/* Miscellaneous utilities for GIMPLE streaming. Things that are used in both input and output are here. Copyright 2009, 2010 Free Software Foundation, Inc. Contributed by Doug Kwan This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "toplev.h" #include "flags.h" #include "tree.h" #include "gimple.h" #include "tree-flow.h" #include "diagnostic-core.h" #include "bitmap.h" #include "vec.h" #include "lto-streamer.h" /* Statistics gathered during LTO, WPA and LTRANS. */ struct lto_stats_d lto_stats; /* Streamer hooks. */ struct streamer_hooks streamer_hooks; /* LTO uses bitmaps with different life-times. So use a seperate obstack for all LTO bitmaps. */ static bitmap_obstack lto_obstack; static bool lto_obstack_initialized; /* Return a string representing LTO tag TAG. */ const char * lto_tag_name (enum LTO_tags tag) { if (lto_tag_is_tree_code_p (tag)) { /* For tags representing tree nodes, return the name of the associated tree code. */ return tree_code_name[lto_tag_to_tree_code (tag)]; } if (lto_tag_is_gimple_code_p (tag)) { /* For tags representing gimple statements, return the name of the associated gimple code. */ return gimple_code_name[lto_tag_to_gimple_code (tag)]; } switch (tag) { case LTO_null: return "LTO_null"; case LTO_bb0: return "LTO_bb0"; case LTO_bb1: return "LTO_bb1"; case LTO_eh_region: return "LTO_eh_region"; case LTO_function: return "LTO_function"; case LTO_eh_table: return "LTO_eh_table"; case LTO_ert_cleanup: return "LTO_ert_cleanup"; case LTO_ert_try: return "LTO_ert_try"; case LTO_ert_allowed_exceptions: return "LTO_ert_allowed_exceptions"; case LTO_ert_must_not_throw: return "LTO_ert_must_not_throw"; case LTO_tree_pickle_reference: return "LTO_tree_pickle_reference"; case LTO_field_decl_ref: return "LTO_field_decl_ref"; case LTO_function_decl_ref: return "LTO_function_decl_ref"; case LTO_label_decl_ref: return "LTO_label_decl_ref"; case LTO_namespace_decl_ref: return "LTO_namespace_decl_ref"; case LTO_result_decl_ref: return "LTO_result_decl_ref"; case LTO_ssa_name_ref: return "LTO_ssa_name_ref"; case LTO_type_decl_ref: return "LTO_type_decl_ref"; case LTO_type_ref: return "LTO_type_ref"; case LTO_global_decl_ref: return "LTO_global_decl_ref"; default: return "LTO_UNKNOWN"; } } /* Allocate a bitmap from heap. Initializes the LTO obstack if necessary. */ bitmap lto_bitmap_alloc (void) { if (!lto_obstack_initialized) { bitmap_obstack_initialize (<o_obstack); lto_obstack_initialized = true; } return BITMAP_ALLOC (<o_obstack); } /* Free bitmap B. */ void lto_bitmap_free (bitmap b) { BITMAP_FREE (b); } /* Get a section name for a particular type or name. The NAME field is only used if SECTION_TYPE is LTO_section_function_body. For all others it is ignored. The callee of this function is responsible to free the returned name. */ char * lto_get_section_name (int section_type, const char *name, struct lto_file_decl_data *f) { const char *add; char post[32]; const char *sep; if (section_type == LTO_section_function_body) { gcc_assert (name != NULL); if (name[0] == '*') name++; add = name; sep = ""; } else if (section_type < LTO_N_SECTION_TYPES) { add = lto_section_name[section_type]; sep = "."; } else internal_error ("bytecode stream: unexpected LTO section %s", name); /* Make the section name unique so that ld -r combining sections doesn't confuse the reader with merged sections. For options don't add a ID, the option reader cannot deal with them and merging should be ok here. XXX: use crc64 to minimize collisions? */ if (section_type == LTO_section_opts) strcpy (post, ""); else sprintf (post, ".%x", f ? f->id : crc32_string(0, get_random_seed (false))); return concat (LTO_SECTION_NAME_PREFIX, sep, add, post, NULL); } /* Show various memory usage statistics related to LTO. */ void print_lto_report (void) { const char *s = (flag_lto) ? "LTO" : (flag_wpa) ? "WPA" : "LTRANS"; unsigned i; fprintf (stderr, "%s statistics\n", s); fprintf (stderr, "[%s] # of input files: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_input_files); fprintf (stderr, "[%s] # of input cgraph nodes: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_input_cgraph_nodes); fprintf (stderr, "[%s] # of function bodies: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_function_bodies); fprintf (stderr, "[%s] ", s); print_gimple_types_stats (); for (i = 0; i < NUM_TREE_CODES; i++) if (lto_stats.num_trees[i]) fprintf (stderr, "[%s] # of '%s' objects read: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, tree_code_name[i], lto_stats.num_trees[i]); if (flag_lto) { fprintf (stderr, "[%s] Compression: " HOST_WIDE_INT_PRINT_UNSIGNED " output bytes, " HOST_WIDE_INT_PRINT_UNSIGNED " compressed bytes", s, lto_stats.num_output_il_bytes, lto_stats.num_compressed_il_bytes); if (lto_stats.num_output_il_bytes > 0) { const float dividend = (float) lto_stats.num_compressed_il_bytes; const float divisor = (float) lto_stats.num_output_il_bytes; fprintf (stderr, " (ratio: %f)", dividend / divisor); } fprintf (stderr, "\n"); } if (flag_wpa) { fprintf (stderr, "[%s] # of output files: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_output_files); fprintf (stderr, "[%s] # of output cgraph nodes: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_output_cgraph_nodes); fprintf (stderr, "[%s] # callgraph partitions: " HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_cgraph_partitions); fprintf (stderr, "[%s] Compression: " HOST_WIDE_INT_PRINT_UNSIGNED " input bytes, " HOST_WIDE_INT_PRINT_UNSIGNED " uncompressed bytes", s, lto_stats.num_input_il_bytes, lto_stats.num_uncompressed_il_bytes); if (lto_stats.num_input_il_bytes > 0) { const float dividend = (float) lto_stats.num_uncompressed_il_bytes; const float divisor = (float) lto_stats.num_input_il_bytes; fprintf (stderr, " (ratio: %f)", dividend / divisor); } fprintf (stderr, "\n"); } for (i = 0; i < LTO_N_SECTION_TYPES; i++) fprintf (stderr, "[%s] Size of mmap'd section %s: " HOST_WIDE_INT_PRINT_UNSIGNED " bytes\n", s, lto_section_name[i], lto_stats.section_size[i]); } /* Check that all the TS_* structures handled by the lto_output_* and lto_input_* routines are exactly ALL the structures defined in treestruct.def. */ static void check_handled_ts_structures (void) { bool handled_p[LAST_TS_ENUM]; unsigned i; memset (&handled_p, 0, sizeof (handled_p)); /* These are the TS_* structures that are either handled or explicitly ignored by the streamer routines. */ handled_p[TS_BASE] = true; handled_p[TS_TYPED] = true; handled_p[TS_COMMON] = true; handled_p[TS_INT_CST] = true; handled_p[TS_REAL_CST] = true; handled_p[TS_FIXED_CST] = true; handled_p[TS_VECTOR] = true; handled_p[TS_STRING] = true; handled_p[TS_COMPLEX] = true; handled_p[TS_IDENTIFIER] = true; handled_p[TS_DECL_MINIMAL] = true; handled_p[TS_DECL_COMMON] = true; handled_p[TS_DECL_WRTL] = true; handled_p[TS_DECL_NON_COMMON] = true; handled_p[TS_DECL_WITH_VIS] = true; handled_p[TS_FIELD_DECL] = true; handled_p[TS_VAR_DECL] = true; handled_p[TS_PARM_DECL] = true; handled_p[TS_LABEL_DECL] = true; handled_p[TS_RESULT_DECL] = true; handled_p[TS_CONST_DECL] = true; handled_p[TS_TYPE_DECL] = true; handled_p[TS_FUNCTION_DECL] = true; handled_p[TS_TYPE_COMMON] = true; handled_p[TS_TYPE_WITH_LANG_SPECIFIC] = true; handled_p[TS_TYPE_NON_COMMON] = true; handled_p[TS_LIST] = true; handled_p[TS_VEC] = true; handled_p[TS_EXP] = true; handled_p[TS_SSA_NAME] = true; handled_p[TS_BLOCK] = true; handled_p[TS_BINFO] = true; handled_p[TS_STATEMENT_LIST] = true; handled_p[TS_CONSTRUCTOR] = true; handled_p[TS_OMP_CLAUSE] = true; handled_p[TS_OPTIMIZATION] = true; handled_p[TS_TARGET_OPTION] = true; handled_p[TS_TRANSLATION_UNIT_DECL] = true; /* Anything not marked above will trigger the following assertion. If this assertion triggers, it means that there is a new TS_* structure that should be handled by the streamer. */ for (i = 0; i < LAST_TS_ENUM; i++) gcc_assert (handled_p[i]); } /* Helper for lto_streamer_cache_insert_1. Add T to CACHE->NODES at slot IX. */ static void lto_streamer_cache_add_to_node_array (struct lto_streamer_cache_d *cache, unsigned ix, tree t) { /* Make sure we're either replacing an old element or appending consecutively. */ gcc_assert (ix <= VEC_length (tree, cache->nodes)); if (ix == VEC_length (tree, cache->nodes)) VEC_safe_push (tree, heap, cache->nodes, t); else VEC_replace (tree, cache->nodes, ix, t); } /* Helper for lto_streamer_cache_insert and lto_streamer_cache_insert_at. CACHE, T, and IX_P are as in lto_streamer_cache_insert. If INSERT_AT_NEXT_SLOT_P is true, T is inserted at the next available slot in the cache. Otherwise, T is inserted at the position indicated in *IX_P. If T already existed in CACHE, return true. Otherwise, return false. */ static bool lto_streamer_cache_insert_1 (struct lto_streamer_cache_d *cache, tree t, unsigned *ix_p, bool insert_at_next_slot_p) { void **slot; unsigned ix; bool existed_p; gcc_assert (t); slot = pointer_map_insert (cache->node_map, t); if (!*slot) { /* Determine the next slot to use in the cache. */ if (insert_at_next_slot_p) ix = VEC_length (tree, cache->nodes); else ix = *ix_p; *slot = (void *)(size_t) (ix + 1); lto_streamer_cache_add_to_node_array (cache, ix, t); /* Indicate that the item was not present in the cache. */ existed_p = false; } else { ix = (size_t) *slot - 1; if (!insert_at_next_slot_p && ix != *ix_p) { /* If the caller wants to insert T at a specific slot location, and ENTRY->TO does not match *IX_P, add T to the requested location slot. */ ix = *ix_p; lto_streamer_cache_add_to_node_array (cache, ix, t); } /* Indicate that T was already in the cache. */ existed_p = true; } if (ix_p) *ix_p = ix; return existed_p; } /* Insert tree node T in CACHE. If T already existed in the cache return true. Otherwise, return false. If IX_P is non-null, update it with the index into the cache where T has been stored. */ bool lto_streamer_cache_insert (struct lto_streamer_cache_d *cache, tree t, unsigned *ix_p) { return lto_streamer_cache_insert_1 (cache, t, ix_p, true); } /* Insert tree node T in CACHE at slot IX. If T already existed in the cache return true. Otherwise, return false. */ bool lto_streamer_cache_insert_at (struct lto_streamer_cache_d *cache, tree t, unsigned ix) { return lto_streamer_cache_insert_1 (cache, t, &ix, false); } /* Appends tree node T to CACHE, even if T already existed in it. */ void lto_streamer_cache_append (struct lto_streamer_cache_d *cache, tree t) { unsigned ix = VEC_length (tree, cache->nodes); lto_streamer_cache_insert_1 (cache, t, &ix, false); } /* Return true if tree node T exists in CACHE, otherwise false. If IX_P is not NULL, write to *IX_P the index into the cache where T is stored ((unsigned)-1 if T is not found). */ bool lto_streamer_cache_lookup (struct lto_streamer_cache_d *cache, tree t, unsigned *ix_p) { void **slot; bool retval; unsigned ix; gcc_assert (t); slot = pointer_map_contains (cache->node_map, t); if (slot == NULL) { retval = false; ix = -1; } else { retval = true; ix = (size_t) *slot - 1; } if (ix_p) *ix_p = ix; return retval; } /* Return the tree node at slot IX in CACHE. */ tree lto_streamer_cache_get (struct lto_streamer_cache_d *cache, unsigned ix) { gcc_assert (cache); /* Make sure we're not requesting something we don't have. */ gcc_assert (ix < VEC_length (tree, cache->nodes)); return VEC_index (tree, cache->nodes, ix); } /* Record NODE in CACHE. */ static void lto_record_common_node (struct lto_streamer_cache_d *cache, tree node) { /* We have to make sure to fill exactly the same number of elements for all frontends. That can include NULL trees. As our hash table can't deal with zero entries we'll simply stream a random other tree. A NULL tree never will be looked up so it doesn't matter which tree we replace it with, just to be sure use error_mark_node. */ if (!node) node = error_mark_node; lto_streamer_cache_append (cache, node); if (POINTER_TYPE_P (node) || TREE_CODE (node) == COMPLEX_TYPE || TREE_CODE (node) == ARRAY_TYPE) lto_record_common_node (cache, TREE_TYPE (node)); else if (TREE_CODE (node) == RECORD_TYPE) { /* The FIELD_DECLs of structures should be shared, so that every COMPONENT_REF uses the same tree node when referencing a field. Pointer equality between FIELD_DECLs is used by the alias machinery to compute overlapping memory references (See nonoverlapping_component_refs_p). */ tree f; for (f = TYPE_FIELDS (node); f; f = TREE_CHAIN (f)) lto_record_common_node (cache, f); } } /* Preload common nodes into CACHE and make sure they are merged properly according to the gimple type table. */ static void lto_preload_common_nodes (struct lto_streamer_cache_d *cache) { unsigned i; /* The MAIN_IDENTIFIER_NODE is normally set up by the front-end, but the LTO back-end must agree. Currently, the only languages that set this use the name "main". */ if (main_identifier_node) { const char *main_name = IDENTIFIER_POINTER (main_identifier_node); gcc_assert (strcmp (main_name, "main") == 0); } else main_identifier_node = get_identifier ("main"); gcc_assert (ptrdiff_type_node == integer_type_node); /* FIXME lto. In the C++ front-end, fileptr_type_node is defined as a variant copy of of ptr_type_node, rather than ptr_node itself. The distinction should only be relevant to the front-end, so we always use the C definition here in lto1. These should be assured in pass_ipa_free_lang_data. */ gcc_assert (fileptr_type_node == ptr_type_node); gcc_assert (TYPE_MAIN_VARIANT (fileptr_type_node) == ptr_type_node); for (i = 0; i < itk_none; i++) /* Skip itk_char. char_type_node is dependent on -f[un]signed-char. */ if (i != itk_char) lto_record_common_node (cache, integer_types[i]); for (i = 0; i < TYPE_KIND_LAST; i++) lto_record_common_node (cache, sizetype_tab[i]); for (i = 0; i < TI_MAX; i++) /* Skip boolean type and constants, they are frontend dependent. */ if (i != TI_BOOLEAN_TYPE && i != TI_BOOLEAN_FALSE && i != TI_BOOLEAN_TRUE) lto_record_common_node (cache, global_trees[i]); } /* Create a cache of pickled nodes. */ struct lto_streamer_cache_d * lto_streamer_cache_create (void) { struct lto_streamer_cache_d *cache; cache = XCNEW (struct lto_streamer_cache_d); cache->node_map = pointer_map_create (); /* Load all the well-known tree nodes that are always created by the compiler on startup. This prevents writing them out unnecessarily. */ streamer_hooks.preload_common_nodes (cache); return cache; } /* Delete the streamer cache C. */ void lto_streamer_cache_delete (struct lto_streamer_cache_d *c) { if (c == NULL) return; pointer_map_destroy (c->node_map); VEC_free (tree, heap, c->nodes); free (c); } #ifdef LTO_STREAMER_DEBUG static htab_t tree_htab; struct tree_hash_entry { tree key; intptr_t value; }; static hashval_t hash_tree (const void *p) { const struct tree_hash_entry *e = (const struct tree_hash_entry *) p; return htab_hash_pointer (e->key); } static int eq_tree (const void *p1, const void *p2) { const struct tree_hash_entry *e1 = (const struct tree_hash_entry *) p1; const struct tree_hash_entry *e2 = (const struct tree_hash_entry *) p2; return (e1->key == e2->key); } #endif /* Initialization common to the LTO reader and writer. */ void lto_streamer_init (void) { /* Check that all the TS_* handled by the reader and writer routines match exactly the structures defined in treestruct.def. When a new TS_* astructure is added, the streamer should be updated to handle it. */ check_handled_ts_structures (); #ifdef LTO_STREAMER_DEBUG tree_htab = htab_create (31, hash_tree, eq_tree, NULL); #endif } /* Gate function for all LTO streaming passes. */ bool gate_lto_out (void) { return ((flag_generate_lto || in_lto_p) /* Don't bother doing anything if the program has errors. */ && !seen_error ()); } #ifdef LTO_STREAMER_DEBUG /* Add a mapping between T and ORIG_T, which is the numeric value of the original address of T as it was seen by the LTO writer. This mapping is useful when debugging streaming problems. A debugging session can be started on both reader and writer using ORIG_T as a breakpoint value in both sessions. Note that this mapping is transient and only valid while T is being reconstructed. Once T is fully built, the mapping is removed. */ void lto_orig_address_map (tree t, intptr_t orig_t) { struct tree_hash_entry ent; struct tree_hash_entry **slot; ent.key = t; ent.value = orig_t; slot = (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, INSERT); gcc_assert (!*slot); *slot = XNEW (struct tree_hash_entry); **slot = ent; } /* Get the original address of T as it was seen by the writer. This is only valid while T is being reconstructed. */ intptr_t lto_orig_address_get (tree t) { struct tree_hash_entry ent; struct tree_hash_entry **slot; ent.key = t; slot = (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, NO_INSERT); return (slot ? (*slot)->value : 0); } /* Clear the mapping of T to its original address. */ void lto_orig_address_remove (tree t) { struct tree_hash_entry ent; struct tree_hash_entry **slot; ent.key = t; slot = (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, NO_INSERT); gcc_assert (slot); free (*slot); htab_clear_slot (tree_htab, (PTR *)slot); } #endif /* Check that the version MAJOR.MINOR is the correct version number. */ void lto_check_version (int major, int minor) { if (major != LTO_major_version || minor != LTO_minor_version) fatal_error ("bytecode stream generated with LTO version %d.%d instead " "of the expected %d.%d", major, minor, LTO_major_version, LTO_minor_version); } /* Return true if EXPR is a tree node that can be written to disk. */ static inline bool lto_is_streamable (tree expr) { enum tree_code code = TREE_CODE (expr); /* Notice that we reject SSA_NAMEs as well. We only emit the SSA name version in lto_output_tree_ref (see output_ssa_names). */ return !is_lang_specific (expr) && code != SSA_NAME && code != CALL_EXPR && code != LANG_TYPE && code != MODIFY_EXPR && code != INIT_EXPR && code != TARGET_EXPR && code != BIND_EXPR && code != WITH_CLEANUP_EXPR && code != STATEMENT_LIST && code != OMP_CLAUSE && code != OPTIMIZATION_NODE && (code == CASE_LABEL_EXPR || code == DECL_EXPR || TREE_CODE_CLASS (code) != tcc_statement); } /* Initialize all the streamer hooks used for streaming GIMPLE. */ void lto_streamer_hooks_init (void) { streamer_hooks_init (); streamer_hooks.name = "gimple"; streamer_hooks.preload_common_nodes = lto_preload_common_nodes; streamer_hooks.is_streamable = lto_is_streamable; streamer_hooks.write_tree = lto_streamer_write_tree; streamer_hooks.read_tree = lto_streamer_read_tree; } /* Initialize the current set of streamer hooks. */ void streamer_hooks_init (void) { memset (&streamer_hooks, 0, sizeof (streamer_hooks)); }