/* Tree-based target query functions relating to optabs
Copyright (C) 1987-2015 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "insn-codes.h"
#include "tree.h"
#include "optabs-tree.h"
#include "stor-layout.h"
/* Return the optab used for computing the operation given by the tree code,
CODE and the tree EXP. This function is not always usable (for example, it
cannot give complete results for multiplication or division) but probably
ought to be relied on more widely throughout the expander. */
optab
optab_for_tree_code (enum tree_code code, const_tree type,
enum optab_subtype subtype)
{
bool trapv;
switch (code)
{
case BIT_AND_EXPR:
return and_optab;
case BIT_IOR_EXPR:
return ior_optab;
case BIT_NOT_EXPR:
return one_cmpl_optab;
case BIT_XOR_EXPR:
return xor_optab;
case MULT_HIGHPART_EXPR:
return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
case RDIV_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
if (TYPE_SATURATING (type))
return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
case LSHIFT_EXPR:
if (TREE_CODE (type) == VECTOR_TYPE)
{
if (subtype == optab_vector)
return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
gcc_assert (subtype == optab_scalar);
}
if (TYPE_SATURATING (type))
return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
return ashl_optab;
case RSHIFT_EXPR:
if (TREE_CODE (type) == VECTOR_TYPE)
{
if (subtype == optab_vector)
return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
gcc_assert (subtype == optab_scalar);
}
return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
case LROTATE_EXPR:
if (TREE_CODE (type) == VECTOR_TYPE)
{
if (subtype == optab_vector)
return vrotl_optab;
gcc_assert (subtype == optab_scalar);
}
return rotl_optab;
case RROTATE_EXPR:
if (TREE_CODE (type) == VECTOR_TYPE)
{
if (subtype == optab_vector)
return vrotr_optab;
gcc_assert (subtype == optab_scalar);
}
return rotr_optab;
case MAX_EXPR:
return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
case MIN_EXPR:
return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
case REALIGN_LOAD_EXPR:
return vec_realign_load_optab;
case WIDEN_SUM_EXPR:
return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
case DOT_PROD_EXPR:
return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
case SAD_EXPR:
return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
case WIDEN_MULT_PLUS_EXPR:
return (TYPE_UNSIGNED (type)
? (TYPE_SATURATING (type)
? usmadd_widen_optab : umadd_widen_optab)
: (TYPE_SATURATING (type)
? ssmadd_widen_optab : smadd_widen_optab));
case WIDEN_MULT_MINUS_EXPR:
return (TYPE_UNSIGNED (type)
? (TYPE_SATURATING (type)
? usmsub_widen_optab : umsub_widen_optab)
: (TYPE_SATURATING (type)
? ssmsub_widen_optab : smsub_widen_optab));
case FMA_EXPR:
return fma_optab;
case REDUC_MAX_EXPR:
return TYPE_UNSIGNED (type)
? reduc_umax_scal_optab : reduc_smax_scal_optab;
case REDUC_MIN_EXPR:
return TYPE_UNSIGNED (type)
? reduc_umin_scal_optab : reduc_smin_scal_optab;
case REDUC_PLUS_EXPR:
return reduc_plus_scal_optab;
case VEC_WIDEN_MULT_HI_EXPR:
return TYPE_UNSIGNED (type) ?
vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
case VEC_WIDEN_MULT_LO_EXPR:
return TYPE_UNSIGNED (type) ?
vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
case VEC_WIDEN_MULT_EVEN_EXPR:
return TYPE_UNSIGNED (type) ?
vec_widen_umult_even_optab : vec_widen_smult_even_optab;
case VEC_WIDEN_MULT_ODD_EXPR:
return TYPE_UNSIGNED (type) ?
vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
case VEC_WIDEN_LSHIFT_HI_EXPR:
return TYPE_UNSIGNED (type) ?
vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
case VEC_WIDEN_LSHIFT_LO_EXPR:
return TYPE_UNSIGNED (type) ?
vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
case VEC_UNPACK_HI_EXPR:
return TYPE_UNSIGNED (type) ?
vec_unpacku_hi_optab : vec_unpacks_hi_optab;
case VEC_UNPACK_LO_EXPR:
return TYPE_UNSIGNED (type) ?
vec_unpacku_lo_optab : vec_unpacks_lo_optab;
case VEC_UNPACK_FLOAT_HI_EXPR:
/* The signedness is determined from input operand. */
return TYPE_UNSIGNED (type) ?
vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
case VEC_UNPACK_FLOAT_LO_EXPR:
/* The signedness is determined from input operand. */
return TYPE_UNSIGNED (type) ?
vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
case VEC_PACK_TRUNC_EXPR:
return vec_pack_trunc_optab;
case VEC_PACK_SAT_EXPR:
return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
case VEC_PACK_FIX_TRUNC_EXPR:
/* The signedness is determined from output operand. */
return TYPE_UNSIGNED (type) ?
vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
default:
break;
}
trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
switch (code)
{
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
if (TYPE_SATURATING (type))
return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
return trapv ? addv_optab : add_optab;
case MINUS_EXPR:
if (TYPE_SATURATING (type))
return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
return trapv ? subv_optab : sub_optab;
case MULT_EXPR:
if (TYPE_SATURATING (type))
return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
return trapv ? smulv_optab : smul_optab;
case NEGATE_EXPR:
if (TYPE_SATURATING (type))
return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
return trapv ? negv_optab : neg_optab;
case ABS_EXPR:
return trapv ? absv_optab : abs_optab;
default:
return unknown_optab;
}
}
/* Given optab UNOPTAB that reduces a vector to a scalar, find instead the old
optab that produces a vector with the reduction result in one element,
for a tree with type TYPE. */
optab
scalar_reduc_to_vector (optab unoptab, const_tree type)
{
switch (unoptab)
{
case reduc_plus_scal_optab:
return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
case reduc_smin_scal_optab: return reduc_smin_optab;
case reduc_umin_scal_optab: return reduc_umin_optab;
case reduc_smax_scal_optab: return reduc_smax_optab;
case reduc_umax_scal_optab: return reduc_umax_optab;
default: return unknown_optab;
}
}
/* Function supportable_convert_operation
Check whether an operation represented by the code CODE is a
convert operation that is supported by the target platform in
vector form (i.e., when operating on arguments of type VECTYPE_IN
producing a result of type VECTYPE_OUT).
Convert operations we currently support directly are FIX_TRUNC and FLOAT.
This function checks if these operations are supported
by the target platform either directly (via vector tree-codes), or via
target builtins.
Output:
- CODE1 is code of vector operation to be used when
vectorizing the operation, if available.
- DECL is decl of target builtin functions to be used
when vectorizing the operation, if available. In this case,
CODE1 is CALL_EXPR. */
bool
supportable_convert_operation (enum tree_code code,
tree vectype_out, tree vectype_in,
tree *decl, enum tree_code *code1)
{
machine_mode m1,m2;
bool truncp;
m1 = TYPE_MODE (vectype_out);
m2 = TYPE_MODE (vectype_in);
/* First check if we can done conversion directly. */
if ((code == FIX_TRUNC_EXPR
&& can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
!= CODE_FOR_nothing)
|| (code == FLOAT_EXPR
&& can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
!= CODE_FOR_nothing))
{
*code1 = code;
return true;
}
/* Now check for builtin. */
if (targetm.vectorize.builtin_conversion
&& targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
{
*code1 = CALL_EXPR;
*decl = targetm.vectorize.builtin_conversion (code, vectype_out,
vectype_in);
return true;
}
return false;
}
/* Return TRUE iff, appropriate vector insns are available
for vector cond expr with vector type VALUE_TYPE and a comparison
with operand vector types in CMP_OP_TYPE. */
bool
expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
{
machine_mode value_mode = TYPE_MODE (value_type);
machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
|| GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
|| get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
return false;
return true;
}
/* Use the current target and options to initialize
TREE_OPTIMIZATION_OPTABS (OPTNODE). */
void
init_tree_optimization_optabs (tree optnode)
{
/* Quick exit if we have already computed optabs for this target. */
if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
return;
/* Forget any previous information and set up for the current target. */
TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
struct target_optabs *tmp_optabs = (struct target_optabs *)
TREE_OPTIMIZATION_OPTABS (optnode);
if (tmp_optabs)
memset (tmp_optabs, 0, sizeof (struct target_optabs));
else
tmp_optabs = ggc_alloc ();
/* Generate a new set of optabs into tmp_optabs. */
init_all_optabs (tmp_optabs);
/* If the optabs changed, record it. */
if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
else
{
TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
ggc_free (tmp_optabs);
}
}