointer. All other arguments are the same. */ rtx expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods) { optab binop = code_to_optab (code); gcc_assert (binop); return expand_binop (mode, binop, op0, op1, target, unsignedp, methods); } /* Return whether OP0 and OP1 should be swapped when expanding a commutative binop. Order them according to commutative_operand_precedence and, if possible, try to put TARGET or a pseudo first. */ static bool swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1) { int op0_prec = commutative_operand_precedence (op0); int op1_prec = commutative_operand_precedence (op1); if (op0_prec < op1_prec) return true; if (op0_prec > op1_prec) return false; /* With equal precedence, both orders are ok, but it is better if the first operand is TARGET, or if both TARGET and OP0 are pseudos. */ if (target == 0 || REG_P (target)) return (REG_P (op1) && !REG_P (op0)) || target == op1; else return rtx_equal_p (op1, target); } /* Return true if BINOPTAB implements a shift operation. */ static bool shift_optab_p (optab binoptab) { switch (optab_to_code (binoptab)) { case ASHIFT: case SS_ASHIFT: case US_ASHIFT: case ASHIFTRT: case LSHIFTRT: case ROTATE: case ROTATERT: return true; default: return false; } } /* Return true if BINOPTAB implements a commutative binary operation. */ static bool commutative_optab_p (optab binoptab) { return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH || binoptab == smul_widen_optab || binoptab == umul_widen_optab || binoptab == smul_highpart_optab || binoptab == umul_highpart_optab); } /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're optimizing, and if the operand is a constant that costs more than 1 instruction, force the constant into a register and return that register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */ static rtx avoid_expensive_constant (enum machine_mode mode, optab binoptab, int opn, rtx x, bool unsignedp) { bool speed = optimize_insn_for_speed_p (); if (mode != VOIDmode && optimize && CONSTANT_P (x) && (rtx_cost (x, optab_to_code (binoptab), opn, speed) > set_src_cost (x, speed))) { if (CONST_INT_P (x)) { HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode); if (intval != INTVAL (x)) x = GEN_INT (intval); } else x = convert_modes (mode, VOIDmode, x, unsignedp); x = force_reg (mode, x); } return x; } /* Helper function for expand_binop: handle the case where there is an insn that directly implements the indicated operation. Returns null if this is not possible. */ static rtx expand_binop_directly (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods, rtx last) { enum machine_mode from_mode = widened_mode (mode, op0, op1); enum insn_code icode = find_widening_optab_handler (binoptab, mode, from_mode, 1); enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode; enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode; enum machine_mode mode0, mode1, tmp_mode; struct expand_operand ops[3]; bool commutative_p; rtx pat; rtx xop0 = op0, xop1 = op1; rtx swap; /* If it is a commutative operator and the modes would match if we would swap the operands, we can save the conversions. */ commutative_p = commutative_optab_p (binoptab); if (commutative_p && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1) { swap = xop0; xop0 = xop1; xop1 = swap; } /* If we are optimizing, force expensive constants into a register. */ xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp); if (!shift_optab_p (binoptab)) xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp); /* In case the insn wants input operands in modes different from those of the actual operands, convert the operands. It would seem that we don't need to convert CONST_INTs, but we do, so that they're properly zero-extended, sign-extended or truncated for their mode. */ mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode; if (xmode0 != VOIDmode && xmode0 != mode0) { xop0 = convert_modes (xmode0, mode0, xop0, unsignedp); mode0 = xmode0; } mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode; if (xmode1 != VOIDmode && xmode1 != mode1) { xop1 = convert_modes (xmode1, mode1, xop1, unsignedp); mode1 = xmode1; } /* If operation is commutative, try to make the first operand a register. Even better, try to make it the same as the target. Also try to make the last operand a constant. */ if (commutative_p && swap_commutative_operands_with_target (target, xop0, xop1)) { swap = xop1; xop1 = xop0; xop0 = swap; } /* Now, if insn's predicates don't allow our operands, put them into pseudo regs. */ if (binoptab == vec_pack_trunc_optab || binoptab == vec_pack_usat_optab || binoptab == vec_pack_ssat_optab || binoptab == vec_pack_ufix_trunc_optab || binoptab == vec_pack_sfix_trunc_optab) { /* The mode of the result is different then the mode of the arguments. */ tmp_mode = insn_data[(int) icode].operand[0].mode; if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode)) { delete_insns_since (last); return NULL_RTX; } } else tmp_mode = mode; create_output_operand (&ops[0], target, tmp_mode); create_input_operand (&ops[1], xop0, mode0); create_input_operand (&ops[2], xop1, mode1); pat = maybe_gen_insn (icode, 3, ops); if (pat) { /* If PAT is composed of more than one insn, try to add an appropriate REG_EQUAL note to it. If we can't because TEMP conflicts with an operand, call expand_binop again, this time without a target. */ if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab), ops[1].value, ops[2].value)) { delete_insns_since (last); return expand_binop (mode, binoptab, op0, op1, NULL_RTX, unsignedp, methods); } emit_insn (pat); return ops[0].value; } delete_insns_since (last); return NULL_RTX; } /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods) { enum optab_methods next_methods = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN ? OPTAB_WIDEN : methods); enum mode_class mclass; enum machine_mode wider_mode; rtx libfunc; rtx temp; rtx entry_last = get_last_insn (); rtx last; mclass = GET_MODE_CLASS (mode); /* If subtracting an integer constant, convert this into an addition of the negated constant. */ if (binoptab == sub_optab && CONST_INT_P (op1)) { op1 = negate_rtx (mode, op1); binoptab = add_optab; } /* Record where to delete back to if we backtrack. */ last = get_last_insn (); /* If we can do it with a three-operand insn, do so. */ if (methods != OPTAB_MUST_WIDEN && find_widening_optab_handler (binoptab, mode, widened_mode (mode, op0, op1), 1) != CODE_FOR_nothing) { temp = expand_binop_directly (mode, binoptab, op0, op1, target, unsignedp, methods, last); if (temp) return temp; } /* If we were trying to rotate, and that didn't work, try rotating the other direction before falling back to shifts and bitwise-or. */ if (((binoptab == rotl_optab && optab_handler (rotr_optab, mode) != CODE_FOR_nothing) || (binoptab == rotr_optab && optab_handler (rotl_optab, mode) != CODE_FOR_nothing)) && mclass == MODE_INT) { optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab); rtx newop1; unsigned int bits = GET_MODE_PRECISION (mode); if (CONST_INT_P (op1)) newop1 = GEN_INT (bits - INTVAL (op1)); else if (targetm.shift_truncation_mask (mode) == bits - 1) newop1 = negate_rtx (GET_MODE (op1), op1); else newop1 = expand_binop (GET_MODE (op1), sub_optab, gen_int_mode (bits, GET_MODE (op1)), op1, NULL_RTX, unsignedp, OPTAB_DIRECT); temp = expand_binop_directly (mode, otheroptab, op0, newop1, target, unsignedp, methods, last); if (temp) return temp; } /* If this is a multiply, see if we can do a widening operation that takes operands of this mode and makes a wider mode. */ if (binoptab == smul_optab && GET_MODE_2XWIDER_MODE (mode) != VOIDmode && (widening_optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab), GET_MODE_2XWIDER_MODE (mode), mode) != CODE_FOR_nothing)) { temp = expand_binop (GET_MODE_2XWIDER_MODE (mode), unsignedp ? umul_widen_optab : smul_widen_optab, op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT); if (temp != 0) { if (GET_MODE_CLASS (mode) == MODE_INT && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp))) return gen_lowpart (mode, temp); else return convert_to_mode (mode, temp, unsignedp); } } /* If this is a vector shift by a scalar, see if we can do a vector shift by a vector. If so, broadcast the scalar into a vector. */ if (mclass == MODE_VECTOR_INT) { optab otheroptab = unknown_optab; if (binoptab == ashl_optab) otheroptab = vashl_optab; else if (binoptab == ashr_optab) otheroptab = vashr_optab; else if (binoptab == lshr_optab) otheroptab = vlshr_optab; else if (binoptab == rotl_optab) otheroptab = vrotl_optab; else if (binoptab == rotr_optab) otheroptab = vrotr_optab; if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing) { rtx vop1 = expand_vector_broadcast (mode, op1); if (vop1) { temp = expand_binop_directly (mode, otheroptab, op0, vop1, target, unsignedp, methods, last); if (temp) return temp; } } } /* Look for a wider mode of the same class for which we think we can open-code the operation. Check for a widening multiply at the wider mode as well. */ if (CLASS_HAS_WIDER_MODES_P (mclass) && methods != OPTAB_DIRECT && methods != OPTAB_LIB) for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing || (binoptab == smul_optab && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode && (find_widening_optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab), GET_MODE_WIDER_MODE (wider_mode), mode, 0) != CODE_FOR_nothing))) { rtx xop0 = op0, xop1 = op1; int no_extend = 0; /* For certain integer operations, we need not actually extend the narrow operands, as long as we will truncate the results to the same narrowness. */ if ((binoptab == ior_optab || binoptab == and_optab || binoptab == xor_optab || binoptab == add_optab || binoptab == sub_optab || binoptab == smul_optab || binoptab == ashl_optab) && mclass == MODE_INT) { no_extend = 1; xop0 = avoid_expensive_constant (mode, binoptab, 0, xop0, unsignedp); if (binoptab != ashl_optab) xop1 = avoid_expensive_constant (mode, binoptab, 1, xop1, unsignedp); } xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend); /* The second operand of a shift must always be extended. */ xop1 = widen_operand (xop1, wider_mode, mode, unsignedp, no_extend && binoptab != ashl_optab); temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, unsignedp, OPTAB_DIRECT); if (temp) { if (mclass != MODE_INT || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode)) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } /* If operation is commutative, try to make the first operand a register. Even better, try to make it the same as the target. Also try to make the last operand a constant. */ if (commutative_optab_p (binoptab) && swap_commutative_operands_with_target (target, op0, op1)) { temp = op1; op1 = op0; op0 = temp; } /* These can be done a word at a time. */ if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab) && mclass == MODE_INT && GET_MODE_SIZE (mode) > UNITS_PER_WORD && optab_handler (binoptab, word_mode) != CODE_FOR_nothing) { int i; rtx insns; /* If TARGET is the same as one of the operands, the REG_EQUAL note won't be accurate, so use a new target. */ if (target == 0 || target == op0 || target == op1 || !valid_multiword_target_p (target)) target = gen_reg_rtx (mode); start_sequence (); /* Do the actual arithmetic. */ for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) { rtx target_piece = operand_subword (target, i, 1, mode); rtx x = expand_binop (word_mode, binoptab, operand_subword_force (op0, i, mode), operand_subword_force (op1, i, mode), target_piece, unsignedp, next_methods); if (x == 0) break; if (target_piece != x) emit_move_insn (target_piece, x); } insns = get_insns (); end_sequence (); if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD) { emit_insn (insns); return target; } } /* Synthesize double word shifts from single word shifts. */ if ((binoptab == lshr_optab || binoptab == ashl_optab || binoptab == ashr_optab) && mclass == MODE_INT && (CONST_INT_P (op1) || optimize_insn_for_speed_p ()) && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode) && optab_handler (binoptab, word_mode) != CODE_FOR_nothing && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing) { unsigned HOST_WIDE_INT shift_mask, double_shift_mask; enum machine_mode op1_mode; double_shift_mask = targetm.shift_truncation_mask (mode); shift_mask = targetm.shift_truncation_mask (word_mode); op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode; /* Apply the truncation to constant shifts. */ if (double_shift_mask > 0 && CONST_INT_P (op1)) op1 = GEN_INT (INTVAL (op1) & double_shift_mask); if (op1 == CONST0_RTX (op1_mode)) return op0; /* Make sure that this is a combination that expand_doubleword_shift can handle. See the comments there for details. */ if (double_shift_mask == 0 || (shift_mask == BITS_PER_WORD - 1 && double_shift_mask == BITS_PER_WORD * 2 - 1)) { rtx insns; rtx into_target, outof_target; rtx into_input, outof_input; int left_shift, outof_word; /* If TARGET is the same as one of the operands, the REG_EQUAL note won't be accurate, so use a new target. */ if (target == 0 || target == op0 || target == op1 || !valid_multiword_target_p (target)) target = gen_reg_rtx (mode); start_sequence (); /* OUTOF_* is the word we are shifting bits away from, and INTO_* is the word that we are shifting bits towards, thus they differ depending on the direction of the shift and WORDS_BIG_ENDIAN. */ left_shift = binoptab == ashl_optab; outof_word = left_shift ^ ! WORDS_BIG_ENDIAN; outof_target = operand_subword (target, outof_word, 1, mode); into_target = operand_subword (target, 1 - outof_word, 1, mode); outof_input = operand_subword_force (op0, outof_word, mode); into_input = operand_subword_force (op0, 1 - outof_word, mode); if (expand_doubleword_shift (op1_mode, binoptab, outof_input, into_input, op1, outof_target, into_target, unsignedp, next_methods, shift_mask)) { insns = get_insns (); end_sequence (); emit_insn (insns); return target; } end_sequence (); } } /* Synthesize double word rotates from single word shifts. */ if ((binoptab == rotl_optab || binoptab == rotr_optab) && mclass == MODE_INT && CONST_INT_P (op1) && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing) { rtx insns; rtx into_target, outof_target; rtx into_input, outof_input; rtx inter; int shift_count, left_shift, outof_word; /* If TARGET is the same as one of the operands, the REG_EQUAL note won't be accurate, so use a new target. Do this also if target is not a REG, first because having a register instead may open optimization opportunities, and second because if target and op0 happen to be MEMs designating the same location, we would risk clobbering it too early in the code sequence we generate below. */ if (target == 0 || target == op0 || target == op1 || !REG_P (target) || !valid_multiword_target_p (target)) target = gen_reg_rtx (mode); start_sequence (); shift_count = INTVAL (op1); /* OUTOF_* is the word we are shifting bits away from, and INTO_* is the word that we are shifting bits towards, thus they differ depending on the direction of the shift and WORDS_BIG_ENDIAN. */ left_shift = (binoptab == rotl_optab); outof_word = left_shift ^ ! WORDS_BIG_ENDIAN; outof_target = operand_subword (target, outof_word, 1, mode); into_target = operand_subword (target, 1 - outof_word, 1, mode); outof_input = operand_subword_force (op0, outof_word, mode); into_input = operand_subword_force (op0, 1 - outof_word, mode); if (shift_count == BITS_PER_WORD) { /* This is just a word swap. */ emit_move_insn (outof_target, into_input); emit_move_insn (into_target, outof_input); inter = const0_rtx; } else { rtx into_temp1, into_temp2, outof_temp1, outof_temp2; rtx first_shift_count, second_shift_count; optab reverse_unsigned_shift, unsigned_shift; reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD) ? lshr_optab : ashl_optab); unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD) ? ashl_optab : lshr_optab); if (shift_count > BITS_PER_WORD) { first_shift_count = GEN_INT (shift_count - BITS_PER_WORD); second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count); } else { first_shift_count = GEN_INT (BITS_PER_WORD - shift_count); second_shift_count = GEN_INT (shift_count); } into_temp1 = expand_binop (word_mode, unsigned_shift, outof_input, first_shift_count, NULL_RTX, unsignedp, next_methods); into_temp2 = expand_binop (word_mode, reverse_unsigned_shift, into_input, second_shift_count, NULL_RTX, unsignedp, next_methods); if (into_temp1 != 0 && into_temp2 != 0) inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2, into_target, unsignedp, next_methods); else inter = 0; if (inter != 0 && inter != into_target) emit_move_insn (into_target, inter); outof_temp1 = expand_binop (word_mode, unsigned_shift, into_input, first_shift_count, NULL_RTX, unsignedp, next_methods); outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift, outof_input, second_shift_count, NULL_RTX, unsignedp, next_methods); if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0) inter = expand_binop (word_mode, ior_optab, outof_temp1, outof_temp2, outof_target, unsignedp, next_methods); if (inter != 0 && inter != outof_target) emit_move_insn (outof_target, inter); } insns = get_insns (); end_sequence (); if (inter != 0) { emit_insn (insns); return target; } } /* These can be done a word at a time by propagating carries. */ if ((binoptab == add_optab || binoptab == sub_optab) && mclass == MODE_INT && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD && optab_handler (binoptab, word_mode) != CODE_FOR_nothing) { unsigned int i; optab otheroptab = binoptab == add_optab ? sub_optab : add_optab; const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; rtx carry_in = NULL_RTX, carry_out = NULL_RTX; rtx xop0, xop1, xtarget; /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG value is one of those, use it. Otherwise, use 1 since it is the one easiest to get. */ #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 int normalizep = STORE_FLAG_VALUE; #else int normalizep = 1; #endif /* Prepare the operands. */ xop0 = force_reg (mode, op0); xop1 = force_reg (mode, op1); xtarget = gen_reg_rtx (mode); if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target)) target = xtarget; /* Indicate for flow that the entire target reg is being set. */ if (REG_P (target)) emit_clobber (xtarget); /* Do the actual arithmetic. */ for (i = 0; i < nwords; i++) { int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); rtx target_piece = operand_subword (xtarget, index, 1, mode); rtx op0_piece = operand_subword_force (xop0, index, mode); rtx op1_piece = operand_subword_force (xop1, index, mode); rtx x; /* Main add/subtract of the input operands. */ x = expand_binop (word_mode, binoptab, op0_piece, op1_piece, target_piece, unsignedp, next_methods); if (x == 0) break; if (i + 1 < nwords) { /* Store carry from main add/subtract. */ carry_out = gen_reg_rtx (word_mode); carry_out = emit_store_flag_force (carry_out, (binoptab == add_optab ? LT : GT), x, op0_piece, word_mode, 1, normalizep); } if (i > 0) { rtx newx; /* Add/subtract previous carry to main result. */ newx = expand_binop (word_mode, normalizep == 1 ? binoptab : otheroptab, x, carry_in, NULL_RTX, 1, next_methods); if (i + 1 < nwords) { /* Get out carry from adding/subtracting carry in. */ rtx carry_tmp = gen_reg_rtx (word_mode); carry_tmp = emit_store_flag_force (carry_tmp, (binoptab == add_optab ? LT : GT), newx, x, word_mode, 1, normalizep); /* Logical-ior the two poss. carry together. */ carry_out = expand_binop (word_mode, ior_optab, carry_out, carry_tmp, carry_out, 0, next_methods); if (carry_out == 0) break; } emit_move_insn (target_piece, newx); } else { if (x != target_piece) emit_move_insn (target_piece, x); } carry_in = carry_out; } if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD) { if (optab_handler (mov_optab, mode) != CODE_FOR_nothing || ! rtx_equal_p (target, xtarget)) { rtx temp = emit_move_insn (target, xtarget); set_dst_reg_note (temp, REG_EQUAL, gen_rtx_fmt_ee (optab_to_code (binoptab), mode, copy_rtx (xop0), copy_rtx (xop1)), target); } else target = xtarget; return target; } else delete_insns_since (last); } /* Attempt to synthesize double word multiplies using a sequence of word mode multiplications. We first attempt to generate a sequence using a more efficient unsigned widening multiply, and if that fails we then try using a signed widening multiply. */ if (binoptab == smul_optab && mclass == MODE_INT && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing && optab_handler (add_optab, word_mode) != CODE_FOR_nothing) { rtx product = NULL_RTX; if (widening_optab_handler (umul_widen_optab, mode, word_mode) != CODE_FOR_nothing) { product = expand_doubleword_mult (mode, op0, op1, target, true, methods); if (!product) delete_insns_since (last); } if (product == NULL_RTX && widening_optab_handler (smul_widen_optab, mode, word_mode) != CODE_FOR_nothing) { product = expand_doubleword_mult (mode, op0, op1, target, false, methods); if (!product) delete_insns_since (last); } if (product != NULL_RTX) { if (optab_handler (mov_optab, mode) != CODE_FOR_nothing) { temp = emit_move_insn (target ? target : product, product); set_dst_reg_note (temp, REG_EQUAL, gen_rtx_fmt_ee (MULT, mode, copy_rtx (op0), copy_rtx (op1)), target ? target : product); } return product; } } /* It can't be open-coded in this mode. Use a library call if one is available and caller says that's ok. */ libfunc = optab_libfunc (binoptab, mode); if (libfunc && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) { rtx insns; rtx op1x = op1; enum machine_mode op1_mode = mode; rtx value; start_sequence (); if (shift_optab_p (binoptab)) { op1_mode = targetm.libgcc_shift_count_mode (); /* Specify unsigned here, since negative shift counts are meaningless. */ op1x = convert_to_mode (op1_mode, op1, 1); } if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode) op0 = convert_to_mode (mode, op0, unsignedp); /* Pass 1 for NO_QUEUE so we don't lose any increments if the libcall is cse'd or moved. */ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, mode, 2, op0, mode, op1x, op1_mode); insns = get_insns (); end_sequence (); target = gen_reg_rtx (mode); emit_libcall_block_1 (insns, target, value, gen_rtx_fmt_ee (optab_to_code (binoptab), mode, op0, op1), trapv_binoptab_p (binoptab)); return target; } delete_insns_since (last); /* It can't be done in this mode. Can we do it in a wider mode? */ if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN || methods == OPTAB_MUST_WIDEN)) { /* Caller says, don't even try. */ delete_insns_since (entry_last); return 0; } /* Compute the value of METHODS to pass to recursive calls. Don't allow widening to be tried recursively. */ methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); /* Look for a wider mode of the same class for which it appears we can do the operation. */ if (CLASS_HAS_WIDER_MODES_P (mclass)) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (find_widening_optab_handler (binoptab, wider_mode, mode, 1) != CODE_FOR_nothing || (methods == OPTAB_LIB && optab_libfunc (binoptab, wider_mode))) { rtx xop0 = op0, xop1 = op1; int no_extend = 0; /* For certain integer operations, we need not actually extend the narrow operands, as long as we will truncate the results to the same narrowness. */ if ((binoptab == ior_optab || binoptab == and_optab || binoptab == xor_optab || binoptab == add_optab || binoptab == sub_optab || binoptab == smul_optab || binoptab == ashl_optab) && mclass == MODE_INT) no_extend = 1; xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend); /* The second operand of a shift must always be extended. */ xop1 = widen_operand (xop1, wider_mode, mode, unsignedp, no_extend && binoptab != ashl_optab); temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, unsignedp, methods); if (temp) { if (mclass != MODE_INT || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode)) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } } delete_insns_since (entry_last); return 0; } /* Expand a binary operator which has both signed and unsigned forms. UOPTAB is the optab for unsigned operations, and SOPTAB is for signed operations. If we widen unsigned operands, we may use a signed wider operation instead of an unsigned wider operation, since the result would be the same. */ rtx sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods) { rtx temp; optab direct_optab = unsignedp ? uoptab : soptab; bool save_enable; /* Do it without widening, if possible. */ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_DIRECT); if (temp || methods == OPTAB_DIRECT) return temp; /* Try widening to a signed int. Disable any direct use of any signed insn in the current mode. */ save_enable = swap_optab_enable (soptab, mode, false); temp = expand_binop (mode, soptab, op0, op1, target, unsignedp, OPTAB_WIDEN); /* For unsigned operands, try widening to an unsigned int. */ if (!temp && unsignedp) temp = expand_binop (mode, uoptab, op0, op1, target, unsignedp, OPTAB_WIDEN); if (temp || methods == OPTAB_WIDEN) goto egress; /* Use the right width libcall if that exists. */ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); if (temp || methods == OPTAB_LIB) goto egress; /* Must widen and use a libcall, use either signed or unsigned. */ temp = expand_binop (mode, soptab, op0, op1, target, unsignedp, methods); if (!temp && unsignedp) temp = expand_binop (mode, uoptab, op0, op1, target, unsignedp, methods); egress: /* Undo the fiddling above. */ if (save_enable) swap_optab_enable (soptab, mode, true); return temp; } /* Generate code to perform an operation specified by UNOPPTAB on operand OP0, with two results to TARG0 and TARG1. We assume that the order of the operands for the instruction is TARG0, TARG1, OP0. Either TARG0 or TARG1 may be zero, but what that means is that the result is not actually wanted. We will generate it into a dummy pseudo-reg and discard it. They may not both be zero. Returns 1 if this operation can be performed; 0 if not. */ int expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1, int unsignedp) { enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); enum mode_class mclass; enum machine_mode wider_mode; rtx entry_last = get_last_insn (); rtx last; mclass = GET_MODE_CLASS (mode); if (!targ0) targ0 = gen_reg_rtx (mode); if (!targ1) targ1 = gen_reg_rtx (mode); /* Record where to go back to if we fail. */ last = get_last_insn (); if (optab_handler (unoptab, mode) != CODE_FOR_nothing) { struct expand_operand ops[3]; enum insn_code icode = optab_handler (unoptab, mode); create_fixed_operand (&ops[0], targ0); create_fixed_operand (&ops[1], targ1); create_convert_operand_from (&ops[2], op0, mode, unsignedp); if (maybe_expand_insn (icode, 3, ops)) return 1; } /* It can't be done in this mode. Can we do it in a wider mode? */ if (CLASS_HAS_WIDER_MODES_P (mclass)) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing) { rtx t0 = gen_reg_rtx (wider_mode); rtx t1 = gen_reg_rtx (wider_mode); rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp); if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp)) { convert_move (targ0, t0, unsignedp); convert_move (targ1, t1, unsignedp); return 1; } else delete_insns_since (last); } } } delete_insns_since (entry_last); return 0; } /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with two results to TARG1 and TARG2. We assume that the order of the operands for the instruction is TARG0, OP0, OP1, TARG1, which would fit a pattern like [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. Either TARG0 or TARG1 may be zero, but what that means is that the result is not actually wanted. We will generate it into a dummy pseudo-reg and discard it. They may not both be zero. Returns 1 if this operation can be performed; 0 if not. */ int expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, int unsignedp) { enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); enum mode_class mclass; enum machine_mode wider_mode; rtx entry_last = get_last_insn (); rtx last; mclass = GET_MODE_CLASS (mode); if (!targ0) targ0 = gen_reg_rtx (mode); if (!targ1) targ1 = gen_reg_rtx (mode); /* Record where to go back to if we fail. */ last = get_last_insn (); if (optab_handler (binoptab, mode) != CODE_FOR_nothing) { struct expand_operand ops[4]; enum insn_code icode = optab_handler (binoptab, mode); enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; rtx xop0 = op0, xop1 = op1; /* If we are optimizing, force expensive constants into a register. */ xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp); xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp); create_fixed_operand (&ops[0], targ0); create_convert_operand_from (&ops[1], op0, mode, unsignedp); create_convert_operand_from (&ops[2], op1, mode, unsignedp); create_fixed_operand (&ops[3], targ1); if (maybe_expand_insn (icode, 4, ops)) return 1; delete_insns_since (last); } /* It can't be done in this mode. Can we do it in a wider mode? */ if (CLASS_HAS_WIDER_MODES_P (mclass)) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing) { rtx t0 = gen_reg_rtx (wider_mode); rtx t1 = gen_reg_rtx (wider_mode); rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp); rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp); if (expand_twoval_binop (binoptab, cop0, cop1, t0, t1, unsignedp)) { convert_move (targ0, t0, unsignedp); convert_move (targ1, t1, unsignedp); return 1; } else delete_insns_since (last); } } } delete_insns_since (entry_last); return 0; } /* Expand the two-valued library call indicated by BINOPTAB, but preserve only one of the values. If TARG0 is non-NULL, the first value is placed into TARG0; otherwise the second value is placed into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1). This routine assumes that the value returned by the library call is as if the return value was of an integral mode twice as wide as the mode of OP0. Returns 1 if the call was successful. */ bool expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, enum rtx_code code) { enum machine_mode mode; enum machine_mode libval_mode; rtx libval; rtx insns; rtx libfunc; /* Exactly one of TARG0 or TARG1 should be non-NULL. */ gcc_assert (!targ0 != !targ1); mode = GET_MODE (op0); libfunc = optab_libfunc (binoptab, mode); if (!libfunc) return false; /* The value returned by the library function will have twice as many bits as the nominal MODE. */ libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode), MODE_INT); start_sequence (); libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, libval_mode, 2, op0, mode, op1, mode); /* Get the part of VAL containing the value that we want. */ libval = simplify_gen_subreg (mode, libval, libval_mode, targ0 ? 0 : GET_MODE_SIZE (mode)); insns = get_insns (); end_sequence (); /* Move the into the desired location. */ emit_libcall_block (insns, targ0 ? targ0 : targ1, libval, gen_rtx_fmt_ee (code, mode, op0, op1)); return true; } /* Wrapper around expand_unop which takes an rtx code to specify the operation to perform, not an optab pointer. All other arguments are the same. */ rtx expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0, rtx target, int unsignedp) { optab unop = code_to_optab (code); gcc_assert (unop); return expand_unop (mode, unop, op0, target, unsignedp); } /* Try calculating (clz:narrow x) as (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). A similar operation can be used for clrsb. UNOPTAB says which operation we are trying to expand. */ static rtx widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab) { enum mode_class mclass = GET_MODE_CLASS (mode); if (CLASS_HAS_WIDER_MODES_P (mclass)) { enum machine_mode wider_mode; for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing) { rtx xop0, temp, last; last = get_last_insn (); if (target == 0) target = gen_reg_rtx (mode); xop0 = widen_operand (op0, wider_mode, mode, unoptab != clrsb_optab, false); temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, unoptab != clrsb_optab); if (temp != 0) temp = expand_binop (wider_mode, sub_optab, temp, gen_int_mode (GET_MODE_PRECISION (wider_mode) - GET_MODE_PRECISION (mode), wider_mode), target, true, OPTAB_DIRECT); if (temp == 0) delete_insns_since (last); return temp; } } } return 0; } /* Try calculating clz of a double-word quantity as two clz's of word-sized quantities, choosing which based on whether the high word is nonzero. */ static rtx expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target) { rtx xop0 = force_reg (mode, op0); rtx subhi = gen_highpart (word_mode, xop0); rtx sublo = gen_lowpart (word_mode, xop0); rtx hi0_label = gen_label_rtx (); rtx after_label = gen_label_rtx (); rtx seq, temp, result; /* If we were not given a target, use a word_mode register, not a 'mode' register. The result will fit, and nobody is expecting anything bigger (the return type of __builtin_clz* is int). */ if (!target) target = gen_reg_rtx (word_mode); /* In any case, write to a word_mode scratch in both branches of the conditional, so we can ensure there is a single move insn setting 'target' to tag a REG_EQUAL note on. */ result = gen_reg_rtx (word_mode); start_sequence (); /* If the high word is not equal to zero, then clz of the full value is clz of the high word. */ emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0, word_mode, true, hi0_label); temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true); if (!temp) goto fail; if (temp != result) convert_move (result, temp, true); emit_jump_insn (gen_jump (after_label)); emit_barrier (); /* Else clz of the full value is clz of the low word plus the number of bits in the high word. */ emit_label (hi0_label); temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true); if (!temp) goto fail; temp = expand_binop (word_mode, add_optab, temp, gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode), result, true, OPTAB_DIRECT); if (!temp) goto fail; if (temp != result) convert_move (result, temp, true); emit_label (after_label); convert_move (target, result, true); seq = get_insns (); end_sequence (); add_equal_note (seq, target, CLZ, xop0, 0); emit_insn (seq); return target; fail: end_sequence (); return 0; } /* Try calculating (bswap:narrow x) as (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */ static rtx widen_bswap (enum machine_mode mode, rtx op0, rtx target) { enum mode_class mclass = GET_MODE_CLASS (mode); enum machine_mode wider_mode; rtx x, last; if (!CLASS_HAS_WIDER_MODES_P (mclass)) return NULL_RTX; for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing) goto found; return NULL_RTX; found: last = get_last_insn (); x = widen_operand (op0, wider_mode, mode, true, true); x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true); gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode) && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)); if (x != 0) x = expand_shift (RSHIFT_EXPR, wider_mode, x, GET_MODE_BITSIZE (wider_mode) - GET_MODE_BITSIZE (mode), NULL_RTX, true); if (x != 0) { if (target == 0) target = gen_reg_rtx (mode); emit_move_insn (target, gen_lowpart (mode, x)); } else delete_insns_since (last); return target; } /* Try calculating bswap as two bswaps of two word-sized operands. */ static rtx expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target) { rtx t0, t1; t1 = expand_unop (word_mode, bswap_optab, operand_subword_force (op, 0, mode), NULL_RTX, true); t0 = expand_unop (word_mode, bswap_optab, operand_subword_force (op, 1, mode), NULL_RTX, true); if (target == 0 || !valid_multiword_target_p (target)) target = gen_reg_rtx (mode); if (REG_P (target)) emit_clobber (target); emit_move_insn (operand_subword (target, 0, 1, mode), t0); emit_move_insn (operand_subword (target, 1, 1, mode), t1); return target; } /* Try calculating (parity x) as (and (popcount x) 1), where popcount can also be done in a wider mode. */ static rtx expand_parity (enum machine_mode mode, rtx op0, rtx target) { enum mode_class mclass = GET_MODE_CLASS (mode); if (CLASS_HAS_WIDER_MODES_P (mclass)) { enum machine_mode wider_mode; for (wider_mode = mode; wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing) { rtx xop0, temp, last; last = get_last_insn (); if (target == 0) target = gen_reg_rtx (mode); xop0 = widen_operand (op0, wider_mode, mode, true, false); temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX, true); if (temp != 0) temp = expand_binop (wider_mode, and_optab, temp, const1_rtx, target, true, OPTAB_DIRECT); if (temp == 0) delete_insns_since (last); return temp; } } } return 0; } /* Try calculating ctz(x) as K - clz(x & -x) , where K is GET_MODE_PRECISION(mode) - 1. Both __builtin_ctz and __builtin_clz are undefined at zero, so we don't have to worry about what the hardware does in that case. (If the clz instruction produces the usual value at 0, which is K, the result of this code sequence will be -1; expand_ffs, below, relies on this. It might be nice to have it be K instead, for consistency with the (very few) processors that provide a ctz with a defined value, but that would take one more instruction, and it would be less convenient for expand_ffs anyway. */ static rtx expand_ctz (enum machine_mode mode, rtx op0, rtx target) { rtx seq, temp; if (optab_handler (clz_optab, mode) == CODE_FOR_nothing) return 0; start_sequence (); temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true); if (temp) temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX, true, OPTAB_DIRECT); if (temp) temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true); if (temp) temp = expand_binop (mode, sub_optab, gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode), temp, target, true, OPTAB_DIRECT); if (temp == 0) { end_sequence (); return 0; } seq = get_insns (); end_sequence (); add_equal_note (seq, temp, CTZ, op0, 0); emit_insn (seq); return temp; } /* Try calculating ffs(x) using ctz(x) if we have that instruction, or else with the sequence used by expand_clz. The ffs builtin promises to return zero for a zero value and ctz/clz may have an undefined value in that case. If they do not give us a convenient value, we have to generate a test and branch. */ static rtx expand_ffs (enum machine_mode mode, rtx op0, rtx target) { HOST_WIDE_INT val = 0; bool defined_at_zero = false; rtx temp, seq; if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing) { start_sequence (); temp = expand_unop_direct (mode, ctz_optab, op0, 0, true); if (!temp) goto fail; defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2); } else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing) { start_sequence (); temp = expand_ctz (mode, op0, 0); if (!temp) goto fail; if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2) { defined_at_zero = true; val = (GET_MODE_PRECISION (mode) - 1) - val; } } else return 0; if (defined_at_zero && val == -1) /* No correction needed at zero. */; else { /* We don't try to do anything clever with the situation found on some processors (eg Alpha) where ctz(0:mode) == bitsize(mode). If someone can think of a way to send N to -1 and leave alone all values in the range 0..N-1 (where N is a power of two), cheaper than this test-and-branch, please add it. The test-and-branch is done after the operation itself, in case the operation sets condition codes that can be recycled for this. (This is true on i386, for instance.) */ rtx nonzero_label = gen_label_rtx (); emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0, mode, true, nonzero_label); convert_move (temp, GEN_INT (-1), false); emit_label (nonzero_label); } /* temp now has a value in the range -1..bitsize-1. ffs is supposed to produce a value in the range 0..bitsize. */ temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode), target, false, OPTAB_DIRECT); if (!temp) goto fail; seq = get_insns (); end_sequence (); add_equal_note (seq, temp, FFS, op0, 0); emit_insn (seq); return temp; fail: end_sequence (); return 0; } /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain conditions, VAL may already be a SUBREG against which we cannot generate a further SUBREG. In this case, we expect forcing the value into a register will work around the situation. */ static rtx lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val, enum machine_mode imode) { rtx ret; ret = lowpart_subreg (omode, val, imode); if (ret == NULL) { val = force_reg (imode, val); ret = lowpart_subreg (omode, val, imode); gcc_assert (ret != NULL); } return ret; } /* Expand a floating point absolute value or negation operation via a logical operation on the sign bit. */ static rtx expand_absneg_bit (enum rtx_code code, enum machine_mode mode, rtx op0, rtx target) { const struct real_format *fmt; int bitpos, word, nwords, i; enum machine_mode imode; rtx temp, insns; /* The format has to have a simple sign bit. */ fmt = REAL_MODE_FORMAT (mode); if (fmt == NULL) return NULL_RTX; bitpos = fmt->signbit_rw; if (bitpos < 0) return NULL_RTX; /* Don't create negative zeros if the format doesn't support them. */ if (code == NEG && !fmt->has_signed_zero) return NULL_RTX; if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) { imode = int_mode_for_mode (mode); if (imode == BLKmode) return NULL_RTX; word = 0; nwords = 1; } else { imode = word_mode; if (FLOAT_WORDS_BIG_ENDIAN) word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD; else word = bitpos / BITS_PER_WORD; bitpos = bitpos % BITS_PER_WORD; nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD; } wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode)); if (code == ABS) mask = ~mask; if (target == 0 || target == op0 || (nwords > 1 && !valid_multiword_target_p (target))) target = gen_reg_rtx (mode); if (nwords > 1) { start_sequence (); for (i = 0; i < nwords; ++i) { rtx targ_piece = operand_subword (target, i, 1, mode); rtx op0_piece = operand_subword_force (op0, i, mode); if (i == word) { temp = expand_binop (imode, code == ABS ? and_optab : xor_optab, op0_piece, immed_wide_int_const (mask, imode), targ_piece, 1, OPTAB_LIB_WIDEN); if (temp != targ_piece) emit_move_insn (targ_piece, temp); } else emit_move_insn (targ_piece, op0_piece); } insns = get_insns (); end_sequence (); emit_insn (insns); } else { temp = expand_binop (imode, code == ABS ? and_optab : xor_optab, gen_lowpart (imode, op0), immed_wide_int_const (mask, imode), gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN); target = lowpart_subreg_maybe_copy (mode, temp, imode); set_dst_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_fmt_e (code, mode, copy_rtx (op0)), target); } return target; } /* As expand_unop, but will fail rather than attempt the operation in a different mode or with a libcall. */ static rtx expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target, int unsignedp) { if (optab_handler (unoptab, mode) != CODE_FOR_nothing) { struct expand_operand ops[2]; enum insn_code icode = optab_handler (unoptab, mode); rtx last = get_last_insn (); rtx pat; create_output_operand (&ops[0], target, mode); create_convert_operand_from (&ops[1], op0, mode, unsignedp); pat = maybe_gen_insn (icode, 2, ops); if (pat) { if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab), ops[1].value, NULL_RTX)) { delete_insns_since (last); return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp); } emit_insn (pat); return ops[0].value; } } return 0; } /* Generate code to perform an operation specified by UNOPTAB on operand OP0, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, int unsignedp) { enum mode_class mclass = GET_MODE_CLASS (mode); enum machine_mode wider_mode; rtx temp; rtx libfunc; temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp); if (temp) return temp; /* It can't be done in this mode. Can we open-code it in a wider mode? */ /* Widening (or narrowing) clz needs special treatment. */ if (unoptab == clz_optab) { temp = widen_leading (mode, op0, target, unoptab); if (temp) return temp; if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && optab_handler (unoptab, word_mode) != CODE_FOR_nothing) { temp = expand_doubleword_clz (mode, op0, target); if (temp) return temp; } goto try_libcall; } if (unoptab == clrsb_optab) { temp = widen_leading (mode, op0, target, unoptab); if (temp) return temp; goto try_libcall; } /* Widening (or narrowing) bswap needs special treatment. */ if (unoptab == bswap_optab) { /* HImode is special because in this mode BSWAP is equivalent to ROTATE or ROTATERT. First try these directly; if this fails, then try the obvious pair of shifts with allowed widening, as this will probably be always more efficient than the other fallback methods. */ if (mode == HImode) { rtx last, temp1, temp2; if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing) { temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target, unsignedp, OPTAB_DIRECT); if (temp) return temp; } if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing) { temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target, unsignedp, OPTAB_DIRECT); if (temp) return temp; } last = get_last_insn (); temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX, unsignedp, OPTAB_WIDEN); temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX, unsignedp, OPTAB_WIDEN); if (temp1 && temp2) { temp = expand_binop (mode, ior_optab, temp1, temp2, target, unsignedp, OPTAB_WIDEN); if (temp) return temp; } delete_insns_since (last); } temp = widen_bswap (mode, op0, target); if (temp) return temp; if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && optab_handler (unoptab, word_mode) != CODE_FOR_nothing) { temp = expand_doubleword_bswap (mode, op0, target); if (temp) return temp; } goto try_libcall; } if (CLASS_HAS_WIDER_MODES_P (mclass)) for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing) { rtx xop0 = op0; rtx last = get_last_insn (); /* For certain operations, we need not actually extend the narrow operand, as long as we will truncate the results to the same narrowness. */ xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, (unoptab == neg_optab || unoptab == one_cmpl_optab) && mclass == MODE_INT); temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, unsignedp); if (temp) { if (mclass != MODE_INT || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode)) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } /* These can be done a word at a time. */ if (unoptab == one_cmpl_optab && mclass == MODE_INT && GET_MODE_SIZE (mode) > UNITS_PER_WORD && optab_handler (unoptab, word_mode) != CODE_FOR_nothing) { int i; rtx insns; if (target == 0 || target == op0 || !valid_multiword_target_p (target)) target = gen_reg_rtx (mode); start_sequence (); /* Do the actual arithmetic. */ for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) { rtx target_piece = operand_subword (target, i, 1, mode); rtx x = expand_unop (word_mode, unoptab, operand_subword_force (op0, i, mode), target_piece, unsignedp); if (target_piece != x) emit_move_insn (target_piece, x); } insns = get_insns (); end_sequence (); emit_insn (insns); return target; } if (optab_to_code (unoptab) == NEG) { /* Try negating floating point values by flipping the sign bit. */ if (SCALAR_FLOAT_MODE_P (mode)) { temp = expand_absneg_bit (NEG, mode, op0, target); if (temp) return temp; } /* If there is no negation pattern, and we have no negative zero, try subtracting from zero. */ if (!HONOR_SIGNED_ZEROS (mode)) { temp = expand_binop (mode, (unoptab == negv_optab ? subv_optab : sub_optab), CONST0_RTX (mode), op0, target, unsignedp, OPTAB_DIRECT); if (temp) return temp; } } /* Try calculating parity (x) as popcount (x) % 2. */ if (unoptab == parity_optab) { temp = expand_parity (mode, op0, target); if (temp) return temp; } /* Try implementing ffs (x) in terms of clz (x). */ if (unoptab == ffs_optab) { temp = expand_ffs (mode, op0, target); if (temp) return temp; } /* Try implementing ctz (x) in terms of clz (x). */ if (unoptab == ctz_optab) { temp = expand_ctz (mode, op0, target); if (temp) return temp; } try_libcall: /* Now try a library call in this mode. */ libfunc = optab_libfunc (unoptab, mode); if (libfunc) { rtx insns; rtx value; rtx eq_value; enum machine_mode outmode = mode; /* All of these functions return small values. Thus we choose to have them return something that isn't a double-word. */ if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab || unoptab == clrsb_optab || unoptab == popcount_optab || unoptab == parity_optab) outmode = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node), optab_libfunc (unoptab, mode))); start_sequence (); /* Pass 1 for NO_QUEUE so we don't lose any increments if the libcall is cse'd or moved. */ value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode, 1, op0, mode); insns = get_insns (); end_sequence (); target = gen_reg_rtx (outmode); eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0); if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode)) eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode); else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode)) eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode); emit_libcall_block_1 (insns, target, value, eq_value, trapv_unoptab_p (unoptab)); return target; } /* It can't be done in this mode. Can we do it in a wider mode? */ if (CLASS_HAS_WIDER_MODES_P (mclass)) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing || optab_libfunc (unoptab, wider_mode)) { rtx xop0 = op0; rtx last = get_last_insn (); /* For certain operations, we need not actually extend the narrow operand, as long as we will truncate the results to the same narrowness. */ xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, (unoptab == neg_optab || unoptab == one_cmpl_optab || unoptab == bswap_optab) && mclass == MODE_INT); temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, unsignedp); /* If we are generating clz using wider mode, adjust the result. Similarly for clrsb. */ if ((unoptab == clz_optab || unoptab == clrsb_optab) && temp != 0) temp = expand_binop (wider_mode, sub_optab, temp, gen_int_mode (GET_MODE_PRECISION (wider_mode) - GET_MODE_PRECISION (mode), wider_mode), target, true, OPTAB_DIRECT); /* Likewise for bswap. */ if (unoptab == bswap_optab && temp != 0) { gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode) && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)); temp = expand_shift (RSHIFT_EXPR, wider_mode, temp, GET_MODE_BITSIZE (wider_mode) - GET_MODE_BITSIZE (mode), NULL_RTX, true); } if (temp) { if (mclass != MODE_INT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } } /* One final attempt at implementing negation via subtraction, this time allowing widening of the operand. */ if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode)) { rtx temp; temp = expand_binop (mode, unoptab == negv_optab ? subv_optab : sub_optab, CONST0_RTX (mode), op0, target, unsignedp, OPTAB_LIB_WIDEN); if (temp) return temp; } return 0; } /* Emit code to compute the absolute value of OP0, with result to TARGET if convenient. (TARGET may be 0.) The return value says where the result actually is to be found. MODE is the mode of the operand; the mode of the result is different but can be deduced from MODE. */ rtx expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target, int result_unsignedp) { rtx temp; if (! flag_trapv) result_unsignedp = 1; /* First try to do it with a special abs instruction. */ temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab, op0, target, 0); if (temp != 0) return temp; /* For floating point modes, try clearing the sign bit. */ if (SCALAR_FLOAT_MODE_P (mode)) { temp = expand_absneg_bit (ABS, mode, op0, target); if (temp) return temp; } /* If we have a MAX insn, we can do this as MAX (x, -x). */ if (optab_handler (smax_optab, mode) != CODE_FOR_nothing && !HONOR_SIGNED_ZEROS (mode)) { rtx last = get_last_insn (); temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0); if (temp != 0) temp = expand_binop (mode, smax_optab, op0, temp, target, 0, OPTAB_WIDEN); if (temp != 0) return temp; delete_insns_since (last); } /* If this machine has expensive jumps, we can do integer absolute value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)), where W is the width of MODE. */ if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2) { rtx extended = expand_shift (RSHIFT_EXPR, mode, op0, GET_MODE_PRECISION (mode) - 1, NULL_RTX, 0); temp = expand_binop (mode, xor_optab, extended, op0, target, 0, OPTAB_LIB_WIDEN); if (temp != 0) temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab, temp, extended, target, 0, OPTAB_LIB_WIDEN); if (temp != 0) return temp; } return NULL_RTX; } rtx expand_abs (enum machine_mode mode, rtx op0, rtx target, int result_unsignedp, int safe) { rtx temp, op1; if (! flag_trapv) result_unsignedp = 1; temp = expand_abs_nojump (mode, op0, target, result_unsignedp); if (temp != 0) return temp; /* If that does not win, use conditional jump and negate. */ /* It is safe to use the target if it is the same as the source if this is also a pseudo register */ if (op0 == target && REG_P (op0) && REGNO (op0) >= FIRST_PSEUDO_REGISTER) safe = 1; op1 = gen_label_rtx (); if (target == 0 || ! safe || GET_MODE (target) != mode || (MEM_P (target) && MEM_VOLATILE_P (target)) || (REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER)) target = gen_reg_rtx (mode); emit_move_insn (target, op0); NO_DEFER_POP; do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode, NULL_RTX, NULL_RTX, op1, -1); op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab, target, target, 0); if (op0 != target) emit_move_insn (target, op0); emit_label (op1); OK_DEFER_POP; return target; } /* Emit code to compute the one's complement absolute value of OP0 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient. (TARGET may be NULL_RTX.) The return value says where the result actually is to be found. MODE is the mode of the operand; the mode of the result is different but can be deduced from MODE. */ rtx expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target) { rtx temp; /* Not applicable for floating point modes. */ if (FLOAT_MODE_P (mode)) return NULL_RTX; /* If we have a MAX insn, we can do this as MAX (x, ~x). */ if (optab_handler (smax_optab, mode) != CODE_FOR_nothing) { rtx last = get_last_insn (); temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0); if (temp != 0) temp = expand_binop (mode, smax_optab, op0, temp, target, 0, OPTAB_WIDEN); if (temp != 0) return temp; delete_insns_since (last); } /* If this machine has expensive jumps, we can do one's complement absolute value of X as (((signed) x >> (W-1)) ^ x). */ if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2) { rtx extended = expand_shift (RSHIFT_EXPR, mode, op0, GET_MODE_PRECISION (mode) - 1, NULL_RTX, 0); temp = expand_binop (mode, xor_optab, extended, op0, target, 0, OPTAB_LIB_WIDEN); if (temp != 0) return temp; } return NULL_RTX; } /* A subroutine of expand_copysign, perform the copysign operation using the abs and neg primitives advertised to exist on the target. The assumption is that we have a split register file, and leaving op0 in fp registers, and not playing with subregs so much, will help the register allocator. */ static rtx expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target, int bitpos, bool op0_is_abs) { enum machine_mode imode; enum insn_code icode; rtx sign, label; if (target == op1) target = NULL_RTX; /* Check if the back end provides an insn that handles signbit for the argument's mode. */ icode = optab_handler (signbit_optab, mode); if (icode != CODE_FOR_nothing) { imode = insn_data[(int) icode].operand[0].mode; sign = gen_reg_rtx (imode); emit_unop_insn (icode, sign, op1, UNKNOWN); } else { if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) { imode = int_mode_for_mode (mode); if (imode == BLKmode) return NULL_RTX; op1 = gen_lowpart (imode, op1); } else { int word; imode = word_mode; if (FLOAT_WORDS_BIG_ENDIAN) word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD; else word = bitpos / BITS_PER_WORD; bitpos = bitpos % BITS_PER_WORD; op1 = operand_subword_force (op1, word, mode); } wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode)); sign = expand_binop (imode, and_optab, op1, immed_wide_int_const (mask, imode), NULL_RTX, 1, OPTAB_LIB_WIDEN); } if (!op0_is_abs) { op0 = expand_unop (mode, abs_optab, op0, target, 0); if (op0 == NULL) return NULL_RTX; target = op0; } else { if (target == NULL_RTX) target = copy_to_reg (op0); else emit_move_insn (target, op0); } label = gen_label_rtx (); emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label); if (CONST_DOUBLE_AS_FLOAT_P (op0)) op0 = simplify_unary_operation (NEG, mode, op0, mode); else op0 = expand_unop (mode, neg_optab, op0, target, 0); if (op0 != target) emit_move_insn (target, op0); emit_label (label); return target; } /* A subroutine of expand_copysign, perform the entire copysign operation with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS is true if op0 is known to have its sign bit clear. */ static rtx expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target, int bitpos, bool op0_is_abs) { enum machine_mode imode; int word, nwords, i; rtx temp, insns; if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) { imode = int_mode_for_mode (mode); if (imode == BLKmode) return NULL_RTX; word = 0; nwords = 1; } else { imode = word_mode; if (FLOAT_WORDS_BIG_ENDIAN) word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD; else word = bitpos / BITS_PER_WORD; bitpos = bitpos % BITS_PER_WORD; nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD; } wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode)); if (target == 0 || target == op0 || target == op1 || (nwords > 1 && !valid_multiword_target_p (target))) target = gen_reg_rtx (mode); if (nwords > 1) { start_sequence (); for (i = 0; i < nwords; ++i) { rtx targ_piece = operand_subword (target, i, 1, mode); rtx op0_piece = operand_subword_force (op0, i, mode); if (i == word) { if (!op0_is_abs) op0_piece = expand_binop (imode, and_optab, op0_piece, immed_wide_int_const (~mask, imode), NULL_RTX, 1, OPTAB_LIB_WIDEN); op1 = expand_binop (imode, and_optab, operand_subword_force (op1, i, mode), immed_wide_int_const (mask, imode), NULL_RTX, 1, OPTAB_LIB_WIDEN); temp = expand_binop (imode, ior_optab, op0_piece, op1, targ_piece, 1, OPTAB_LIB_WIDEN); if (temp != targ_piece) emit_move_insn (targ_piece, temp); } else emit_move_insn (targ_piece, op0_piece); } insns = get_insns (); end_sequence (); emit_insn (insns); } else { op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1), immed_wide_int_const (mask, imode), NULL_RTX, 1, OPTAB_LIB_WIDEN); op0 = gen_lowpart (imode, op0); if (!op0_is_abs) op0 = expand_binop (imode, and_optab, op0, immed_wide_int_const (~mask, imode), NULL_RTX, 1, OPTAB_LIB_WIDEN); temp = expand_binop (imode, ior_optab, op0, op1, gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN); target = lowpart_subreg_maybe_copy (mode, temp, imode); } return target; } /* Expand the C99 copysign operation. OP0 and OP1 must be the same scalar floating point mode. Return NULL if we do not know how to expand the operation inline. */ rtx expand_copysign (rtx op0, rtx op1, rtx target) { enum machine_mode mode = GET_MODE (op0); const struct real_format *fmt; bool op0_is_abs; rtx temp; gcc_assert (SCALAR_FLOAT_MODE_P (mode)); gcc_assert (GET_MODE (op1) == mode); /* First try to do it with a special instruction. */ temp = expand_binop (mode, copysign_optab, op0, op1, target, 0, OPTAB_DIRECT); if (temp) return temp; fmt = REAL_MODE_FORMAT (mode); if (fmt == NULL || !fmt->has_signed_zero) return NULL_RTX; op0_is_abs = false; if (CONST_DOUBLE_AS_FLOAT_P (op0)) { if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0))) op0 = simplify_unary_operation (ABS, mode, op0, mode); op0_is_abs = true; } if (fmt->signbit_ro >= 0 && (CONST_DOUBLE_AS_FLOAT_P (op0) || (optab_handler (neg_optab, mode) != CODE_FOR_nothing && optab_handler (abs_optab, mode) != CODE_FOR_nothing))) { temp = expand_copysign_absneg (mode, op0, op1, target, fmt->signbit_ro, op0_is_abs); if (temp) return temp; } if (fmt->signbit_rw < 0) return NULL_RTX; return expand_copysign_bit (mode, op0, op1, target, fmt->signbit_rw, op0_is_abs); } /* Generate an instruction whose insn-code is INSN_CODE, with two operands: an output TARGET and an input OP0. TARGET *must* be nonzero, and the output is always stored there. CODE is an rtx code such that (CODE OP0) is an rtx that describes the value that is stored into TARGET. Return false if expansion failed. */ bool maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code) { struct expand_operand ops[2]; rtx pat; create_output_operand (&ops[0], target, GET_MODE (target)); create_input_operand (&ops[1], op0, GET_MODE (op0)); pat = maybe_gen_insn (icode, 2, ops); if (!pat) return false; if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN) add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX); emit_insn (pat); if (ops[0].value != target) emit_move_insn (target, ops[0].value); return true; } /* Generate an instruction whose insn-code is INSN_CODE, with two operands: an output TARGET and an input OP0. TARGET *must* be nonzero, and the output is always stored there. CODE is an rtx code such that (CODE OP0) is an rtx that describes the value that is stored into TARGET. */ void emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code) { bool ok = maybe_emit_unop_insn (icode, target, op0, code); gcc_assert (ok); } struct no_conflict_data { rtx target, first, insn; bool must_stay; }; /* Called via note_stores by emit_libcall_block. Set P->must_stay if the currently examined clobber / store has to stay in the list of insns that constitute the actual libcall block. */ static void no_conflict_move_test (rtx dest, const_rtx set, void *p0) { struct no_conflict_data *p= (struct no_conflict_data *) p0; /* If this inns directly contributes to setting the target, it must stay. */ if (reg_overlap_mentioned_p (p->target, dest)) p->must_stay = true; /* If we haven't committed to keeping any other insns in the list yet, there is nothing more to check. */ else if (p->insn == p->first) return; /* If this insn sets / clobbers a register that feeds one of the insns already in the list, this insn has to stay too. */ else if (reg_overlap_mentioned_p (dest, PATTERN (p->first)) || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest))) || reg_used_between_p (dest, p->first, p->insn) /* Likewise if this insn depends on a register set by a previous insn in the list, or if it sets a result (presumably a hard register) that is set or clobbered by a previous insn. N.B. the modified_*_p (SET_DEST...) tests applied to a MEM SET_DEST perform the former check on the address, and the latter check on the MEM. */ || (GET_CODE (set) == SET && (modified_in_p (SET_SRC (set), p->first) || modified_in_p (SET_DEST (set), p->first) || modified_between_p (SET_SRC (set), p->first, p->insn) || modified_between_p (SET_DEST (set), p->first, p->insn)))) p->must_stay = true; } /* Emit code to make a call to a constant function or a library call. INSNS is a list containing all insns emitted in the call. These insns leave the result in RESULT. Our block is to copy RESULT to TARGET, which is logically equivalent to EQUIV. We first emit any insns that set a pseudo on the assumption that these are loading constants into registers; doing so allows them to be safely cse'ed between blocks. Then we emit all the other insns in the block, followed by an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL note with an operand of EQUIV. */ static void emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv, bool equiv_may_trap) { rtx final_dest = target; rtx next, last, insn; /* If this is a reg with REG_USERVAR_P set, then it could possibly turn into a MEM later. Protect the libcall block from this change. */ if (! REG_P (target) || REG_USERVAR_P (target)) target = gen_reg_rtx (GET_MODE (target)); /* If we're using non-call exceptions, a libcall corresponding to an operation that may trap may also trap. */ /* ??? See the comment in front of make_reg_eh_region_note. */ if (cfun->can_throw_non_call_exceptions && (equiv_may_trap || may_trap_p (equiv))) { for (insn = insns; insn; insn = NEXT_INSN (insn)) if (CALL_P (insn)) { rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); if (note) { int lp_nr = INTVAL (XEXP (note, 0)); if (lp_nr == 0 || lp_nr == INT_MIN) remove_note (insn, note); } } } else { /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION reg note to indicate that this call cannot throw or execute a nonlocal goto (unless there is already a REG_EH_REGION note, in which case we update it). */ for (insn = insns; insn; insn = NEXT_INSN (insn)) if (CALL_P (insn)) make_reg_eh_region_note_nothrow_nononlocal (insn); } /* First emit all insns that set pseudos. Remove them from the list as we go. Avoid insns that set pseudos which were referenced in previous insns. These can be generated by move_by_pieces, for example, to update an address. Similarly, avoid insns that reference things set in previous insns. */ for (insn = insns; insn; insn = next) { rtx set = single_set (insn); next = NEXT_INSN (insn); if (set != 0 && REG_P (SET_DEST (set)) && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) { struct no_conflict_data data; data.target = const0_rtx; data.first = insns; data.insn = insn; data.must_stay = 0; note_stores (PATTERN (insn), no_conflict_move_test, &data); if (! data.must_stay) { if (PREV_INSN (insn)) NEXT_INSN (PREV_INSN (insn)) = next; else insns = next; if (next) PREV_INSN (next) = PREV_INSN (insn); add_insn (insn); } } /* Some ports use a loop to copy large arguments onto the stack. Don't move anything outside such a loop. */ if (LABEL_P (insn)) break; } /* Write the remaining insns followed by the final copy. */ for (insn = insns; insn; insn = next) { next = NEXT_INSN (insn); add_insn (insn); } last = emit_move_insn (target, result); set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target); if (final_dest != target) emit_move_insn (final_dest, target); } void emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv) { emit_libcall_block_1 (insns, target, result, equiv, false); } /* Nonzero if we can perform a comparison of mode MODE straightforwardly. PURPOSE describes how this comparison will be used. CODE is the rtx comparison code we will be using. ??? Actually, CODE is slightly weaker than that. A target is still required to implement all of the normal bcc operations, but not required to implement all (or any) of the unordered bcc operations. */ int can_compare_p (enum rtx_code code, enum machine_mode mode, enum can_compare_purpose purpose) { rtx test; test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx); do { enum insn_code icode; if (purpose == ccp_jump && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing && insn_operand_matches (icode, 0, test)) return 1; if (purpose == ccp_store_flag && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing && insn_operand_matches (icode, 1, test)) return 1; if (purpose == ccp_cmov && optab_handler (cmov_optab, mode) != CODE_FOR_nothing) return 1; mode = GET_MODE_WIDER_MODE (mode); PUT_MODE (test, mode); } while (mode != VOIDmode); return 0; } /* This function is called when we are going to emit a compare instruction that compares the values found in *PX and *PY, using the rtl operator COMPARISON. *PMODE is the mode of the inputs (in case they are const_int). *PUNSIGNEDP nonzero says that the operands are unsigned; this matters if they need to be widened (as given by METHODS). If they have mode BLKmode, then SIZE specifies the size of both operands. This function performs all the setup necessary so that the caller only has to emit a single comparison insn. This setup can involve doing a BLKmode comparison or emitting a library call to perform the comparison if no insn is available to handle it. The values which are passed in through pointers can be modified; the caller should perform the comparison on the modified values. Constant comparisons must have already been folded. */ static void prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size, int unsignedp, enum optab_methods methods, rtx *ptest, enum machine_mode *pmode) { enum machine_mode mode = *pmode; rtx libfunc, test; enum machine_mode cmp_mode; enum mode_class mclass; /* The other methods are not needed. */ gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN); /* If we are optimizing, force expensive constants into a register. */ if (CONSTANT_P (x) && optimize && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (1))) x = force_reg (mode, x); if (CONSTANT_P (y) && optimize && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (1))) y = force_reg (mode, y); #ifdef HAVE_cc0 /* Make sure if we have a canonical comparison. The RTL documentation states that canonical comparisons are required only for targets which have cc0. */ gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y)); #endif /* Don't let both operands fail to indicate the mode. */ if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode) x = force_reg (mode, x); if (mode == VOIDmode) mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y); /* Handle all BLKmode compares. */ if (mode == BLKmode) { enum machine_mode result_mode; enum insn_code cmp_code; tree length_type; rtx libfunc; rtx result; rtx opalign = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT); gcc_assert (size); /* Try to use a memory block compare insn - either cmpstr or cmpmem will do. */ for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); cmp_mode != VOIDmode; cmp_mode = GET_MODE_WIDER_MODE (cmp_mode)) { cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode); if (cmp_code == CODE_FOR_nothing) cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode); if (cmp_code == CODE_FOR_nothing) cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode); if (cmp_code == CODE_FOR_nothing) continue; /* Must make sure the size fits the insn's mode. */ if ((CONST_INT_P (size) && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode))) || (GET_MODE_BITSIZE (GET_MODE (size)) > GET_MODE_BITSIZE (cmp_mode))) continue; result_mode = insn_data[cmp_code].operand[0].mode; result = gen_reg_rtx (result_mode); size = convert_to_mode (cmp_mode, size, 1); emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign)); *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx); *pmode = result_mode; return; } if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN) goto fail; /* Otherwise call a library function, memcmp. */ libfunc = memcmp_libfunc; length_type = sizetype; result_mode = TYPE_MODE (integer_type_node); cmp_mode = TYPE_MODE (length_type); size = convert_to_mode (TYPE_MODE (length_type), size, TYPE_UNSIGNED (length_type)); result = emit_library_call_value (libfunc, 0, LCT_PURE, result_mode, 3, XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, size, cmp_mode); x = result; y = const0_rtx; mode = result_mode; methods = OPTAB_LIB_WIDEN; unsignedp = false; } /* Don't allow operands to the compare to trap, as that can put the compare and branch in different basic blocks. */ if (cfun->can_throw_non_call_exceptions) { if (may_trap_p (x)) x = force_reg (mode, x); if (may_trap_p (y)) y = force_reg (mode, y); } if (GET_MODE_CLASS (mode) == MODE_CC) { gcc_assert (can_compare_p (comparison, CCmode, ccp_jump)); *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y); return; } mclass = GET_MODE_CLASS (mode); test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y); cmp_mode = mode; do { enum insn_code icode; icode = optab_handler (cbranch_optab, cmp_mode); if (icode != CODE_FOR_nothing && insn_operand_matches (icode, 0, test)) { rtx last = get_last_insn (); rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp); rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp); if (op0 && op1 && insn_operand_matches (icode, 1, op0) && insn_operand_matches (icode, 2, op1)) { XEXP (test, 0) = op0; XEXP (test, 1) = op1; *ptest = test; *pmode = cmp_mode; return; } delete_insns_since (last); } if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass)) break; cmp_mode = GET_MODE_WIDER_MODE (cmp_mode); } while (cmp_mode != VOIDmode); if (methods != OPTAB_LIB_WIDEN) goto fail; if (!SCALAR_FLOAT_MODE_P (mode)) { rtx result; enum machine_mode ret_mode; /* Handle a libcall just for the mode we are using. */ libfunc = optab_libfunc (cmp_optab, mode); gcc_assert (libfunc); /* If we want unsigned, and this mode has a distinct unsigned comparison routine, use that. */ if (unsignedp) { rtx ulibfunc = optab_libfunc (ucmp_optab, mode); if (ulibfunc) libfunc = ulibfunc; } ret_mode = targetm.libgcc_cmp_return_mode (); result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, ret_mode, 2, x, mode, y, mode); /* There are two kinds of comparison routines. Biased routines return 0/1/2, and unbiased routines return -1/0/1. Other parts of gcc expect that the comparison operation is equivalent to the modified comparison. For signed comparisons compare the result against 1 in the biased case, and zero in the unbiased case. For unsigned comparisons always compare against 1 after biasing the unbiased result by adding 1. This gives us a way to represent LTU. The comparisons in the fixed-point helper library are always biased. */ x = result; y = const1_rtx; if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode)) { if (unsignedp) x = plus_constant (ret_mode, result, 1); else y = const0_rtx; } *pmode = word_mode; prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods, ptest, pmode); } else prepare_float_lib_cmp (x, y, comparison, ptest, pmode); return; fail: *ptest = NULL_RTX; } /* Before emitting an insn with code ICODE, make sure that X, which is going to be used for operand OPNUM of the insn, is converted from mode MODE to WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and that it is accepted by the operand predicate. Return the new value. */ rtx prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode, enum machine_mode wider_mode, int unsignedp) { if (mode != wider_mode) x = convert_modes (wider_mode, mode, x, unsignedp); if (!insn_operand_matches (icode, opnum, x)) { if (reload_completed) return NULL_RTX; x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x); } return x; } /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know we can do the branch. */ static void emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob) { enum machine_mode optab_mode; enum mode_class mclass; enum insn_code icode; rtx insn; mclass = GET_MODE_CLASS (mode); optab_mode = (mclass == MODE_CC) ? CCmode : mode; icode = optab_handler (cbranch_optab, optab_mode); gcc_assert (icode != CODE_FOR_nothing); gcc_assert (insn_operand_matches (icode, 0, test)); insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label)); if (prob != -1 && profile_status_for_fn (cfun) != PROFILE_ABSENT && insn && JUMP_P (insn) && any_condjump_p (insn) && !find_reg_note (insn, REG_BR_PROB, 0)) add_int_reg_note (insn, REG_BR_PROB, prob); } /* Generate code to compare X with Y so that the condition codes are set and to jump to LABEL if the condition is true. If X is a constant and Y is not a constant, then the comparison is swapped to ensure that the comparison RTL has the canonical form. UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they need to be widened. UNSIGNEDP is also used to select the proper branch condition code. If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y. MODE is the mode of the inputs (in case they are const_int). COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will be potentially converted into an unsigned variant based on UNSIGNEDP to select a proper jump instruction. PROB is the probability of jumping to LABEL. */ void emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size, enum machine_mode mode, int unsignedp, rtx label, int prob) { rtx op0 = x, op1 = y; rtx test; /* Swap operands and condition to ensure canonical RTL. */ if (swap_commutative_operands_p (x, y) && can_compare_p (swap_condition (comparison), mode, ccp_jump)) { op0 = y, op1 = x; comparison = swap_condition (comparison); } /* If OP0 is still a constant, then both X and Y must be constants or the opposite comparison is not supported. Force X into a register to create canonical RTL. */ if (CONSTANT_P (op0)) op0 = force_reg (mode, op0); if (unsignedp) comparison = unsigned_condition (comparison); prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN, &test, &mode); emit_cmp_and_jump_insn_1 (test, mode, label, prob); } /* Emit a library call comparison between floating point X and Y. COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */ static void prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison, rtx *ptest, enum machine_mode *pmode) { enum rtx_code swapped = swap_condition (comparison); enum rtx_code reversed = reverse_condition_maybe_unordered (comparison); enum machine_mode orig_mode = GET_MODE (x); enum machine_mode mode, cmp_mode; rtx true_rtx, false_rtx; rtx value, target, insns, equiv; rtx libfunc = 0; bool reversed_p = false; cmp_mode = targetm.libgcc_cmp_return_mode (); for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) { if (code_to_optab (comparison) && (libfunc = optab_libfunc (code_to_optab (comparison), mode))) break; if (code_to_optab (swapped) && (libfunc = optab_libfunc (code_to_optab (swapped), mode))) { rtx tmp; tmp = x; x = y; y = tmp; comparison = swapped; break; } if (code_to_optab (reversed) && (libfunc = optab_libfunc (code_to_optab (reversed), mode))) { comparison = reversed; reversed_p = true; break; } } gcc_assert (mode != VOIDmode); if (mode != orig_mode) { x = convert_to_mode (mode, x, 0); y = convert_to_mode (mode, y, 0); } /* Attach a REG_EQUAL note describing the semantics of the libcall to the RTL. The allows the RTL optimizers to delete the libcall if the condition can be determined at compile-time. */ if (comparison == UNORDERED || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)) { true_rtx = const_true_rtx; false_rtx = const0_rtx; } else { switch (comparison) { case EQ: true_rtx = const0_rtx; false_rtx = const_true_rtx; break; case NE: true_rtx = const_true_rtx; false_rtx = const0_rtx; break; case GT: true_rtx = const1_rtx; false_rtx = const0_rtx; break; case GE: true_rtx = const0_rtx; false_rtx = constm1_rtx; break; case LT: true_rtx = constm1_rtx; false_rtx = const0_rtx; break; case LE: true_rtx = const0_rtx; false_rtx = const1_rtx; break; default: gcc_unreachable (); } } if (comparison == UNORDERED) { rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x); equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y); equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode, temp, const_true_rtx, equiv); } else { equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y); if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)) equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode, equiv, true_rtx, false_rtx); } start_sequence (); value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, cmp_mode, 2, x, mode, y, mode); insns = get_insns (); end_sequence (); target = gen_reg_rtx (cmp_mode); emit_libcall_block (insns, target, value, equiv); if (comparison == UNORDERED || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison) || reversed_p) *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx); else *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx); *pmode = cmp_mode; } /* Generate code to indirectly jump to a location given in the rtx LOC. */ void emit_indirect_jump (rtx loc) { struct expand_operand ops[1]; create_address_operand (&ops[0], loc); expand_jump_insn (CODE_FOR_indirect_jump, 1, ops); emit_barrier (); } #ifdef HAVE_conditional_move /* Emit a conditional move instruction if the machine supports one for that condition and machine mode. OP0 and OP1 are the operands that should be compared using CODE. CMODE is the mode to use should they be constants. If it is VOIDmode, they cannot both be constants. OP2 should be stored in TARGET if the comparison is true, otherwise OP3 should be stored there. MODE is the mode to use should they be constants. If it is VOIDmode, they cannot both be constants. The result is either TARGET (perhaps modified) or NULL_RTX if the operation is not supported. */ rtx emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1, enum machine_mode cmode, rtx op2, rtx op3, enum machine_mode mode, int unsignedp) { rtx tem, comparison, last; enum insn_code icode; enum rtx_code reversed; /* If one operand is constant, make it the second one. Only do this if the other operand is not constant as well. */ if (swap_commutative_operands_p (op0, op1)) { tem = op0; op0 = op1; op1 = tem; code = swap_condition (code); } /* get_condition will prefer to generate LT and GT even if the old comparison was against zero, so undo that canonicalization here since comparisons against zero are cheaper. */ if (code == LT && op1 == const1_rtx) code = LE, op1 = const0_rtx; else if (code == GT && op1 == constm1_rtx) code = GE, op1 = const0_rtx; if (cmode == VOIDmode) cmode = GET_MODE (op0); if (swap_commutative_operands_p (op2, op3) && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL)) != UNKNOWN)) { tem = op2; op2 = op3; op3 = tem; code = reversed; } if (mode == VOIDmode) mode = GET_MODE (op2); icode = direct_optab_handler (movcc_optab, mode); if (icode == CODE_FOR_nothing) return 0; if (!target) target = gen_reg_rtx (mode); code = unsignedp ? unsigned_condition (code) : code; comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1); /* We can get const0_rtx or const_true_rtx in some circumstances. Just return NULL and let the caller figure out how best to deal with this situation. */ if (!COMPARISON_P (comparison)) return NULL_RTX; saved_pending_stack_adjust save; save_pending_stack_adjust (&save); last = get_last_insn (); do_pending_stack_adjust (); prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1), GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN, &comparison, &cmode); if (comparison) { struct expand_operand ops[4]; create_output_operand (&ops[0], target, mode); create_fixed_operand (&ops[1], comparison); create_input_operand (&ops[2], op2, mode); create_input_operand (&ops[3], op3, mode); if (maybe_expand_insn (icode, 4, ops)) { if (ops[0].value != target) convert_move (target, ops[0].value, false); return target; } } delete_insns_since (last); restore_pending_stack_adjust (&save); return NULL_RTX; } /* Return nonzero if a conditional move of mode MODE is supported. This function is for combine so it can tell whether an insn that looks like a conditional move is actually supported by the hardware. If we guess wrong we lose a bit on optimization, but that's it. */ /* ??? sparc64 supports conditionally moving integers values based on fp comparisons, and vice versa. How do we handle them? */ int can_conditionally_move_p (enum machine_mode mode) { if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing) return 1; return 0; } #endif /* HAVE_conditional_move */ /* Emit a conditional addition instruction if the machine supports one for that condition and machine mode. OP0 and OP1 are the operands that should be compared using CODE. CMODE is the mode to use should they be constants. If it is VOIDmode, they cannot both be constants. OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3 should be stored there. MODE is the mode to use should they be constants. If it is VOIDmode, they cannot both be constants. The result is either TARGET (perhaps modified) or NULL_RTX if the operation is not supported. */ rtx emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1, enum machine_mode cmode, rtx op2, rtx op3, enum machine_mode mode, int unsignedp) { rtx tem, comparison, last; enum insn_code icode; /* If one operand is constant, make it the second one. Only do this if the other operand is not constant as well. */ if (swap_commutative_operands_p (op0, op1)) { tem = op0; op0 = op1; op1 = tem; code = swap_condition (code); } /* get_condition will prefer to generate LT and GT even if the old comparison was against zero, so undo that canonicalization here since comparisons against zero are cheaper. */ if (code == LT && op1 == const1_rtx) code = LE, op1 = const0_rtx; else if (code == GT && op1 == constm1_rtx) code = GE, op1 = const0_rtx; if (cmode == VOIDmode) cmode = GET_MODE (op0); if (mode == VOIDmode) mode = GET_MODE (op2); icode = optab_handler (addcc_optab, mode); if (icode == CODE_FOR_nothing) return 0; if (!target) target = gen_reg_rtx (mode); code = unsignedp ? unsigned_condition (code) : code; comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1); /* We can get const0_rtx or const_true_rtx in some circumstances. Just return NULL and let the caller figure out how best to deal with this situation. */ if (!COMPARISON_P (comparison)) return NULL_RTX; do_pending_stack_adjust (); last = get_last_insn (); prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1), GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN, &comparison, &cmode); if (comparison) { struct expand_operand ops[4]; create_output_operand (&ops[0], target, mode); create_fixed_operand (&ops[1], comparison); create_input_operand (&ops[2], op2, mode); create_input_operand (&ops[3], op3, mode); if (maybe_expand_insn (icode, 4, ops)) { if (ops[0].value != target) convert_move (target, ops[0].value, false); return target; } } delete_insns_since (last); return NULL_RTX; } /* These functions attempt to generate an insn body, rather than emitting the insn, but if the gen function already emits them, we make no attempt to turn them back into naked patterns. */ /* Generate and return an insn body to add Y to X. */ rtx gen_add2_insn (rtx x, rtx y) { enum insn_code icode = optab_handler (add_optab, GET_MODE (x)); gcc_assert (insn_operand_matches (icode, 0, x)); gcc_assert (insn_operand_matches (icode, 1, x)); gcc_assert (insn_operand_matches (icode, 2, y)); return GEN_FCN (icode) (x, x, y); } /* Generate and return an insn body to add r1 and c, storing the result in r0. */ rtx gen_add3_insn (rtx r0, rtx r1, rtx c) { enum insn_code icode = optab_handler (add_optab, GET_MODE (r0)); if (icode == CODE_FOR_nothing || !insn_operand_matches (icode, 0, r0) || !insn_operand_matches (icode, 1, r1) || !insn_operand_matches (icode, 2, c)) return NULL_RTX; return GEN_FCN (icode) (r0, r1, c); } int have_add2_insn (rtx x, rtx y) { enum insn_code icode; gcc_assert (GET_MODE (x) != VOIDmode); icode = optab_handler (add_optab, GET_MODE (x)); if (icode == CODE_FOR_nothing) return 0; if (!insn_operand_matches (icode, 0, x) || !insn_operand_matches (icode, 1, x) || !insn_operand_matches (icode, 2, y)) return 0; return 1; } /* Generate and return an insn body to subtract Y from X. */ rtx gen_sub2_insn (rtx x, rtx y) { enum insn_code icode = optab_handler (sub_optab, GET_MODE (x)); gcc_assert (insn_operand_matches (icode, 0, x)); gcc_assert (insn_operand_matches (icode, 1, x)); gcc_assert (insn_operand_matches (icode, 2, y)); return GEN_FCN (icode) (x, x, y); } /* Generate and return an insn body to subtract r1 and c, storing the result in r0. */ rtx gen_sub3_insn (rtx r0, rtx r1, rtx c) { enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0)); if (icode == CODE_FOR_nothing || !insn_operand_matches (icode, 0, r0) || !insn_operand_matches (icode, 1, r1) || !insn_operand_matches (icode, 2, c)) return NULL_RTX; return GEN_FCN (icode) (r0, r1, c); } int have_sub2_insn (rtx x, rtx y) { enum insn_code icode; gcc_assert (GET_MODE (x) != VOIDmode); icode = optab_handler (sub_optab, GET_MODE (x)); if (icode == CODE_FOR_nothing) return 0; if (!insn_operand_matches (icode, 0, x) || !insn_operand_matches (icode, 1, x) || !insn_operand_matches (icode, 2, y)) return 0; return 1; } /* Generate the body of an instruction to copy Y into X. It may be a list of insns, if one insn isn't enough. */ rtx gen_move_insn (rtx x, rtx y) { rtx seq; start_sequence (); emit_move_insn_1 (x, y); seq = get_insns (); end_sequence (); return seq; } /* Return the insn code used to extend FROM_MODE to TO_MODE. UNSIGNEDP specifies zero-extension instead of sign-extension. If no such operation exists, CODE_FOR_nothing will be returned. */ enum insn_code can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode, int unsignedp) { convert_optab tab; #ifdef HAVE_ptr_extend if (unsignedp < 0) return CODE_FOR_ptr_extend; #endif tab = unsignedp ? zext_optab : sext_optab; return convert_optab_handler (tab, to_mode, from_mode); } /* Generate the body of an insn to extend Y (with mode MFROM) into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ rtx gen_extend_insn (rtx x, rtx y, enum machine_mode mto, enum machine_mode mfrom, int unsignedp) { enum insn_code icode = can_extend_p (mto, mfrom, unsignedp); return GEN_FCN (icode) (x, y); } /* can_fix_p and can_float_p say whether the target machine can directly convert a given fixed point type to a given floating point type, or vice versa. The returned value is the CODE_FOR_... value to use, or CODE_FOR_nothing if these modes cannot be directly converted. *TRUNCP_PTR is set to 1 if it is necessary to output an explicit FTRUNC insn before the fix insn; otherwise 0. */ static enum insn_code can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode, int unsignedp, int *truncp_ptr) { convert_optab tab; enum insn_code icode; tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab; icode = convert_optab_handler (tab, fixmode, fltmode); if (icode != CODE_FOR_nothing) { *truncp_ptr = 0; return icode; } /* FIXME: This requires a port to define both FIX and FTRUNC pattern for this to work. We need to rework the fix* and ftrunc* patterns and documentation. */ tab = unsignedp ? ufix_optab : sfix_optab; icode = convert_optab_handler (tab, fixmode, fltmode); if (icode != CODE_FOR_nothing && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing) { *truncp_ptr = 1; return icode; } *truncp_ptr = 0; return CODE_FOR_nothing; } enum insn_code can_float_p (enum machine_mode fltmode, enum machine_mode fixmode, int unsignedp) { convert_optab tab; tab = unsignedp ? ufloat_optab : sfloat_optab; return convert_optab_handler (tab, fltmode, fixmode); } /* Function supportable_convert_operation Check whether an operation represented by the code CODE is a convert operation that is supported by the target platform in vector form (i.e., when operating on arguments of type VECTYPE_IN producing a result of type VECTYPE_OUT). Convert operations we currently support directly are FIX_TRUNC and FLOAT. This function checks if these operations are supported by the target platform either directly (via vector tree-codes), or via target builtins. Output: - CODE1 is code of vector operation to be used when vectorizing the operation, if available. - DECL is decl of target builtin functions to be used when vectorizing the operation, if available. In this case, CODE1 is CALL_EXPR. */ bool supportable_convert_operation (enum tree_code code, tree vectype_out, tree vectype_in, tree *decl, enum tree_code *code1) { enum machine_mode m1,m2; int truncp; m1 = TYPE_MODE (vectype_out); m2 = TYPE_MODE (vectype_in); /* First check if we can done conversion directly. */ if ((code == FIX_TRUNC_EXPR && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp) != CODE_FOR_nothing) || (code == FLOAT_EXPR && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in)) != CODE_FOR_nothing)) { *code1 = code; return true; } /* Now check for builtin. */ if (targetm.vectorize.builtin_conversion && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in)) { *code1 = CALL_EXPR; *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in); return true; } return false; } /* Generate code to convert FROM to floating point and store in TO. FROM must be fixed point and not VOIDmode. UNSIGNEDP nonzero means regard FROM as unsigned. Normally this is done by correcting the final value if it is negative. */ void expand_float (rtx to, rtx from, int unsignedp) { enum insn_code icode; rtx target = to; enum machine_mode fmode, imode; bool can_do_signed = false; /* Crash now, because we won't be able to decide which mode to use. */ gcc_assert (GET_MODE (from) != VOIDmode); /* Look for an insn to do the conversion. Do it in the specified modes if possible; otherwise convert either input, output or both to wider mode. If the integer mode is wider than the mode of FROM, we can do the conversion signed even if the input is unsigned. */ for (fmode = GET_MODE (to); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) for (imode = GET_MODE (from); imode != VOIDmode; imode = GET_MODE_WIDER_MODE (imode)) { int doing_unsigned = unsignedp; if (fmode != GET_MODE (to) && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from))) continue; icode = can_float_p (fmode, imode, unsignedp); if (icode == CODE_FOR_nothing && unsignedp) { enum insn_code scode = can_float_p (fmode, imode, 0); if (scode != CODE_FOR_nothing) can_do_signed = true; if (imode != GET_MODE (from)) icode = scode, doing_unsigned = 0; } if (icode != CODE_FOR_nothing) { if (imode != GET_MODE (from)) from = convert_to_mode (imode, from, unsignedp); if (fmode != GET_MODE (to)) target = gen_reg_rtx (fmode); emit_unop_insn (icode, target, from, doing_unsigned ? UNSIGNED_FLOAT : FLOAT); if (target != to) convert_move (to, target, 0); return; } } /* Unsigned integer, and no way to convert directly. Convert as signed, then unconditionally adjust the result. */ if (unsignedp && can_do_signed) { rtx label = gen_label_rtx (); rtx temp; REAL_VALUE_TYPE offset; /* Look for a usable floating mode FMODE wider than the source and at least as wide as the target. Using FMODE will avoid rounding woes with unsigned values greater than the signed maximum value. */ for (fmode = GET_MODE (to); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode) && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing) break; if (fmode == VOIDmode) { /* There is no such mode. Pretend the target is wide enough. */ fmode = GET_MODE (to); /* Avoid double-rounding when TO is narrower than FROM. */ if ((significand_size (fmode) + 1) < GET_MODE_PRECISION (GET_MODE (from))) { rtx temp1; rtx neglabel = gen_label_rtx (); /* Don't use TARGET if it isn't a register, is a hard register, or is the wrong mode. */ if (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER || GET_MODE (target) != fmode) target = gen_reg_rtx (fmode); imode = GET_MODE (from); do_pending_stack_adjust (); /* Test whether the sign bit is set. */ emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode, 0, neglabel); /* The sign bit is not set. Convert as signed. */ expand_float (target, from, 0); emit_jump_insn (gen_jump (label)); emit_barrier (); /* The sign bit is set. Convert to a usable (positive signed) value by shifting right one bit, while remembering if a nonzero bit was shifted out; i.e., compute (from & 1) | (from >> 1). */ emit_label (neglabel); temp = expand_binop (imode, and_optab, from, const1_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN); temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1); temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1, OPTAB_LIB_WIDEN); expand_float (target, temp, 0); /* Multiply by 2 to undo the shift above. */ temp = expand_binop (fmode, add_optab, target, target, target, 0, OPTAB_LIB_WIDEN); if (temp != target) emit_move_insn (target, temp); do_pending_stack_adjust (); emit_label (label); goto done; } } /* If we are about to do some arithmetic to correct for an unsigned operand, do it in a pseudo-register. */ if (GET_MODE (to) != fmode || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER) target = gen_reg_rtx (fmode); /* Convert as signed integer to floating. */ expand_float (target, from, 0); /* If FROM is negative (and therefore TO is negative), correct its value by 2**bitwidth. */ do_pending_stack_adjust (); emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, label); real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode); temp = expand_binop (fmode, add_optab, target, CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode), target, 0, OPTAB_LIB_WIDEN); if (temp != target) emit_move_insn (target, temp); do_pending_stack_adjust (); emit_label (label); goto done; } /* No hardware instruction available; call a library routine. */ { rtx libfunc; rtx insns; rtx value; convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab; if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) from = convert_to_mode (SImode, from, unsignedp); libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from)); gcc_assert (libfunc); start_sequence (); value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, GET_MODE (to), 1, from, GET_MODE (from)); insns = get_insns (); end_sequence (); emit_libcall_block (insns, target, value, gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT, GET_MODE (to), from)); } done: /* Copy result to requested destination if we have been computing in a temp location. */ if (target != to) { if (GET_MODE (target) == GET_MODE (to)) emit_move_insn (to, target); else convert_move (to, target, 0); } } /* Generate code to convert FROM to fixed point and store in TO. FROM must be floating point. */ void expand_fix (rtx to, rtx from, int unsignedp) { enum insn_code icode; rtx target = to; enum machine_mode fmode, imode; int must_trunc = 0; /* We first try to find a pair of modes, one real and one integer, at least as wide as FROM and TO, respectively, in which we can open-code this conversion. If the integer mode is wider than the mode of TO, we can do the conversion either signed or unsigned. */ for (fmode = GET_MODE (from); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) for (imode = GET_MODE (to); imode != VOIDmode; imode = GET_MODE_WIDER_MODE (imode)) { int doing_unsigned = unsignedp; icode = can_fix_p (imode, fmode, unsignedp, &must_trunc); if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp) icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0; if (icode != CODE_FOR_nothing) { rtx last = get_last_insn (); if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); if (must_trunc) { rtx temp = gen_reg_rtx (GET_MODE (from)); from = expand_unop (GET_MODE (from), ftrunc_optab, from, temp, 0); } if (imode != GET_MODE (to)) target = gen_reg_rtx (imode); if (maybe_emit_unop_insn (icode, target, from, doing_unsigned ? UNSIGNED_FIX : FIX)) { if (target != to) convert_move (to, target, unsignedp); return; } delete_insns_since (last); } } /* For an unsigned conversion, there is one more way to do it. If we have a signed conversion, we generate code that compares the real value to the largest representable positive number. If if is smaller, the conversion is done normally. Otherwise, subtract one plus the highest signed number, convert, and add it back. We only need to check all real modes, since we know we didn't find anything with a wider integer mode. This code used to extend FP value into mode wider than the destination. This is needed for decimal float modes which cannot accurately represent one plus the highest signed number of the same size, but not for binary modes. Consider, for instance conversion from SFmode into DImode. The hot path through the code is dealing with inputs smaller than 2^63 and doing just the conversion, so there is no bits to lose. In the other path we know the value is positive in the range 2^63..2^64-1 inclusive. (as for other input overflow happens and result is undefined) So we know that the most important bit set in mantissa corresponds to 2^63. The subtraction of 2^63 should not generate any rounding as it simply clears out that bit. The rest is trivial. */ if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT) for (fmode = GET_MODE (from); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc) && (!DECIMAL_FLOAT_MODE_P (fmode) || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to)))) { int bitsize; REAL_VALUE_TYPE offset; rtx limit, lab1, lab2, insn; bitsize = GET_MODE_PRECISION (GET_MODE (to)); real_2expN (&offset, bitsize - 1, fmode); limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode); lab1 = gen_label_rtx (); lab2 = gen_label_rtx (); if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); /* See if we need to do the subtraction. */ do_pending_stack_adjust (); emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from), 0, lab1); /* If not, do the signed "fix" and branch around fixup code. */ expand_fix (to, from, 0); emit_jump_insn (gen_jump (lab2)); emit_barrier (); /* Otherwise, subtract 2**(N-1), convert to signed number, then add 2**(N-1). Do the addition using XOR since this will often generate better code. */ emit_label (lab1); target = expand_binop (GET_MODE (from), sub_optab, from, limit, NULL_RTX, 0, OPTAB_LIB_WIDEN); expand_fix (to, target, 0); target = expand_binop (GET_MODE (to), xor_optab, to, gen_int_mode ((HOST_WIDE_INT) 1 << (bitsize - 1), GET_MODE (to)), to, 1, OPTAB_LIB_WIDEN); if (target != to) emit_move_insn (to, target); emit_label (lab2); if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing) { /* Make a place for a REG_NOTE and add it. */ insn = emit_move_insn (to, to); set_dst_reg_note (insn, REG_EQUAL, gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to), copy_rtx (from)), to); } return; } /* We can't do it with an insn, so use a library call. But first ensure that the mode of TO is at least as wide as SImode, since those are the only library calls we know about. */ if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode)) { target = gen_reg_rtx (SImode); expand_fix (target, from, unsignedp); } else { rtx insns; rtx value; rtx libfunc; convert_optab tab = unsignedp ? ufix_optab : sfix_optab; libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from)); gcc_assert (libfunc); start_sequence (); value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, GET_MODE (to), 1, from, GET_MODE (from)); insns = get_insns (); end_sequence (); emit_libcall_block (insns, target, value, gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX, GET_MODE (to), from)); } if (target != to) { if (GET_MODE (to) == GET_MODE (target)) emit_move_insn (to, target); else convert_move (to, target, 0); } } /* Generate code to convert FROM or TO a fixed-point. If UINTP is true, either TO or FROM is an unsigned integer. If SATP is true, we need to saturate the result. */ void expand_fixed_convert (rtx to, rtx from, int uintp, int satp) { enum machine_mode to_mode = GET_MODE (to); enum machine_mode from_mode = GET_MODE (from); convert_optab tab; enum rtx_code this_code; enum insn_code code; rtx insns, value; rtx libfunc; if (to_mode == from_mode) { emit_move_insn (to, from); return; } if (uintp) { tab = satp ? satfractuns_optab : fractuns_optab; this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT; } else { tab = satp ? satfract_optab : fract_optab; this_code = satp ? SAT_FRACT : FRACT_CONVERT; } code = convert_optab_handler (tab, to_mode, from_mode); if (code != CODE_FOR_nothing) { emit_unop_insn (code, to, from, this_code); return; } libfunc = convert_optab_libfunc (tab, to_mode, from_mode); gcc_assert (libfunc); start_sequence (); value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode, 1, from, from_mode); insns = get_insns (); end_sequence (); emit_libcall_block (insns, to, value, gen_rtx_fmt_e (optab_to_code (tab), to_mode, from)); } /* Generate code to convert FROM to fixed point and store in TO. FROM must be floating point, TO must be signed. Use the conversion optab TAB to do the conversion. */ bool expand_sfix_optab (rtx to, rtx from, convert_optab tab) { enum insn_code icode; rtx target = to; enum machine_mode fmode, imode; /* We first try to find a pair of modes, one real and one integer, at least as wide as FROM and TO, respectively, in which we can open-code this conversion. If the integer mode is wider than the mode of TO, we can do the conversion either signed or unsigned. */ for (fmode = GET_MODE (from); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) for (imode = GET_MODE (to); imode != VOIDmode; imode = GET_MODE_WIDER_MODE (imode)) { icode = convert_optab_handler (tab, imode, fmode); if (icode != CODE_FOR_nothing) { rtx last = get_last_insn (); if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); if (imode != GET_MODE (to)) target = gen_reg_rtx (imode); if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN)) { delete_insns_since (last); continue; } if (target != to) convert_move (to, target, 0); return true; } } return false; } /* Report whether we have an instruction to perform the operation specified by CODE on operands of mode MODE. */ int have_insn_for (enum rtx_code code, enum machine_mode mode) { return (code_to_optab (code) && (optab_handler (code_to_optab (code), mode) != CODE_FOR_nothing)); } /* Initialize the libfunc fields of an entire group of entries in some optab. Each entry is set equal to a string consisting of a leading pair of underscores followed by a generic operation name followed by a mode name (downshifted to lowercase) followed by a single character representing the number of operands for the given operation (which is usually one of the characters '2', '3', or '4'). OPTABLE is the table in which libfunc fields are to be initialized. OPNAME is the generic (string) name of the operation. SUFFIX is the character which specifies the number of operands for the given generic operation. MODE is the mode to generate for. */ static void gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode) { unsigned opname_len = strlen (opname); const char *mname = GET_MODE_NAME (mode); unsigned mname_len = strlen (mname); int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2; int len = prefix_len + opname_len + mname_len + 1 + 1; char *libfunc_name = XALLOCAVEC (char, len); char *p; const char *q; p = libfunc_name; *p++ = '_'; *p++ = '_'; if (targetm.libfunc_gnu_prefix) { *p++ = 'g'; *p++ = 'n'; *p++ = 'u'; *p++ = '_'; } for (q = opname; *q; ) *p++ = *q++; for (q = mname; *q; q++) *p++ = TOLOWER (*q); *p++ = suffix; *p = '\0'; set_optab_libfunc (optable, mode, ggc_alloc_string (libfunc_name, p - libfunc_name)); } /* Like gen_libfunc, but verify that integer operation is involved. */ void gen_int_libfunc (optab optable, const char *opname, char suffix, enum machine_mode mode) { int maxsize = 2 * BITS_PER_WORD; if (GET_MODE_CLASS (mode) != MODE_INT) return; if (maxsize < LONG_LONG_TYPE_SIZE) maxsize = LONG_LONG_TYPE_SIZE; if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_BITSIZE (mode) < BITS_PER_WORD || GET_MODE_BITSIZE (mode) > maxsize) return; gen_libfunc (optable, opname, suffix, mode); } /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */ void gen_fp_libfunc (optab optable, const char *opname, char suffix, enum machine_mode mode) { char *dec_opname; if (GET_MODE_CLASS (mode) == MODE_FLOAT) gen_libfunc (optable, opname, suffix, mode); if (DECIMAL_FLOAT_MODE_P (mode)) { dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname)); /* For BID support, change the name to have either a bid_ or dpd_ prefix depending on the low level floating format used. */ memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1); strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname); gen_libfunc (optable, dec_opname, suffix, mode); } } /* Like gen_libfunc, but verify that fixed-point operation is involved. */ void gen_fixed_libfunc (optab optable, const char *opname, char suffix, enum machine_mode mode) { if (!ALL_FIXED_POINT_MODE_P (mode)) return; gen_libfunc (optable, opname, suffix, mode); } /* Like gen_libfunc, but verify that signed fixed-point operation is involved. */ void gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix, enum machine_mode mode) { if (!SIGNED_FIXED_POINT_MODE_P (mode)) return; gen_libfunc (optable, opname, suffix, mode); } /* Like gen_libfunc, but verify that unsigned fixed-point operation is involved. */ void gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix, enum machine_mode mode) { if (!UNSIGNED_FIXED_POINT_MODE_P (mode)) return; gen_libfunc (optable, opname, suffix, mode); } /* Like gen_libfunc, but verify that FP or INT operation is involved. */ void gen_int_fp_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT) gen_fp_libfunc (optable, name, suffix, mode); if (INTEGRAL_MODE_P (mode)) gen_int_libfunc (optable, name, suffix, mode); } /* Like gen_libfunc, but verify that FP or INT operation is involved and add 'v' suffix for integer operation. */ void gen_intv_fp_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT) gen_fp_libfunc (optable, name, suffix, mode); if (GET_MODE_CLASS (mode) == MODE_INT) { int len = strlen (name); char *v_name = XALLOCAVEC (char, len + 2); strcpy (v_name, name); v_name[len] = 'v'; v_name[len + 1] = 0; gen_int_libfunc (optable, v_name, suffix, mode); } } /* Like gen_libfunc, but verify that FP or INT or FIXED operation is involved. */ void gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT) gen_fp_libfunc (optable, name, suffix, mode); if (INTEGRAL_MODE_P (mode)) gen_int_libfunc (optable, name, suffix, mode); if (ALL_FIXED_POINT_MODE_P (mode)) gen_fixed_libfunc (optable, name, suffix, mode); } /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is involved. */ void gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT) gen_fp_libfunc (optable, name, suffix, mode); if (INTEGRAL_MODE_P (mode)) gen_int_libfunc (optable, name, suffix, mode); if (SIGNED_FIXED_POINT_MODE_P (mode)) gen_signed_fixed_libfunc (optable, name, suffix, mode); } /* Like gen_libfunc, but verify that INT or FIXED operation is involved. */ void gen_int_fixed_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (INTEGRAL_MODE_P (mode)) gen_int_libfunc (optable, name, suffix, mode); if (ALL_FIXED_POINT_MODE_P (mode)) gen_fixed_libfunc (optable, name, suffix, mode); } /* Like gen_libfunc, but verify that INT or signed FIXED operation is involved. */ void gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (INTEGRAL_MODE_P (mode)) gen_int_libfunc (optable, name, suffix, mode); if (SIGNED_FIXED_POINT_MODE_P (mode)) gen_signed_fixed_libfunc (optable, name, suffix, mode); } /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is involved. */ void gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix, enum machine_mode mode) { if (INTEGRAL_MODE_P (mode)) gen_int_libfunc (optable, name, suffix, mode); if (UNSIGNED_FIXED_POINT_MODE_P (mode)) gen_unsigned_fixed_libfunc (optable, name, suffix, mode); } /* Initialize the libfunc fields of an entire group of entries of an inter-mode-class conversion optab. The string formation rules are similar to the ones for init_libfuncs, above, but instead of having a mode name and an operand count these functions have two mode names and no operand count. */ void gen_interclass_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { size_t opname_len = strlen (opname); size_t mname_len = 0; const char *fname, *tname; const char *q; int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2; char *libfunc_name, *suffix; char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix; char *p; /* If this is a decimal conversion, add the current BID vs. DPD prefix that depends on which underlying decimal floating point format is used. */ const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1; mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode)); nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1); nondec_name[0] = '_'; nondec_name[1] = '_'; if (targetm.libfunc_gnu_prefix) { nondec_name[2] = 'g'; nondec_name[3] = 'n'; nondec_name[4] = 'u'; nondec_name[5] = '_'; } memcpy (&nondec_name[prefix_len], opname, opname_len); nondec_suffix = nondec_name + opname_len + prefix_len; dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1); dec_name[0] = '_'; dec_name[1] = '_'; memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len); memcpy (&dec_name[2+dec_len], opname, opname_len); dec_suffix = dec_name + dec_len + opname_len + 2; fname = GET_MODE_NAME (fmode); tname = GET_MODE_NAME (tmode); if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode)) { libfunc_name = dec_name; suffix = dec_suffix; } else { libfunc_name = nondec_name; suffix = nondec_suffix; } p = suffix; for (q = fname; *q; p++, q++) *p = TOLOWER (*q); for (q = tname; *q; p++, q++) *p = TOLOWER (*q); *p = '\0'; set_conv_libfunc (tab, tmode, fmode, ggc_alloc_string (libfunc_name, p - libfunc_name)); } /* Same as gen_interclass_conv_libfunc but verify that we are producing int->fp conversion. */ void gen_int_to_fp_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (GET_MODE_CLASS (fmode) != MODE_INT) return; if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode)) return; gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* ufloat_optab is special by using floatun for FP and floatuns decimal fp naming scheme. */ void gen_ufloat_conv_libfunc (convert_optab tab, const char *opname ATTRIBUTE_UNUSED, enum machine_mode tmode, enum machine_mode fmode) { if (DECIMAL_FLOAT_MODE_P (tmode)) gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode); else gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode); } /* Same as gen_interclass_conv_libfunc but verify that we are producing fp->int conversion. */ void gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (GET_MODE_CLASS (fmode) != MODE_INT) return; if (GET_MODE_CLASS (tmode) != MODE_FLOAT) return; gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* Same as gen_interclass_conv_libfunc but verify that we are producing fp->int conversion with no decimal floating point involved. */ void gen_fp_to_int_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode)) return; if (GET_MODE_CLASS (tmode) != MODE_INT) return; gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* Initialize the libfunc fields of an of an intra-mode-class conversion optab. The string formation rules are similar to the ones for init_libfunc, above. */ void gen_intraclass_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { size_t opname_len = strlen (opname); size_t mname_len = 0; const char *fname, *tname; const char *q; int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2; char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix; char *libfunc_name, *suffix; char *p; /* If this is a decimal conversion, add the current BID vs. DPD prefix that depends on which underlying decimal floating point format is used. */ const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1; mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode)); nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1); nondec_name[0] = '_'; nondec_name[1] = '_'; if (targetm.libfunc_gnu_prefix) { nondec_name[2] = 'g'; nondec_name[3] = 'n'; nondec_name[4] = 'u'; nondec_name[5] = '_'; } memcpy (&nondec_name[prefix_len], opname, opname_len); nondec_suffix = nondec_name + opname_len + prefix_len; dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1); dec_name[0] = '_'; dec_name[1] = '_'; memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len); memcpy (&dec_name[2 + dec_len], opname, opname_len); dec_suffix = dec_name + dec_len + opname_len + 2; fname = GET_MODE_NAME (fmode); tname = GET_MODE_NAME (tmode); if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode)) { libfunc_name = dec_name; suffix = dec_suffix; } else { libfunc_name = nondec_name; suffix = nondec_suffix; } p = suffix; for (q = fname; *q; p++, q++) *p = TOLOWER (*q); for (q = tname; *q; p++, q++) *p = TOLOWER (*q); *p++ = '2'; *p = '\0'; set_conv_libfunc (tab, tmode, fmode, ggc_alloc_string (libfunc_name, p - libfunc_name)); } /* Pick proper libcall for trunc_optab. We need to chose if we do truncation or extension and interclass or intraclass. */ void gen_trunc_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode)) return; if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode)) return; if (tmode == fmode) return; if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode)) || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode))) gen_interclass_conv_libfunc (tab, opname, tmode, fmode); if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode)) return; if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && GET_MODE_CLASS (fmode) == MODE_FLOAT) || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode))) gen_intraclass_conv_libfunc (tab, opname, tmode, fmode); } /* Pick proper libcall for extend_optab. We need to chose if we do truncation or extension and interclass or intraclass. */ void gen_extend_conv_libfunc (convert_optab tab, const char *opname ATTRIBUTE_UNUSED, enum machine_mode tmode, enum machine_mode fmode) { if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode)) return; if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode)) return; if (tmode == fmode) return; if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode)) || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode))) gen_interclass_conv_libfunc (tab, opname, tmode, fmode); if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode)) return; if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && GET_MODE_CLASS (fmode) == MODE_FLOAT) || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode))) gen_intraclass_conv_libfunc (tab, opname, tmode, fmode); } /* Pick proper libcall for fract_optab. We need to chose if we do interclass or intraclass. */ void gen_fract_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (tmode == fmode) return; if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode))) return; if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode)) gen_intraclass_conv_libfunc (tab, opname, tmode, fmode); else gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* Pick proper libcall for fractuns_optab. */ void gen_fractuns_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (tmode == fmode) return; /* One mode must be a fixed-point mode, and the other must be an integer mode. */ if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT) || (ALL_FIXED_POINT_MODE_P (fmode) && GET_MODE_CLASS (tmode) == MODE_INT))) return; gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* Pick proper libcall for satfract_optab. We need to chose if we do interclass or intraclass. */ void gen_satfract_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (tmode == fmode) return; /* TMODE must be a fixed-point mode. */ if (!ALL_FIXED_POINT_MODE_P (tmode)) return; if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode)) gen_intraclass_conv_libfunc (tab, opname, tmode, fmode); else gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* Pick proper libcall for satfractuns_optab. */ void gen_satfractuns_conv_libfunc (convert_optab tab, const char *opname, enum machine_mode tmode, enum machine_mode fmode) { if (tmode == fmode) return; /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */ if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)) return; gen_interclass_conv_libfunc (tab, opname, tmode, fmode); } /* A table of previously-created libfuncs, hashed by name. */ static GTY ((param_is (union tree_node))) htab_t libfunc_decls; /* Hashtable callbacks for libfunc_decls. */ static hashval_t libfunc_decl_hash (const void *entry) { return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry)); } static int libfunc_decl_eq (const void *entry1, const void *entry2) { return DECL_NAME ((const_tree) entry1) == (const_tree) entry2; } /* Build a decl for a libfunc named NAME. */ tree build_libfunc_function (const char *name) { tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, get_identifier (name), build_function_type (integer_type_node, NULL_TREE)); /* ??? We don't have any type information except for this is a function. Pretend this is "int foo()". */ DECL_ARTIFICIAL (decl) = 1; DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; gcc_assert (DECL_ASSEMBLER_NAME (decl)); /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with are the flags assigned by targetm.encode_section_info. */ SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL); return decl; } rtx init_one_libfunc (const char *name) { tree id, decl; void **slot; hashval_t hash; if (libfunc_decls == NULL) libfunc_decls = htab_create_ggc (37, libfunc_decl_hash, libfunc_decl_eq, NULL); /* See if we have already created a libfunc decl for this function. */ id = get_identifier (name); hash = IDENTIFIER_HASH_VALUE (id); slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT); decl = (tree) *slot; if (decl == NULL) { /* Create a new decl, so that it can be passed to targetm.encode_section_info. */ decl = build_libfunc_function (name); *slot = decl; } return XEXP (DECL_RTL (decl), 0); } /* Adjust the assembler name of libfunc NAME to ASMSPEC. */ rtx set_user_assembler_libfunc (const char *name, const char *asmspec) { tree id, decl; void **slot; hashval_t hash; id = get_identifier (name); hash = IDENTIFIER_HASH_VALUE (id); slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT); gcc_assert (slot); decl = (tree) *slot; set_user_assembler_name (decl, asmspec); return XEXP (DECL_RTL (decl), 0); } /* Call this to reset the function entry for one optab (OPTABLE) in mode MODE to NAME, which should be either 0 or a string constant. */ void set_optab_libfunc (optab op, enum machine_mode mode, const char *name) { rtx val; struct libfunc_entry e; struct libfunc_entry **slot; e.op = op; e.mode1 = mode; e.mode2 = VOIDmode; if (name) val = init_one_libfunc (name); else val = 0; slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT); if (*slot == NULL) *slot = ggc_alloc_libfunc_entry (); (*slot)->op = op; (*slot)->mode1 = mode; (*slot)->mode2 = VOIDmode; (*slot)->libfunc = val; } /* Call this to reset the function entry for one conversion optab (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be either 0 or a string constant. */ void set_conv_libfunc (convert_optab optab, enum machine_mode tmode, enum machine_mode fmode, const char *name) { rtx val; struct libfunc_entry e; struct libfunc_entry **slot; e.op = optab; e.mode1 = tmode; e.mode2 = fmode; if (name) val = init_one_libfunc (name); else val = 0; slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT); if (*slot == NULL) *slot = ggc_alloc_libfunc_entry (); (*slot)->op = optab; (*slot)->mode1 = tmode; (*slot)->mode2 = fmode; (*slot)->libfunc = val; } /* Call this to initialize the contents of the optabs appropriately for the current target machine. */ void init_optabs (void) { if (libfunc_hash) htab_empty (libfunc_hash); else libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL); /* Fill in the optabs with the insns we support. */ init_all_optabs (this_fn_optabs); /* The ffs function operates on `int'. Fall back on it if we do not have a libgcc2 function for that width. */ if (INT_TYPE_SIZE < BITS_PER_WORD) set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0), "ffs"); /* Explicitly initialize the bswap libfuncs since we need them to be valid for things other than word_mode. */ if (targetm.libfunc_gnu_prefix) { set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2"); set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2"); } else { set_optab_libfunc (bswap_optab, SImode, "__bswapsi2"); set_optab_libfunc (bswap_optab, DImode, "__bswapdi2"); } /* Use cabs for double complex abs, since systems generally have cabs. Don't define any libcall for float complex, so that cabs will be used. */ if (complex_double_type_node) set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs"); abort_libfunc = init_one_libfunc ("abort"); memcpy_libfunc = init_one_libfunc ("memcpy"); memmove_libfunc = init_one_libfunc ("memmove"); memcmp_libfunc = init_one_libfunc ("memcmp"); memset_libfunc = init_one_libfunc ("memset"); setbits_libfunc = init_one_libfunc ("__setbits"); #ifndef DONT_USE_BUILTIN_SETJMP setjmp_libfunc = init_one_libfunc ("__builtin_setjmp"); longjmp_libfunc = init_one_libfunc ("__builtin_longjmp"); #else setjmp_libfunc = init_one_libfunc ("setjmp"); longjmp_libfunc = init_one_libfunc ("longjmp"); #endif unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register"); unwind_sjlj_unregister_libfunc = init_one_libfunc ("_Unwind_SjLj_Unregister"); /* For function entry/exit instrumentation. */ profile_function_entry_libfunc = init_one_libfunc ("__cyg_profile_func_enter"); profile_function_exit_libfunc = init_one_libfunc ("__cyg_profile_func_exit"); gcov_flush_libfunc = init_one_libfunc ("__gcov_flush"); /* Allow the target to add more libcalls or rename some, etc. */ targetm.init_libfuncs (); } /* Use the current target and options to initialize TREE_OPTIMIZATION_OPTABS (OPTNODE). */ void init_tree_optimization_optabs (tree optnode) { /* Quick exit if we have already computed optabs for this target. */ if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs) return; /* Forget any previous information and set up for the current target. */ TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs; struct target_optabs *tmp_optabs = (struct target_optabs *) TREE_OPTIMIZATION_OPTABS (optnode); if (tmp_optabs) memset (tmp_optabs, 0, sizeof (struct target_optabs)); else tmp_optabs = (struct target_optabs *) ggc_alloc_atomic (sizeof (struct target_optabs)); /* Generate a new set of optabs into tmp_optabs. */ init_all_optabs (tmp_optabs); /* If the optabs changed, record it. */ if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs))) TREE_OPTIMIZATION_OPTABS (optnode) = (unsigned char *) tmp_optabs; else { TREE_OPTIMIZATION_OPTABS (optnode) = NULL; ggc_free (tmp_optabs); } } /* A helper function for init_sync_libfuncs. Using the basename BASE, install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */ static void init_sync_libfuncs_1 (optab tab, const char *base, int max) { enum machine_mode mode; char buf[64]; size_t len = strlen (base); int i; gcc_assert (max <= 8); gcc_assert (len + 3 < sizeof (buf)); memcpy (buf, base, len); buf[len] = '_'; buf[len + 1] = '0'; buf[len + 2] = '\0'; mode = QImode; for (i = 1; i <= max; i *= 2) { buf[len + 1] = '0' + i; set_optab_libfunc (tab, mode, buf); mode = GET_MODE_2XWIDER_MODE (mode); } } void init_sync_libfuncs (int max) { if (!flag_sync_libcalls) return; init_sync_libfuncs_1 (sync_compare_and_swap_optab, "__sync_val_compare_and_swap", max); init_sync_libfuncs_1 (sync_lock_test_and_set_optab, "__sync_lock_test_and_set", max); init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max); init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max); init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max); init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max); init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max); init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max); init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max); init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max); init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max); init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max); init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max); init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max); } /* Print information about the current contents of the optabs on STDERR. */ DEBUG_FUNCTION void debug_optab_libfuncs (void) { int i, j, k; /* Dump the arithmetic optabs. */ for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i) for (j = 0; j < NUM_MACHINE_MODES; ++j) { rtx l = optab_libfunc ((optab) i, (enum machine_mode) j); if (l) { gcc_assert (GET_CODE (l) == SYMBOL_REF); fprintf (stderr, "%s\t%s:\t%s\n", GET_RTX_NAME (optab_to_code ((optab) i)), GET_MODE_NAME (j), XSTR (l, 0)); } } /* Dump the conversion optabs. */ for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i) for (j = 0; j < NUM_MACHINE_MODES; ++j) for (k = 0; k < NUM_MACHINE_MODES; ++k) { rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j, (enum machine_mode) k); if (l) { gcc_assert (GET_CODE (l) == SYMBOL_REF); fprintf (stderr, "%s\t%s\t%s:\t%s\n", GET_RTX_NAME (optab_to_code ((optab) i)), GET_MODE_NAME (j), GET_MODE_NAME (k), XSTR (l, 0)); } } } /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition CODE. Return 0 on failure. */ rtx gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode) { enum machine_mode mode = GET_MODE (op1); enum insn_code icode; rtx insn; rtx trap_rtx; if (mode == VOIDmode) return 0; icode = optab_handler (ctrap_optab, mode); if (icode == CODE_FOR_nothing) return 0; /* Some targets only accept a zero trap code. */ if (!insn_operand_matches (icode, 3, tcode)) return 0; do_pending_stack_adjust (); start_sequence (); prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT, &trap_rtx, &mode); if (!trap_rtx) insn = NULL_RTX; else insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1), tcode); /* If that failed, then give up. */ if (insn == 0) { end_sequence (); return 0; } emit_insn (insn); insn = get_insns (); end_sequence (); return insn; } /* Return rtx code for TCODE. Use UNSIGNEDP to select signed or unsigned operation code. */ static enum rtx_code get_rtx_code (enum tree_code tcode, bool unsignedp) { enum rtx_code code; switch (tcode) { case EQ_EXPR: code = EQ; break; case NE_EXPR: code = NE; break; case LT_EXPR: code = unsignedp ? LTU : LT; break; case LE_EXPR: code = unsignedp ? LEU : LE; break; case GT_EXPR: code = unsignedp ? GTU : GT; break; case GE_EXPR: code = unsignedp ? GEU : GE; break; case UNORDERED_EXPR: code = UNORDERED; break; case ORDERED_EXPR: code = ORDERED; break; case UNLT_EXPR: code = UNLT; break; case UNLE_EXPR: code = UNLE; break; case UNGT_EXPR: code = UNGT; break; case UNGE_EXPR: code = UNGE; break; case UNEQ_EXPR: code = UNEQ; break; case LTGT_EXPR: code = LTGT; break; default: gcc_unreachable (); } return code; } /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or unsigned operators. Do not generate compare instruction. */ static rtx vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1, bool unsignedp, enum insn_code icode) { struct expand_operand ops[2]; rtx rtx_op0, rtx_op1; enum rtx_code rcode = get_rtx_code (tcode, unsignedp); gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison); /* Expand operands. */ rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), EXPAND_STACK_PARM); rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), EXPAND_STACK_PARM); create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0)); create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1)); if (!maybe_legitimize_operands (icode, 4, 2, ops)) gcc_unreachable (); return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value); } /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions of the CPU. SEL may be NULL, which stands for an unknown constant. */ bool can_vec_perm_p (enum machine_mode mode, bool variable, const unsigned char *sel) { enum machine_mode qimode; /* If the target doesn't implement a vector mode for the vector type, then no operations are supported. */ if (!VECTOR_MODE_P (mode)) return false; if (!variable) { if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing && (sel == NULL || targetm.vectorize.vec_perm_const_ok == NULL || targetm.vectorize.vec_perm_const_ok (mode, sel))) return true; } if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing) return true; /* We allow fallback to a QI vector mode, and adjust the mask. */ if (GET_MODE_INNER (mode) == QImode) return false; qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode)); if (!VECTOR_MODE_P (qimode)) return false; /* ??? For completeness, we ought to check the QImode version of vec_perm_const_optab. But all users of this implicit lowering feature implement the variable vec_perm_optab. */ if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing) return false; /* In order to support the lowering of variable permutations, we need to support shifts and adds. */ if (variable) { if (GET_MODE_UNIT_SIZE (mode) > 2 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing && optab_handler (vashl_optab, mode) == CODE_FOR_nothing) return false; if (optab_handler (add_optab, qimode) == CODE_FOR_nothing) return false; } return true; } /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */ static rtx expand_vec_perm_1 (enum insn_code icode, rtx target, rtx v0, rtx v1, rtx sel) { enum machine_mode tmode = GET_MODE (target); enum machine_mode smode = GET_MODE (sel); struct expand_operand ops[4]; create_output_operand (&ops[0], target, tmode); create_input_operand (&ops[3], sel, smode); /* Make an effort to preserve v0 == v1. The target expander is able to rely on this to determine if we're permuting a single input operand. */ if (rtx_equal_p (v0, v1)) { if (!insn_operand_matches (icode, 1, v0)) v0 = force_reg (tmode, v0); gcc_checking_assert (insn_operand_matches (icode, 1, v0)); gcc_checking_assert (insn_operand_matches (icode, 2, v0)); create_fixed_operand (&ops[1], v0); create_fixed_operand (&ops[2], v0); } else { create_input_operand (&ops[1], v0, tmode); create_input_operand (&ops[2], v1, tmode); } if (maybe_expand_insn (icode, 4, ops)) return ops[0].value; return NULL_RTX; } /* Generate instructions for vec_perm optab given its mode and three operands. */ rtx expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target) { enum insn_code icode; enum machine_mode qimode; unsigned int i, w, e, u; rtx tmp, sel_qi = NULL; rtvec vec; if (!target || GET_MODE (target) != mode) target = gen_reg_rtx (mode); w = GET_MODE_SIZE (mode); e = GET_MODE_NUNITS (mode); u = GET_MODE_UNIT_SIZE (mode); /* Set QIMODE to a different vector mode with byte elements. If no such mode, or if MODE already has byte elements, use VOIDmode. */ qimode = VOIDmode; if (GET_MODE_INNER (mode) != QImode) { qimode = mode_for_vector (QImode, w); if (!VECTOR_MODE_P (qimode)) qimode = VOIDmode; } /* If the input is a constant, expand it specially. */ gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT); if (GET_CODE (sel) == CONST_VECTOR) { icode = direct_optab_handler (vec_perm_const_optab, mode); if (icode != CODE_FOR_nothing) { tmp = expand_vec_perm_1 (icode, target, v0, v1, sel); if (tmp) return tmp; } /* Fall back to a constant byte-based permutation. */ if (qimode != VOIDmode) { vec = rtvec_alloc (w); for (i = 0; i < e; ++i) { unsigned int j, this_e; this_e = INTVAL (CONST_VECTOR_ELT (sel, i)); this_e &= 2 * e - 1; this_e *= u; for (j = 0; j < u; ++j) RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j); } sel_qi = gen_rtx_CONST_VECTOR (qimode, vec); icode = direct_optab_handler (vec_perm_const_optab, qimode); if (icode != CODE_FOR_nothing) { tmp = mode != qimode ? gen_reg_rtx (qimode) : target; tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0), gen_lowpart (qimode, v1), sel_qi); if (tmp) return gen_lowpart (mode, tmp); } } } /* Otherwise expand as a fully variable permuation. */ icode = direct_optab_handler (vec_perm_optab, mode); if (icode != CODE_FOR_nothing) { tmp = expand_vec_perm_1 (icode, target, v0, v1, sel); if (tmp) return tmp; } /* As a special case to aid several targets, lower the element-based permutation to a byte-based permutation and try again. */ if (qimode == VOIDmode) return NULL_RTX; icode = direct_optab_handler (vec_perm_optab, qimode); if (icode == CODE_FOR_nothing) return NULL_RTX; if (sel_qi == NULL) { /* Multiply each element by its byte size. */ enum machine_mode selmode = GET_MODE (sel); if (u == 2) sel = expand_simple_binop (selmode, PLUS, sel, sel, sel, 0, OPTAB_DIRECT); else sel = expand_simple_binop (selmode, ASHIFT, sel, GEN_INT (exact_log2 (u)), sel, 0, OPTAB_DIRECT); gcc_assert (sel != NULL); /* Broadcast the low byte each element into each of its bytes. */ vec = rtvec_alloc (w); for (i = 0; i < w; ++i) { int this_e = i / u * u; if (BYTES_BIG_ENDIAN) this_e += u - 1; RTVEC_ELT (vec, i) = GEN_INT (this_e); } tmp = gen_rtx_CONST_VECTOR (qimode, vec); sel = gen_lowpart (qimode, sel); sel = expand_vec_perm (qimode, sel, sel, tmp, NULL); gcc_assert (sel != NULL); /* Add the byte offset to each byte element. */ /* Note that the definition of the indicies here is memory ordering, so there should be no difference between big and little endian. */ vec = rtvec_alloc (w); for (i = 0; i < w; ++i) RTVEC_ELT (vec, i) = GEN_INT (i % u); tmp = gen_rtx_CONST_VECTOR (qimode, vec); sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp, sel, 0, OPTAB_DIRECT); gcc_assert (sel_qi != NULL); } tmp = mode != qimode ? gen_reg_rtx (qimode) : target; tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0), gen_lowpart (qimode, v1), sel_qi); if (tmp) tmp = gen_lowpart (mode, tmp); return tmp; } /* Return insn code for a conditional operator with a comparison in mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */ static inline enum insn_code get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns) { enum insn_code icode = CODE_FOR_nothing; if (uns) icode = convert_optab_handler (vcondu_optab, vmode, cmode); else icode = convert_optab_handler (vcond_optab, vmode, cmode); return icode; } /* Return TRUE iff, appropriate vector insns are available for vector cond expr with vector type VALUE_TYPE and a comparison with operand vector types in CMP_OP_TYPE. */ bool expand_vec_cond_expr_p (tree value_type, tree cmp_op_type) { enum machine_mode value_mode = TYPE_MODE (value_type); enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type); if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode) || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode) || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type), TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing) return false; return true; } /* Generate insns for a VEC_COND_EXPR, given its TYPE and its three operands. */ rtx expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2, rtx target) { struct expand_operand ops[6]; enum insn_code icode; rtx comparison, rtx_op1, rtx_op2; enum machine_mode mode = TYPE_MODE (vec_cond_type); enum machine_mode cmp_op_mode; bool unsignedp; tree op0a, op0b; enum tree_code tcode; if (COMPARISON_CLASS_P (op0)) { op0a = TREE_OPERAND (op0, 0); op0b = TREE_OPERAND (op0, 1); tcode = TREE_CODE (op0); } else { /* Fake op0 < 0. */ gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0))); op0a = op0; op0b = build_zero_cst (TREE_TYPE (op0)); tcode = LT_EXPR; } unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a)); cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a)); gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode) && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode)); icode = get_vcond_icode (mode, cmp_op_mode, unsignedp); if (icode == CODE_FOR_nothing) return 0; comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode); rtx_op1 = expand_normal (op1); rtx_op2 = expand_normal (op2); create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], rtx_op1, mode); create_input_operand (&ops[2], rtx_op2, mode); create_fixed_operand (&ops[3], comparison); create_fixed_operand (&ops[4], XEXP (comparison, 0)); create_fixed_operand (&ops[5], XEXP (comparison, 1)); expand_insn (icode, 6, ops); return ops[0].value; } /* Return non-zero if a highpart multiply is supported of can be synthisized. For the benefit of expand_mult_highpart, the return value is 1 for direct, 2 for even/odd widening, and 3 for hi/lo widening. */ int can_mult_highpart_p (enum machine_mode mode, bool uns_p) { optab op; unsigned char *sel; unsigned i, nunits; op = uns_p ? umul_highpart_optab : smul_highpart_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) return 1; /* If the mode is an integral vector, synth from widening operations. */ if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT) return 0; nunits = GET_MODE_NUNITS (mode); sel = XALLOCAVEC (unsigned char, nunits); op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { for (i = 0; i < nunits; ++i) sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0); if (can_vec_perm_p (mode, false, sel)) return 2; } } op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab; if (optab_handler (op, mode) != CODE_FOR_nothing) { for (i = 0; i < nunits; ++i) sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1); if (can_vec_perm_p (mode, false, sel)) return 3; } } return 0; } /* Expand a highpart multiply. */ rtx expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1, rtx target, bool uns_p) { struct expand_operand eops[3]; enum insn_code icode; int method, i, nunits; enum machine_mode wmode; rtx m1, m2, perm; optab tab1, tab2; rtvec v; method = can_mult_highpart_p (mode, uns_p); switch (method) { case 0: return NULL_RTX; case 1: tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab; return expand_binop (mode, tab1, op0, op1, target, uns_p, OPTAB_LIB_WIDEN); case 2: tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab; tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab; break; case 3: tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab; tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab; if (BYTES_BIG_ENDIAN) { optab t = tab1; tab1 = tab2; tab2 = t; } break; default: gcc_unreachable (); } icode = optab_handler (tab1, mode); nunits = GET_MODE_NUNITS (mode); wmode = insn_data[icode].operand[0].mode; gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits); gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode)); create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode); create_input_operand (&eops[1], op0, mode); create_input_operand (&eops[2], op1, mode); expand_insn (icode, 3, eops); m1 = gen_lowpart (mode, eops[0].value); create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode); create_input_operand (&eops[1], op0, mode); create_input_operand (&eops[2], op1, mode); expand_insn (optab_handler (tab2, mode), 3, eops); m2 = gen_lowpart (mode, eops[0].value); v = rtvec_alloc (nunits); if (method == 2) { for (i = 0; i < nunits; ++i) RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0)); } else { for (i = 0; i < nunits; ++i) RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1)); } perm = gen_rtx_CONST_VECTOR (mode, v); return expand_vec_perm (mode, m1, m2, perm, target); } /* Return true if target supports vector masked load/store for mode. */ bool can_vec_mask_load_store_p (enum machine_mode mode, bool is_load) { optab op = is_load ? maskload_optab : maskstore_optab; enum machine_mode vmode; unsigned int vector_sizes; /* If mode is vector mode, check it directly. */ if (VECTOR_MODE_P (mode)) return optab_handler (op, mode) != CODE_FOR_nothing; /* Otherwise, return true if there is some vector mode with the mask load/store supported. */ /* See if there is any chance the mask load or store might be vectorized. If not, punt. */ vmode = targetm.vectorize.preferred_simd_mode (mode); if (!VECTOR_MODE_P (vmode)) return false; if (optab_handler (op, vmode) != CODE_FOR_nothing) return true; vector_sizes = targetm.vectorize.autovectorize_vector_sizes (); while (vector_sizes != 0) { unsigned int cur = 1 << floor_log2 (vector_sizes); vector_sizes &= ~cur; if (cur <= GET_MODE_SIZE (mode)) continue; vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode)); if (VECTOR_MODE_P (vmode) && optab_handler (op, vmode) != CODE_FOR_nothing) return true; } return false; } /* Return true if there is a compare_and_swap pattern. */ bool can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall) { enum insn_code icode; /* Check for __atomic_compare_and_swap. */ icode = direct_optab_handler (atomic_compare_and_swap_optab, mode); if (icode != CODE_FOR_nothing) return true; /* Check for __sync_compare_and_swap. */ icode = optab_handler (sync_compare_and_swap_optab, mode); if (icode != CODE_FOR_nothing) return true; if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode)) return true; /* No inline compare and swap. */ return false; } /* Return true if an atomic exchange can be performed. */ bool can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall) { enum insn_code icode; /* Check for __atomic_exchange. */ icode = direct_optab_handler (atomic_exchange_optab, mode); if (icode != CODE_FOR_nothing) return true; /* Don't check __sync_test_and_set, as on some platforms that has reduced functionality. Targets that really do support a proper exchange should simply be updated to the __atomics. */ return can_compare_and_swap_p (mode, allow_libcall); } /* Helper function to find the MODE_CC set in a sync_compare_and_swap pattern. */ static void find_cc_set (rtx x, const_rtx pat, void *data) { if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC && GET_CODE (pat) == SET) { rtx *p_cc_reg = (rtx *) data; gcc_assert (!*p_cc_reg); *p_cc_reg = x; } } /* This is a helper function for the other atomic operations. This function emits a loop that contains SEQ that iterates until a compare-and-swap operation at the end succeeds. MEM is the memory to be modified. SEQ is a set of instructions that takes a value from OLD_REG as an input and produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be set to the current contents of MEM. After SEQ, a compare-and-swap will attempt to update MEM with NEW_REG. The function returns true when the loop was generated successfully. */ static bool expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq) { enum machine_mode mode = GET_MODE (mem); rtx label, cmp_reg, success, oldval; /* The loop we want to generate looks like cmp_reg = mem; label: old_reg = cmp_reg; seq; (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg) if (success) goto label; Note that we only do the plain load from memory once. Subsequent iterations use the value loaded by the compare-and-swap pattern. */ label = gen_label_rtx (); cmp_reg = gen_reg_rtx (mode); emit_move_insn (cmp_reg, mem); emit_label (label); emit_move_insn (old_reg, cmp_reg); if (seq) emit_insn (seq); success = NULL_RTX; oldval = cmp_reg; if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg, new_reg, false, MEMMODEL_SEQ_CST, MEMMODEL_RELAXED)) return false; if (oldval != cmp_reg) emit_move_insn (cmp_reg, oldval); /* Mark this jump predicted not taken. */ emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx, GET_MODE (success), 1, label, 0); return true; } /* This function tries to emit an atomic_exchange intruction. VAL is written to *MEM using memory model MODEL. The previous contents of *MEM are returned, using TARGET if possible. */ static rtx maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model) { enum machine_mode mode = GET_MODE (mem); enum insn_code icode; /* If the target supports the exchange directly, great. */ icode = direct_optab_handler (atomic_exchange_optab, mode); if (icode != CODE_FOR_nothing) { struct expand_operand ops[4]; create_output_operand (&ops[0], target, mode); create_fixed_operand (&ops[1], mem); create_input_operand (&ops[2], val, mode); create_integer_operand (&ops[3], model); if (maybe_expand_insn (icode, 4, ops)) return ops[0].value; } return NULL_RTX; } /* This function tries to implement an atomic exchange operation using __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL. The previous contents of *MEM are returned, using TARGET if possible. Since this instructionn is an acquire barrier only, stronger memory models may require additional barriers to be emitted. */ static rtx maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val, enum memmodel model) { enum machine_mode mode = GET_MODE (mem); enum insn_code icode; rtx last_insn = get_last_insn (); icode = optab_handler (sync_lock_test_and_set_optab, mode); /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern exists, and the memory model is stronger than acquire, add a release barrier before the instruction. */ if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL) expand_mem_thread_fence (model); if (icode != CODE_FOR_nothing) { struct expand_operand ops[3]; create_output_operand (&ops[0], target, mode); create_fixed_operand (&ops[1], mem); create_input_operand (&ops[2], val, mode); if (maybe_expand_insn (icode, 3, ops)) return ops[0].value; } /* If an external test-and-set libcall is provided, use that instead of any external compare-and-swap that we might get from the compare-and- swap-loop expansion later. */ if (!can_compare_and_swap_p (mode, false)) { rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode); if (libfunc != NULL) { rtx addr; addr = convert_memory_address (ptr_mode, XEXP (mem, 0)); return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL, mode, 2, addr, ptr_mode, val, mode); } } /* If the test_and_set can't be emitted, eliminate any barrier that might have been emitted. */ delete_insns_since (last_insn); return NULL_RTX; } /* This function tries to implement an atomic exchange operation using a compare_and_swap loop. VAL is written to *MEM. The previous contents of *MEM are returned, using TARGET if possible. No memory model is required since a compare_and_swap loop is seq-cst. */ static rtx maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val) { enum machine_mode mode = GET_MODE (mem); if (can_compare_and_swap_p (mode, true)) { if (!target || !register_operand (target, mode)) target = gen_reg_rtx (mode); if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX)) return target; } return NULL_RTX; } /* This function tries to implement an atomic test-and-set operation using the atomic_test_and_set instruction pattern. A boolean value is returned from the operation, using TARGET if possible. */ #ifndef HAVE_atomic_test_and_set #define HAVE_atomic_test_and_set 0 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing #endif static rtx maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model) { enum machine_mode pat_bool_mode; struct expand_operand ops[3]; if (!HAVE_atomic_test_and_set) return NULL_RTX; /* While we always get QImode from __atomic_test_and_set, we get other memory modes from __sync_lock_test_and_set. Note that we use no endian adjustment here. This matches the 4.6 behavior in the Sparc backend. */ gcc_checking_assert (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode); if (GET_MODE (mem) != QImode) mem = adjust_address_nv (mem, QImode, 0); pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode; create_output_operand (&ops[0], target, pat_bool_mode); create_fixed_operand (&ops[1], mem); create_integer_operand (&ops[2], model); if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops)) return ops[0].value; return NULL_RTX; } /* This function expands the legacy _sync_lock test_and_set operation which is generally an atomic exchange. Some limited targets only allow the constant 1 to be stored. This is an ACQUIRE operation. TARGET is an optional place to stick the return value. MEM is where VAL is stored. */ rtx expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val) { rtx ret; /* Try an atomic_exchange first. */ ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE); if (ret) return ret; ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE); if (ret) return ret; ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val); if (ret) return ret; /* If there are no other options, try atomic_test_and_set if the value being stored is 1. */ if (val == const1_rtx) ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE); return ret; } /* This function expands the atomic test_and_set operation: atomically store a boolean TRUE into MEM and return the previous value. MEMMODEL is the memory model variant to use. TARGET is an optional place to stick the return value. */ rtx expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model) { enum machine_mode mode = GET_MODE (mem); rtx ret, trueval, subtarget; ret = maybe_emit_atomic_test_and_set (target, mem, model); if (ret) return ret; /* Be binary compatible with non-default settings of trueval, and different cpu revisions. E.g. one revision may have atomic-test-and-set, but another only has atomic-exchange. */ if (targetm.atomic_test_and_set_trueval == 1) { trueval = const1_rtx; subtarget = target ? target : gen_reg_rtx (mode); } else { trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode); subtarget = gen_reg_rtx (mode); } /* Try the atomic-exchange optab... */ ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model); /* ... then an atomic-compare-and-swap loop ... */ if (!ret) ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval); /* ... before trying the vaguely defined legacy lock_test_and_set. */ if (!ret) ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model); /* Recall that the legacy lock_test_and_set optab was allowed to do magic things with the value 1. Thus we try again without trueval. */ if (!ret && targetm.atomic_test_and_set_trueval != 1) ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model); /* Failing all else, assume a single threaded environment and simply perform the operation. */ if (!ret) { emit_move_insn (subtarget, mem); emit_move_insn (mem, trueval); ret = subtarget; } /* Recall that have to return a boolean value; rectify if trueval is not exactly one. */ if (targetm.atomic_test_and_set_trueval != 1) ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1); return ret; } /* This function expands the atomic exchange operation: atomically store VAL in MEM and return the previous value in MEM. MEMMODEL is the memory model variant to use. TARGET is an optional place to stick the return value. */ rtx expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model) { rtx ret; ret = maybe_emit_atomic_exchange (target, mem, val, model); /* Next try a compare-and-swap loop for the exchange. */ if (!ret) ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val); return ret; } /* This function expands the atomic compare exchange operation: *PTARGET_BOOL is an optional place to store the boolean success/failure. *PTARGET_OVAL is an optional place to store the old value from memory. Both target parameters may be NULL to indicate that we do not care about that return value. Both target parameters are updated on success to the actual location of the corresponding result. MEMMODEL is the memory model variant to use. The return value of the function is true for success. */ bool expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval, rtx mem, rtx expected, rtx desired, bool is_weak, enum memmodel succ_model, enum memmodel fail_model) { enum machine_mode mode = GET_MODE (mem); struct expand_operand ops[8]; enum insn_code icode; rtx target_oval, target_bool = NULL_RTX; rtx libfunc; /* Load expected into a register for the compare and swap. */ if (MEM_P (expected)) expected = copy_to_reg (expected); /* Make sure we always have some place to put the return oldval. Further, make sure that place is distinct from the input expected, just in case we need that path down below. */ if (ptarget_oval == NULL || (target_oval = *ptarget_oval) == NULL || reg_overlap_mentioned_p (expected, target_oval)) target_oval = gen_reg_rtx (mode); icode = direct_optab_handler (atomic_compare_and_swap_optab, mode); if (icode != CODE_FOR_nothing) { enum machine_mode bool_mode = insn_data[icode].operand[0].mode; /* Make sure we always have a place for the bool operand. */ if (ptarget_bool == NULL || (target_bool = *ptarget_bool) == NULL || GET_MODE (target_bool) != bool_mode) target_bool = gen_reg_rtx (bool_mode); /* Emit the compare_and_swap. */ create_output_operand (&ops[0], target_bool, bool_mode); create_output_operand (&ops[1], target_oval, mode); create_fixed_operand (&ops[2], mem); create_input_operand (&ops[3], expected, mode); create_input_operand (&ops[4], desired, mode); create_integer_operand (&ops[5], is_weak); create_integer_operand (&ops[6], succ_model); create_integer_operand (&ops[7], fail_model); expand_insn (icode, 8, ops); /* Return success/failure. */ target_bool = ops[0].value; target_oval = ops[1].value; goto success; } /* Otherwise fall back to the original __sync_val_compare_and_swap which is always seq-cst. */ icode = optab_handler (sync_compare_and_swap_optab, mode); if (icode != CODE_FOR_nothing) { rtx cc_reg; create_output_operand (&ops[0], target_oval, mode); create_fixed_operand (&ops[1], mem); create_input_operand (&ops[2], expected, mode); create_input_operand (&ops[3], desired, mode); if (!maybe_expand_insn (icode, 4, ops)) return false; target_oval = ops[0].value; /* If the caller isn't interested in the boolean return value, skip the computation of it. */ if (ptarget_bool == NULL) goto success; /* Otherwise, work out if the compare-and-swap succeeded. */ cc_reg = NULL_RTX; if (have_insn_for (COMPARE, CCmode)) note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg); if (cc_reg) { target_bool = emit_store_flag_force (target_bool, EQ, cc_reg, const0_rtx, VOIDmode, 0, 1); goto success; } goto success_bool_from_val; } /* Also check for library support for __sync_val_compare_and_swap. */ libfunc = optab_libfunc (sync_compare_and_swap_optab, mode); if (libfunc != NULL) { rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0)); target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL, mode, 3, addr, ptr_mode, expected, mode, desired, mode); /* Compute the boolean return value only if requested. */ if (ptarget_bool) goto success_bool_from_val; else goto success; } /* Failure. */ return false; success_bool_from_val: target_bool = emit_store_flag_force (target_bool, EQ, target_oval, expected, VOIDmode, 1, 1); success: /* Make sure that the oval output winds up where the caller asked. */ if (ptarget_oval) *ptarget_oval = target_oval; if (ptarget_bool) *ptarget_bool = target_bool; return true; } /* Generate asm volatile("" : : : "memory") as the memory barrier. */ static void expand_asm_memory_barrier (void) { rtx asm_op, clob; asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0, rtvec_alloc (0), rtvec_alloc (0), rtvec_alloc (0), UNKNOWN_LOCATION); MEM_VOLATILE_P (asm_op) = 1; clob = gen_rtx_SCRATCH (VOIDmode); clob = gen_rtx_MEM (BLKmode, clob); clob = gen_rtx_CLOBBER (VOIDmode, clob); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob))); } /* This routine will either emit the mem_thread_fence pattern or issue a sync_synchronize to generate a fence for memory model MEMMODEL. */ #ifndef HAVE_mem_thread_fence # define HAVE_mem_thread_fence 0 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX) #endif #ifndef HAVE_memory_barrier # define HAVE_memory_barrier 0 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX) #endif void expand_mem_thread_fence (enum memmodel model) { if (HAVE_mem_thread_fence) emit_insn (gen_mem_thread_fence (GEN_INT (model))); else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED) { if (HAVE_memory_barrier) emit_insn (gen_memory_barrier ()); else if (synchronize_libfunc != NULL_RTX) emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0); else expand_asm_memory_barrier (); } } /* This routine will either emit the mem_signal_fence pattern or issue a sync_synchronize to generate a fence for memory model MEMMODEL. */ #ifndef HAVE_mem_signal_fence # define HAVE_mem_signal_fence 0 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX) #endif void expand_mem_signal_fence (enum memmodel model) { if (HAVE_mem_signal_fence) emit_insn (gen_mem_signal_fence (GEN_INT (model))); else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED) { /* By default targets are coherent between a thread and the signal handler running on the same thread. Thus this really becomes a compiler barrier, in that stores must not be sunk past (or raised above) a given point. */ expand_asm_memory_barrier (); } } /* This function expands the atomic load operation: return the atomically loaded value in MEM. MEMMODEL is the memory model variant to use. TARGET is an option place to stick the return value. */ rtx expand_atomic_load (rtx target, rtx mem, enum memmodel model) { enum machine_mode mode = GET_MODE (mem); enum insn_code icode; /* If the target supports the load directly, great. */ icode = direct_optab_handler (atomic_load_optab, mode); if (icode != CODE_FOR_nothing) { struct expand_operand ops[3]; create_output_operand (&ops[0], target, mode); create_fixed_operand (&ops[1], mem); create_integer_operand (&ops[2], model); if (maybe_expand_insn (icode, 3, ops)) return ops[0].value; } /* If the size of the object is greater than word size on this target, then we assume that a load will not be atomic. */ if (GET_MODE_PRECISION (mode) > BITS_PER_WORD) { /* Issue val = compare_and_swap (mem, 0, 0). This may cause the occasional harmless store of 0 when the value is already 0, but it seems to be OK according to the standards guys. */ if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx, const0_rtx, false, model, model)) return target; else /* Otherwise there is no atomic load, leave the library call. */ return NULL_RTX; } /* Otherwise assume loads are atomic, and emit the proper barriers. */ if (!target || target == const0_rtx) target = gen_reg_rtx (mode); /* For SEQ_CST, emit a barrier before the load. */ if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) expand_mem_thread_fence (model); emit_move_insn (target, mem); /* Emit the appropriate barrier after the load. */ expand_mem_thread_fence (model); return target; } /* This function expands the atomic store operation: Atomically store VAL in MEM. MEMMODEL is the memory model variant to use. USE_RELEASE is true if __sync_lock_release can be used as a fall back. function returns const0_rtx if a pattern was emitted. */ rtx expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release) { enum machine_mode mode = GET_MODE (mem); enum insn_code icode; struct expand_operand ops[3]; /* If the target supports the store directly, great. */ icode = direct_optab_handler (atomic_store_optab, mode); if (icode != CODE_FOR_nothing) { create_fixed_operand (&ops[0], mem); create_input_operand (&ops[1], val, mode); create_integer_operand (&ops[2], model); if (maybe_expand_insn (icode, 3, ops)) return const0_rtx; } /* If using __sync_lock_release is a viable alternative, try it. */ if (use_release) { icode = direct_optab_handler (sync_lock_release_optab, mode); if (icode != CODE_FOR_nothing) { create_fixed_operand (&ops[0], mem); create_input_operand (&ops[1], const0_rtx, mode); if (maybe_expand_insn (icode, 2, ops)) { /* lock_release is only a release barrier. */ if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) expand_mem_thread_fence (model); return const0_rtx; } } } /* If the size of the object is greater than word size on this target, a default store will not be atomic, Try a mem_exchange and throw away the result. If that doesn't work, don't do anything. */ if (GET_MODE_PRECISION (mode) > BITS_PER_WORD) { rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model); if (!target) target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val); if (target) return const0_rtx; else return NULL_RTX; } /* Otherwise assume stores are atomic, and emit the proper barriers. */ expand_mem_thread_fence (model); emit_move_insn (mem, val); /* For SEQ_CST, also emit a barrier after the store. */ if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) expand_mem_thread_fence (model); return const0_rtx; } /* Structure containing the pointers and values required to process the various forms of the atomic_fetch_op and atomic_op_fetch builtins. */ struct atomic_op_functions { direct_optab mem_fetch_before; direct_optab mem_fetch_after; direct_optab mem_no_result; optab fetch_before; optab fetch_after; direct_optab no_result; enum rtx_code reverse_code; }; /* Fill in structure pointed to by OP with the various optab entries for an operation of type CODE. */ static void get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code) { gcc_assert (op!= NULL); /* If SWITCHABLE_TARGET is defined, then subtargets can be switched in the source code during compilation, and the optab entries are not computable until runtime. Fill in the values at runtime. */ switch (code) { case PLUS: op->mem_fetch_before = atomic_fetch_add_optab; op->mem_fetch_after = atomic_add_fetch_optab; op->mem_no_result = atomic_add_optab; op->fetch_before = sync_old_add_optab; op->fetch_after = sync_new_add_optab; op->no_result = sync_add_optab; op->reverse_code = MINUS; break; case MINUS: op->mem_fetch_before = atomic_fetch_sub_optab; op->mem_fetch_after = atomic_sub_fetch_optab; op->mem_no_result = atomic_sub_optab; op->fetch_before = sync_old_sub_optab; op->fetch_after = sync_new_sub_optab; op->no_result = sync_sub_optab; op->reverse_code = PLUS; break; case XOR: op->mem_fetch_before = atomic_fetch_xor_optab; op->mem_fetch_after = atomic_xor_fetch_optab; op->mem_no_result = atomic_xor_optab; op->fetch_before = sync_old_xor_optab; op->fetch_after = sync_new_xor_optab; op->no_result = sync_xor_optab; op->reverse_code = XOR; break; case AND: op->mem_fetch_before = atomic_fetch_and_optab; op->mem_fetch_after = atomic_and_fetch_optab; op->mem_no_result = atomic_and_optab; op->fetch_before = sync_old_and_optab; op->fetch_after = sync_new_and_optab; op->no_result = sync_and_optab; op->reverse_code = UNKNOWN; break; case IOR: op->mem_fetch_before = atomic_fetch_or_optab; op->mem_fetch_after = atomic_or_fetch_optab; op->mem_no_result = atomic_or_optab; op->fetch_before = sync_old_ior_optab; op->fetch_after = sync_new_ior_optab; op->no_result = sync_ior_optab; op->reverse_code = UNKNOWN; break; case NOT: op->mem_fetch_before = atomic_fetch_nand_optab; op->mem_fetch_after = atomic_nand_fetch_optab; op->mem_no_result = atomic_nand_optab; op->fetch_before = sync_old_nand_optab; op->fetch_after = sync_new_nand_optab; op->no_result = sync_nand_optab; op->reverse_code = UNKNOWN; break; default: gcc_unreachable (); } } /* See if there is a more optimal way to implement the operation "*MEM CODE VAL" using memory order MODEL. If AFTER is true the operation needs to return the value of *MEM after the operation, otherwise the previous value. TARGET is an optional place to place the result. The result is unused if it is const0_rtx. Return the result if there is a better sequence, otherwise NULL_RTX. */ static rtx maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code, enum memmodel model, bool after) { /* If the value is prefetched, or not used, it may be possible to replace the sequence with a native exchange operation. */ if (!after || target == const0_rtx) { /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */ if (code == AND && val == const0_rtx) { if (target == const0_rtx) target = gen_reg_rtx (GET_MODE (mem)); return maybe_emit_atomic_exchange (target, mem, val, model); } /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */ if (code == IOR && val == constm1_rtx) { if (target == const0_rtx) target = gen_reg_rtx (GET_MODE (mem)); return maybe_emit_atomic_exchange (target, mem, val, model); } } return NULL_RTX; } /* Try to emit an instruction for a specific operation varaition. OPTAB contains the OP functions. TARGET is an optional place to return the result. const0_rtx means unused. MEM is the memory location to operate on. VAL is the value to use in the operation. USE_MEMMODEL is TRUE if the variation with a memory model should be tried. MODEL is the memory model, if used. AFTER is true if the returned result is the value after the operation. */ static rtx maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem, rtx val, bool use_memmodel, enum memmodel model, bool after) { enum machine_mode mode = GET_MODE (mem); struct expand_operand ops[4]; enum insn_code icode; int op_counter = 0; int num_ops; /* Check to see if there is a result returned. */ if (target == const0_rtx) { if (use_memmodel) { icode = direct_optab_handler (optab->mem_no_result, mode); create_integer_operand (&ops[2], model); num_ops = 3; } else { icode = direct_optab_handler (optab->no_result, mode); num_ops = 2; } } /* Otherwise, we need to generate a result. */ else { if (use_memmodel) { icode = direct_optab_handler (after ? optab->mem_fetch_after : optab->mem_fetch_before, mode); create_integer_operand (&ops[3], model); num_ops = 4; } else { icode = optab_handler (after ? optab->fetch_after : optab->fetch_before, mode); num_ops = 3; } create_output_operand (&ops[op_counter++], target, mode); } if (icode == CODE_FOR_nothing) return NULL_RTX; create_fixed_operand (&ops[op_counter++], mem); /* VAL may have been promoted to a wider mode. Shrink it if so. */ create_convert_operand_to (&ops[op_counter++], val, mode, true); if (maybe_expand_insn (icode, num_ops, ops)) return (target == const0_rtx ? const0_rtx : ops[0].value); return NULL_RTX; } /* This function expands an atomic fetch_OP or OP_fetch operation: TARGET is an option place to stick the return value. const0_rtx indicates the result is unused. atomically fetch MEM, perform the operation with VAL and return it to MEM. CODE is the operation being performed (OP) MEMMODEL is the memory model variant to use. AFTER is true to return the result of the operation (OP_fetch). AFTER is false to return the value before the operation (fetch_OP). This function will *only* generate instructions if there is a direct optab. No compare and swap loops or libcalls will be generated. */ static rtx expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val, enum rtx_code code, enum memmodel model, bool after) { enum machine_mode mode = GET_MODE (mem); struct atomic_op_functions optab; rtx result; bool unused_result = (target == const0_rtx); get_atomic_op_for_code (&optab, code); /* Check to see if there are any better instructions. */ result = maybe_optimize_fetch_op (target, mem, val, code, model, after); if (result) return result; /* Check for the case where the result isn't used and try those patterns. */ if (unused_result) { /* Try the memory model variant first. */ result = maybe_emit_op (&optab, target, mem, val, true, model, true); if (result) return result; /* Next try the old style withuot a memory model. */ result = maybe_emit_op (&optab, target, mem, val, false, model, true); if (result) return result; /* There is no no-result pattern, so try patterns with a result. */ target = NULL_RTX; } /* Try the __atomic version. */ result = maybe_emit_op (&optab, target, mem, val, true, model, after); if (result) return result; /* Try the older __sync version. */ result = maybe_emit_op (&optab, target, mem, val, false, model, after); if (result) return result; /* If the fetch value can be calculated from the other variation of fetch, try that operation. */ if (after || unused_result || optab.reverse_code != UNKNOWN) { /* Try the __atomic version, then the older __sync version. */ result = maybe_emit_op (&optab, target, mem, val, true, model, !after); if (!result) result = maybe_emit_op (&optab, target, mem, val, false, model, !after); if (result) { /* If the result isn't used, no need to do compensation code. */ if (unused_result) return result; /* Issue compensation code. Fetch_after == fetch_before OP val. Fetch_before == after REVERSE_OP val. */ if (!after) code = optab.reverse_code; if (code == NOT) { result = expand_simple_binop (mode, AND, result, val, NULL_RTX, true, OPTAB_LIB_WIDEN); result = expand_simple_unop (mode, NOT, result, target, true); } else result = expand_simple_binop (mode, code, result, val, target, true, OPTAB_LIB_WIDEN); return result; } } /* No direct opcode can be generated. */ return NULL_RTX; } /* This function expands an atomic fetch_OP or OP_fetch operation: TARGET is an option place to stick the return value. const0_rtx indicates the result is unused. atomically fetch MEM, perform the operation with VAL and return it to MEM. CODE is the operation being performed (OP) MEMMODEL is the memory model variant to use. AFTER is true to return the result of the operation (OP_fetch). AFTER is false to return the value before the operation (fetch_OP). */ rtx expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code, enum memmodel model, bool after) { enum machine_mode mode = GET_MODE (mem); rtx result; bool unused_result = (target == const0_rtx); result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model, after); if (result) return result; /* Add/sub can be implemented by doing the reverse operation with -(val). */ if (code == PLUS || code == MINUS) { rtx tmp; enum rtx_code reverse = (code == PLUS ? MINUS : PLUS); start_sequence (); tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true); result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse, model, after); if (result) { /* PLUS worked so emit the insns and return. */ tmp = get_insns (); end_sequence (); emit_insn (tmp); return result; } /* PLUS did not work, so throw away the negation code and continue. */ end_sequence (); } /* Try the __sync libcalls only if we can't do compare-and-swap inline. */ if (!can_compare_and_swap_p (mode, false)) { rtx libfunc; bool fixup = false; enum rtx_code orig_code = code; struct atomic_op_functions optab; get_atomic_op_for_code (&optab, code); libfunc = optab_libfunc (after ? optab.fetch_after : optab.fetch_before, mode); if (libfunc == NULL && (after || unused_result || optab.reverse_code != UNKNOWN)) { fixup = true; if (!after) code = optab.reverse_code; libfunc = optab_libfunc (after ? optab.fetch_before : optab.fetch_after, mode); } if (libfunc != NULL) { rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0)); result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode, 2, addr, ptr_mode, val, mode); if (!unused_result && fixup) result = expand_simple_binop (mode, code, result, val, target, true, OPTAB_LIB_WIDEN); return result; } /* We need the original code for any further attempts. */ code = orig_code; } /* If nothing else has succeeded, default to a compare and swap loop. */ if (can_compare_and_swap_p (mode, true)) { rtx insn; rtx t0 = gen_reg_rtx (mode), t1; start_sequence (); /* If the result is used, get a register for it. */ if (!unused_result) { if (!target || !register_operand (target, mode)) target = gen_reg_rtx (mode); /* If fetch_before, copy the value now. */ if (!after) emit_move_insn (target, t0); } else target = const0_rtx; t1 = t0; if (code == NOT) { t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX, true, OPTAB_LIB_WIDEN); t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true); } else t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true, OPTAB_LIB_WIDEN); /* For after, copy the value now. */ if (!unused_result && after) emit_move_insn (target, t1); insn = get_insns (); end_sequence (); if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn)) return target; } return NULL_RTX; } /* Return true if OPERAND is suitable for operand number OPNO of instruction ICODE. */ bool insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand) { return (!insn_data[(int) icode].operand[opno].predicate || (insn_data[(int) icode].operand[opno].predicate (operand, insn_data[(int) icode].operand[opno].mode))); } /* TARGET is a target of a multiword operation that we are going to implement as a series of word-mode operations. Return true if TARGET is suitable for this purpose. */ bool valid_multiword_target_p (rtx target) { enum machine_mode mode; int i; mode = GET_MODE (target); for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD) if (!validate_subreg (word_mode, mode, target, i)) return false; return true; } /* Like maybe_legitimize_operand, but do not change the code of the current rtx value. */ static bool maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno, struct expand_operand *op) { /* See if the operand matches in its current form. */ if (insn_operand_matches (icode, opno, op->value)) return true; /* If the operand is a memory whose address has no side effects, try forcing the address into a non-virtual pseudo register. The check for side effects is important because copy_to_mode_reg cannot handle things like auto-modified addresses. */ if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value)) { rtx addr, mem; mem = op->value; addr = XEXP (mem, 0); if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER) && !side_effects_p (addr)) { rtx last; enum machine_mode mode; last = get_last_insn (); mode = get_address_mode (mem); mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr)); if (insn_operand_matches (icode, opno, mem)) { op->value = mem; return true; } delete_insns_since (last); } } return false; } /* Try to make OP match operand OPNO of instruction ICODE. Return true on success, storing the new operand value back in OP. */ static bool maybe_legitimize_operand (enum insn_code icode, unsigned int opno, struct expand_operand *op) { enum machine_mode mode, imode; bool old_volatile_ok, result; mode = op->mode; switch (op->type) { case EXPAND_FIXED: old_volatile_ok = volatile_ok; volatile_ok = true; result = maybe_legitimize_operand_same_code (icode, opno, op); volatile_ok = old_volatile_ok; return result; case EXPAND_OUTPUT: gcc_assert (mode != VOIDmode); if (op->value && op->value != const0_rtx && GET_MODE (op->value) == mode && maybe_legitimize_operand_same_code (icode, opno, op)) return true; op->value = gen_reg_rtx (mode); break; case EXPAND_INPUT: input: gcc_assert (mode != VOIDmode); gcc_assert (GET_MODE (op->value) == VOIDmode || GET_MODE (op->value) == mode); if (maybe_legitimize_operand_same_code (icode, opno, op)) return true; op->value = copy_to_mode_reg (mode, op->value); break; case EXPAND_CONVERT_TO: gcc_assert (mode != VOIDmode); op->value = convert_to_mode (mode, op->value, op->unsigned_p); goto input; case EXPAND_CONVERT_FROM: if (GET_MODE (op->value) != VOIDmode) mode = GET_MODE (op->value); else /* The caller must tell us what mode this value has. */ gcc_assert (mode != VOIDmode); imode = insn_data[(int) icode].operand[opno].mode; if (imode != VOIDmode && imode != mode) { op->value = convert_modes (imode, mode, op->value, op->unsigned_p); mode = imode; } goto input; case EXPAND_ADDRESS: gcc_assert (mode != VOIDmode); op->value = convert_memory_address (mode, op->value); goto input; case EXPAND_INTEGER: mode = insn_data[(int) icode].operand[opno].mode; if (mode != VOIDmode && const_int_operand (op->value, mode)) goto input; break; } return insn_operand_matches (icode, opno, op->value); } /* Make OP describe an input operand that should have the same value as VALUE, after any mode conversion that the target might request. TYPE is the type of VALUE. */ void create_convert_operand_from_type (struct expand_operand *op, rtx value, tree type) { create_convert_operand_from (op, value, TYPE_MODE (type), TYPE_UNSIGNED (type)); } /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS) of instruction ICODE. Return true on success, leaving the new operand values in the OPS themselves. Emit no code on failure. */ bool maybe_legitimize_operands (enum insn_code icode, unsigned int opno, unsigned int nops, struct expand_operand *ops) { rtx last; unsigned int i; last = get_last_insn (); for (i = 0; i < nops; i++) if (!maybe_legitimize_operand (icode, opno + i, &ops[i])) { delete_insns_since (last); return false; } return true; } /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS) as its operands. Return the instruction pattern on success, and emit any necessary set-up code. Return null and emit no code on failure. */ rtx maybe_gen_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops) { gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args); if (!maybe_legitimize_operands (icode, 0, nops, ops)) return NULL_RTX; switch (nops) { case 1: return GEN_FCN (icode) (ops[0].value); case 2: return GEN_FCN (icode) (ops[0].value, ops[1].value); case 3: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value); case 4: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value, ops[3].value); case 5: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value, ops[3].value, ops[4].value); case 6: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value, ops[3].value, ops[4].value, ops[5].value); case 7: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value, ops[3].value, ops[4].value, ops[5].value, ops[6].value); case 8: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value, ops[3].value, ops[4].value, ops[5].value, ops[6].value, ops[7].value); case 9: return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value, ops[3].value, ops[4].value, ops[5].value, ops[6].value, ops[7].value, ops[8].value); } gcc_unreachable (); } /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS) as its operands. Return true on success and emit no code on failure. */ bool maybe_expand_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops) { rtx pat = maybe_gen_insn (icode, nops, ops); if (pat) { emit_insn (pat); return true; } return false; } /* Like maybe_expand_insn, but for jumps. */ bool maybe_expand_jump_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops) { rtx pat = maybe_gen_insn (icode, nops, ops); if (pat) { emit_jump_insn (pat); return true; } return false; } /* Emit instruction ICODE, using operands [OPS, OPS + NOPS) as its operands. */ void expand_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops) { if (!maybe_expand_insn (icode, nops, ops)) gcc_unreachable (); } /* Like expand_insn, but for jumps. */ void expand_jump_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops) { if (!maybe_expand_jump_insn (icode, nops, ops)) gcc_unreachable (); } /* Reduce conditional compilation elsewhere. */ #ifndef HAVE_insv #define HAVE_insv 0 #define CODE_FOR_insv CODE_FOR_nothing #endif #ifndef HAVE_extv #define HAVE_extv 0 #define CODE_FOR_extv CODE_FOR_nothing #endif #ifndef HAVE_extzv #define HAVE_extzv 0 #define CODE_FOR_extzv CODE_FOR_nothing #endif /* Enumerates the possible types of structure operand to an extraction_insn. */ enum extraction_type { ET_unaligned_mem, ET_reg }; /* Check whether insv, extv or extzv pattern ICODE can be used for an insertion or extraction of type TYPE on a structure of mode MODE. Return true if so and fill in *INSN accordingly. STRUCT_OP is the operand number of the structure (the first sign_extract or zero_extract operand) and FIELD_OP is the operand number of the field (the other side of the set from the sign_extract or zero_extract). */ static bool get_traditional_extraction_insn (extraction_insn *insn, enum extraction_type type, enum machine_mode mode, enum insn_code icode, int struct_op, int field_op) { const struct insn_data_d *data = &insn_data[icode]; enum machine_mode struct_mode = data->operand[struct_op].mode; if (struct_mode == VOIDmode) struct_mode = word_mode; if (mode != struct_mode) return false; enum machine_mode field_mode = data->operand[field_op].mode; if (field_mode == VOIDmode) field_mode = word_mode; enum machine_mode pos_mode = data->operand[struct_op + 2].mode; if (pos_mode == VOIDmode) pos_mode = word_mode; insn->icode = icode; insn->field_mode = field_mode; insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode); insn->pos_mode = pos_mode; return true; } /* Return true if an optab exists to perform an insertion or extraction of type TYPE in mode MODE. Describe the instruction in *INSN if so. REG_OPTAB is the optab to use for register structures and MISALIGN_OPTAB is the optab to use for misaligned memory structures. POS_OP is the operand number of the bit position. */ static bool get_optab_extraction_insn (struct extraction_insn *insn, enum extraction_type type, enum machine_mode mode, direct_optab reg_optab, direct_optab misalign_optab, int pos_op) { direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab); enum insn_code icode = direct_optab_handler (optab, mode); if (icode == CODE_FOR_nothing) return false; const struct insn_data_d *data = &insn_data[icode]; insn->icode = icode; insn->field_mode = mode; insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode); insn->pos_mode = data->operand[pos_op].mode; if (insn->pos_mode == VOIDmode) insn->pos_mode = word_mode; return true; } /* Return true if an instruction exists to perform an insertion or extraction (PATTERN says which) of type TYPE in mode MODE. Describe the instruction in *INSN if so. */ static bool get_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, enum extraction_type type, enum machine_mode mode) { switch (pattern) { case EP_insv: if (HAVE_insv && get_traditional_extraction_insn (insn, type, mode, CODE_FOR_insv, 0, 3)) return true; return get_optab_extraction_insn (insn, type, mode, insv_optab, insvmisalign_optab, 2); case EP_extv: if (HAVE_extv && get_traditional_extraction_insn (insn, type, mode, CODE_FOR_extv, 1, 0)) return true; return get_optab_extraction_insn (insn, type, mode, extv_optab, extvmisalign_optab, 3); case EP_extzv: if (HAVE_extzv && get_traditional_extraction_insn (insn, type, mode, CODE_FOR_extzv, 1, 0)) return true; return get_optab_extraction_insn (insn, type, mode, extzv_optab, extzvmisalign_optab, 3); default: gcc_unreachable (); } } /* Return true if an instruction exists to access a field of mode FIELDMODE in a structure that has STRUCT_BITS significant bits. Describe the "best" such instruction in *INSN if so. PATTERN and TYPE describe the type of insertion or extraction we want to perform. For an insertion, the number of significant structure bits includes all bits of the target. For an extraction, it need only include the most significant bit of the field. Larger widths are acceptable in both cases. */ static bool get_best_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, enum extraction_type type, unsigned HOST_WIDE_INT struct_bits, enum machine_mode field_mode) { enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT); while (mode != VOIDmode) { if (get_extraction_insn (insn, pattern, type, mode)) { while (mode != VOIDmode && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode) && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode, field_mode)) { get_extraction_insn (insn, pattern, type, mode); mode = GET_MODE_WIDER_MODE (mode); } return true; } mode = GET_MODE_WIDER_MODE (mode); } return false; } /* Return true if an instruction exists to access a field of mode FIELDMODE in a register structure that has STRUCT_BITS significant bits. Describe the "best" such instruction in *INSN if so. PATTERN describes the type of insertion or extraction we want to perform. For an insertion, the number of significant structure bits includes all bits of the target. For an extraction, it need only include the most significant bit of the field. Larger widths are acceptable in both cases. */ bool get_best_reg_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, unsigned HOST_WIDE_INT struct_bits, enum machine_mode field_mode) { return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits, field_mode); } /* Return true if an instruction exists to access a field of BITSIZE bits starting BITNUM bits into a memory structure. Describe the "best" such instruction in *INSN if so. PATTERN describes the type of insertion or extraction we want to perform and FIELDMODE is the natural mode of the extracted field. The instructions considered here only access bytes that overlap the bitfield; they do not touch any surrounding bytes. */ bool get_best_mem_extraction_insn (extraction_insn *insn, enum extraction_pattern pattern, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum, enum machine_mode field_mode) { unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT + bitsize + BITS_PER_UNIT - 1); struct_bits -= struct_bits % BITS_PER_UNIT; return get_best_extraction_insn (insn, pattern, ET_unaligned_mem, struct_bits, field_mode); } #include "gt-optabs.h"