/* Decompose multiword subregs. Copyright (C) 2007-2014 Free Software Foundation, Inc. Contributed by Richard Henderson Ian Lance Taylor This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "machmode.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "flags.h" #include "insn-config.h" #include "obstack.h" #include "predict.h" #include "vec.h" #include "hashtab.h" #include "hash-set.h" #include "hard-reg-set.h" #include "input.h" #include "function.h" #include "dominance.h" #include "cfg.h" #include "cfgrtl.h" #include "cfgbuild.h" #include "basic-block.h" #include "recog.h" #include "bitmap.h" #include "dce.h" #include "expr.h" #include "except.h" #include "regs.h" #include "tree-pass.h" #include "df.h" #include "lower-subreg.h" #include "rtl-iter.h" #ifdef STACK_GROWS_DOWNWARD # undef STACK_GROWS_DOWNWARD # define STACK_GROWS_DOWNWARD 1 #else # define STACK_GROWS_DOWNWARD 0 #endif /* Decompose multi-word pseudo-registers into individual pseudo-registers when possible and profitable. This is possible when all the uses of a multi-word register are via SUBREG, or are copies of the register to another location. Breaking apart the register permits more CSE and permits better register allocation. This is profitable if the machine does not have move instructions to do this. This pass only splits moves with modes that are wider than word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with integer modes that are twice the width of word_mode. The latter could be generalized if there was a need to do this, but the trend in architectures is to not need this. There are two useful preprocessor defines for use by maintainers: #define LOG_COSTS 1 if you wish to see the actual cost estimates that are being used for each mode wider than word mode and the cost estimates for zero extension and the shifts. This can be useful when port maintainers are tuning insn rtx costs. #define FORCE_LOWERING 1 if you wish to test the pass with all the transformation forced on. This can be useful for finding bugs in the transformations. */ #define LOG_COSTS 0 #define FORCE_LOWERING 0 /* Bit N in this bitmap is set if regno N is used in a context in which we can decompose it. */ static bitmap decomposable_context; /* Bit N in this bitmap is set if regno N is used in a context in which it can not be decomposed. */ static bitmap non_decomposable_context; /* Bit N in this bitmap is set if regno N is used in a subreg which changes the mode but not the size. This typically happens when the register accessed as a floating-point value; we want to avoid generating accesses to its subwords in integer modes. */ static bitmap subreg_context; /* Bit N in the bitmap in element M of this array is set if there is a copy from reg M to reg N. */ static vec reg_copy_graph; struct target_lower_subreg default_target_lower_subreg; #if SWITCHABLE_TARGET struct target_lower_subreg *this_target_lower_subreg = &default_target_lower_subreg; #endif #define twice_word_mode \ this_target_lower_subreg->x_twice_word_mode #define choices \ this_target_lower_subreg->x_choices /* RTXes used while computing costs. */ struct cost_rtxes { /* Source and target registers. */ rtx source; rtx target; /* A twice_word_mode ZERO_EXTEND of SOURCE. */ rtx zext; /* A shift of SOURCE. */ rtx shift; /* A SET of TARGET. */ rtx set; }; /* Return the cost of a CODE shift in mode MODE by OP1 bits, using the rtxes in RTXES. SPEED_P selects between the speed and size cost. */ static int shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code, machine_mode mode, int op1) { PUT_CODE (rtxes->shift, code); PUT_MODE (rtxes->shift, mode); PUT_MODE (rtxes->source, mode); XEXP (rtxes->shift, 1) = GEN_INT (op1); return set_src_cost (rtxes->shift, speed_p); } /* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X] to true if it is profitable to split a double-word CODE shift of X + BITS_PER_WORD bits. SPEED_P says whether we are testing for speed or size profitability. Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is the cost of moving zero into a word-mode register. WORD_MOVE_COST is the cost of moving between word registers. */ static void compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes, bool *splitting, enum rtx_code code, int word_move_zero_cost, int word_move_cost) { int wide_cost, narrow_cost, upper_cost, i; for (i = 0; i < BITS_PER_WORD; i++) { wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode, i + BITS_PER_WORD); if (i == 0) narrow_cost = word_move_cost; else narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i); if (code != ASHIFTRT) upper_cost = word_move_zero_cost; else if (i == BITS_PER_WORD - 1) upper_cost = word_move_cost; else upper_cost = shift_cost (speed_p, rtxes, code, word_mode, BITS_PER_WORD - 1); if (LOG_COSTS) fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n", GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code), i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost); if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost) splitting[i] = true; } } /* Compute what we should do when optimizing for speed or size; SPEED_P selects which. Use RTXES for computing costs. */ static void compute_costs (bool speed_p, struct cost_rtxes *rtxes) { unsigned int i; int word_move_zero_cost, word_move_cost; PUT_MODE (rtxes->target, word_mode); SET_SRC (rtxes->set) = CONST0_RTX (word_mode); word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p); SET_SRC (rtxes->set) = rtxes->source; word_move_cost = set_rtx_cost (rtxes->set, speed_p); if (LOG_COSTS) fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n", GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost); for (i = 0; i < MAX_MACHINE_MODE; i++) { machine_mode mode = (machine_mode) i; int factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD; if (factor > 1) { int mode_move_cost; PUT_MODE (rtxes->target, mode); PUT_MODE (rtxes->source, mode); mode_move_cost = set_rtx_cost (rtxes->set, speed_p); if (LOG_COSTS) fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n", GET_MODE_NAME (mode), mode_move_cost, word_move_cost, factor); if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor) { choices[speed_p].move_modes_to_split[i] = true; choices[speed_p].something_to_do = true; } } } /* For the moves and shifts, the only case that is checked is one where the mode of the target is an integer mode twice the width of the word_mode. If it is not profitable to split a double word move then do not even consider the shifts or the zero extension. */ if (choices[speed_p].move_modes_to_split[(int) twice_word_mode]) { int zext_cost; /* The only case here to check to see if moving the upper part with a zero is cheaper than doing the zext itself. */ PUT_MODE (rtxes->source, word_mode); zext_cost = set_src_cost (rtxes->zext, speed_p); if (LOG_COSTS) fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n", GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND), zext_cost, word_move_cost, word_move_zero_cost); if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost) choices[speed_p].splitting_zext = true; compute_splitting_shift (speed_p, rtxes, choices[speed_p].splitting_ashift, ASHIFT, word_move_zero_cost, word_move_cost); compute_splitting_shift (speed_p, rtxes, choices[speed_p].splitting_lshiftrt, LSHIFTRT, word_move_zero_cost, word_move_cost); compute_splitting_shift (speed_p, rtxes, choices[speed_p].splitting_ashiftrt, ASHIFTRT, word_move_zero_cost, word_move_cost); } } /* Do one-per-target initialisation. This involves determining which operations on the machine are profitable. If none are found, then the pass just returns when called. */ void init_lower_subreg (void) { struct cost_rtxes rtxes; memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg)); twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode); rtxes.target = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER); rtxes.source = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER + 1); rtxes.set = gen_rtx_SET (VOIDmode, rtxes.target, rtxes.source); rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source); rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx); if (LOG_COSTS) fprintf (stderr, "\nSize costs\n==========\n\n"); compute_costs (false, &rtxes); if (LOG_COSTS) fprintf (stderr, "\nSpeed costs\n===========\n\n"); compute_costs (true, &rtxes); } static bool simple_move_operand (rtx x) { if (GET_CODE (x) == SUBREG) x = SUBREG_REG (x); if (!OBJECT_P (x)) return false; if (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == HIGH || GET_CODE (x) == CONST) return false; if (MEM_P (x) && (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))) return false; return true; } /* If INSN is a single set between two objects that we want to split, return the single set. SPEED_P says whether we are optimizing INSN for speed or size. INSN should have been passed to recog and extract_insn before this is called. */ static rtx simple_move (rtx_insn *insn, bool speed_p) { rtx x; rtx set; machine_mode mode; if (recog_data.n_operands != 2) return NULL_RTX; set = single_set (insn); if (!set) return NULL_RTX; x = SET_DEST (set); if (x != recog_data.operand[0] && x != recog_data.operand[1]) return NULL_RTX; if (!simple_move_operand (x)) return NULL_RTX; x = SET_SRC (set); if (x != recog_data.operand[0] && x != recog_data.operand[1]) return NULL_RTX; /* For the src we can handle ASM_OPERANDS, and it is beneficial for things like x86 rdtsc which returns a DImode value. */ if (GET_CODE (x) != ASM_OPERANDS && !simple_move_operand (x)) return NULL_RTX; /* We try to decompose in integer modes, to avoid generating inefficient code copying between integer and floating point registers. That means that we can't decompose if this is a non-integer mode for which there is no integer mode of the same size. */ mode = GET_MODE (SET_DEST (set)); if (!SCALAR_INT_MODE_P (mode) && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0) == BLKmode)) return NULL_RTX; /* Reject PARTIAL_INT modes. They are used for processor specific purposes and it's probably best not to tamper with them. */ if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) return NULL_RTX; if (!choices[speed_p].move_modes_to_split[(int) mode]) return NULL_RTX; return set; } /* If SET is a copy from one multi-word pseudo-register to another, record that in reg_copy_graph. Return whether it is such a copy. */ static bool find_pseudo_copy (rtx set) { rtx dest = SET_DEST (set); rtx src = SET_SRC (set); unsigned int rd, rs; bitmap b; if (!REG_P (dest) || !REG_P (src)) return false; rd = REGNO (dest); rs = REGNO (src); if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs)) return false; b = reg_copy_graph[rs]; if (b == NULL) { b = BITMAP_ALLOC (NULL); reg_copy_graph[rs] = b; } bitmap_set_bit (b, rd); return true; } /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case where they are copied to another register, add the register to which they are copied to DECOMPOSABLE_CONTEXT. Use NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */ static void propagate_pseudo_copies (void) { bitmap queue, propagate; queue = BITMAP_ALLOC (NULL); propagate = BITMAP_ALLOC (NULL); bitmap_copy (queue, decomposable_context); do { bitmap_iterator iter; unsigned int i; bitmap_clear (propagate); EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter) { bitmap b = reg_copy_graph[i]; if (b) bitmap_ior_and_compl_into (propagate, b, non_decomposable_context); } bitmap_and_compl (queue, propagate, decomposable_context); bitmap_ior_into (decomposable_context, propagate); } while (!bitmap_empty_p (queue)); BITMAP_FREE (queue); BITMAP_FREE (propagate); } /* A pointer to one of these values is passed to find_decomposable_subregs. */ enum classify_move_insn { /* Not a simple move from one location to another. */ NOT_SIMPLE_MOVE, /* A simple move we want to decompose. */ DECOMPOSABLE_SIMPLE_MOVE, /* Any other simple move. */ SIMPLE_MOVE }; /* If we find a SUBREG in *LOC which we could use to decompose a pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an unadorned register which is not a simple pseudo-register copy, DATA will point at the type of move, and we set a bit in DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */ static void find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST) { rtx x = *iter; if (GET_CODE (x) == SUBREG) { rtx inner = SUBREG_REG (x); unsigned int regno, outer_size, inner_size, outer_words, inner_words; if (!REG_P (inner)) continue; regno = REGNO (inner); if (HARD_REGISTER_NUM_P (regno)) { iter.skip_subrtxes (); continue; } outer_size = GET_MODE_SIZE (GET_MODE (x)); inner_size = GET_MODE_SIZE (GET_MODE (inner)); outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* We only try to decompose single word subregs of multi-word registers. When we find one, we return -1 to avoid iterating over the inner register. ??? This doesn't allow, e.g., DImode subregs of TImode values on 32-bit targets. We would need to record the way the pseudo-register was used, and only decompose if all the uses were the same number and size of pieces. Hopefully this doesn't happen much. */ if (outer_words == 1 && inner_words > 1) { bitmap_set_bit (decomposable_context, regno); iter.skip_subrtxes (); continue; } /* If this is a cast from one mode to another, where the modes have the same size, and they are not tieable, then mark this register as non-decomposable. If we decompose it we are likely to mess up whatever the backend is trying to do. */ if (outer_words > 1 && outer_size == inner_size && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner))) { bitmap_set_bit (non_decomposable_context, regno); bitmap_set_bit (subreg_context, regno); iter.skip_subrtxes (); continue; } } else if (REG_P (x)) { unsigned int regno; /* We will see an outer SUBREG before we see the inner REG, so when we see a plain REG here it means a direct reference to the register. If this is not a simple copy from one location to another, then we can not decompose this register. If this is a simple copy we want to decompose, and the mode is right, then we mark the register as decomposable. Otherwise we don't say anything about this register -- it could be decomposed, but whether that would be profitable depends upon how it is used elsewhere. We only set bits in the bitmap for multi-word pseudo-registers, since those are the only ones we care about and it keeps the size of the bitmaps down. */ regno = REGNO (x); if (!HARD_REGISTER_NUM_P (regno) && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) { switch (*pcmi) { case NOT_SIMPLE_MOVE: bitmap_set_bit (non_decomposable_context, regno); break; case DECOMPOSABLE_SIMPLE_MOVE: if (MODES_TIEABLE_P (GET_MODE (x), word_mode)) bitmap_set_bit (decomposable_context, regno); break; case SIMPLE_MOVE: break; default: gcc_unreachable (); } } } else if (MEM_P (x)) { enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE; /* Any registers used in a MEM do not participate in a SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion here, and return -1 to block the parent's recursion. */ find_decomposable_subregs (&XEXP (x, 0), &cmi_mem); iter.skip_subrtxes (); } } } /* Decompose REGNO into word-sized components. We smash the REG node in place. This ensures that (1) something goes wrong quickly if we fail to make some replacement, and (2) the debug information inside the symbol table is automatically kept up to date. */ static void decompose_register (unsigned int regno) { rtx reg; unsigned int words, i; rtvec v; reg = regno_reg_rtx[regno]; regno_reg_rtx[regno] = NULL_RTX; words = GET_MODE_SIZE (GET_MODE (reg)); words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; v = rtvec_alloc (words); for (i = 0; i < words; ++i) RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD); PUT_CODE (reg, CONCATN); XVEC (reg, 0) = v; if (dump_file) { fprintf (dump_file, "; Splitting reg %u ->", regno); for (i = 0; i < words; ++i) fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i))); fputc ('\n', dump_file); } } /* Get a SUBREG of a CONCATN. */ static rtx simplify_subreg_concatn (machine_mode outermode, rtx op, unsigned int byte) { unsigned int inner_size; machine_mode innermode, partmode; rtx part; unsigned int final_offset; gcc_assert (GET_CODE (op) == CONCATN); gcc_assert (byte % GET_MODE_SIZE (outermode) == 0); innermode = GET_MODE (op); gcc_assert (byte < GET_MODE_SIZE (innermode)); gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode)); inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0); part = XVECEXP (op, 0, byte / inner_size); partmode = GET_MODE (part); /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of regular CONST_VECTORs. They have vector or integer modes, depending on the capabilities of the target. Cope with them. */ if (partmode == VOIDmode && VECTOR_MODE_P (innermode)) partmode = GET_MODE_INNER (innermode); else if (partmode == VOIDmode) { enum mode_class mclass = GET_MODE_CLASS (innermode); partmode = mode_for_size (inner_size * BITS_PER_UNIT, mclass, 0); } final_offset = byte % inner_size; if (final_offset + GET_MODE_SIZE (outermode) > inner_size) return NULL_RTX; return simplify_gen_subreg (outermode, part, partmode, final_offset); } /* Wrapper around simplify_gen_subreg which handles CONCATN. */ static rtx simplify_gen_subreg_concatn (machine_mode outermode, rtx op, machine_mode innermode, unsigned int byte) { rtx ret; /* We have to handle generating a SUBREG of a SUBREG of a CONCATN. If OP is a SUBREG of a CONCATN, then it must be a simple mode change with the same size and offset 0, or it must extract a part. We shouldn't see anything else here. */ if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN) { rtx op2; if ((GET_MODE_SIZE (GET_MODE (op)) == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))) && SUBREG_BYTE (op) == 0) return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op), GET_MODE (SUBREG_REG (op)), byte); op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op), SUBREG_BYTE (op)); if (op2 == NULL_RTX) { /* We don't handle paradoxical subregs here. */ gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op))); gcc_assert (GET_MODE_SIZE (GET_MODE (op)) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))); op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op), byte + SUBREG_BYTE (op)); gcc_assert (op2 != NULL_RTX); return op2; } op = op2; gcc_assert (op != NULL_RTX); gcc_assert (innermode == GET_MODE (op)); } if (GET_CODE (op) == CONCATN) return simplify_subreg_concatn (outermode, op, byte); ret = simplify_gen_subreg (outermode, op, innermode, byte); /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then resolve_simple_move will ask for the high part of the paradoxical subreg, which does not have a value. Just return a zero. */ if (ret == NULL_RTX && GET_CODE (op) == SUBREG && SUBREG_BYTE (op) == 0 && (GET_MODE_SIZE (innermode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))) return CONST0_RTX (outermode); gcc_assert (ret != NULL_RTX); return ret; } /* Return whether we should resolve X into the registers into which it was decomposed. */ static bool resolve_reg_p (rtx x) { return GET_CODE (x) == CONCATN; } /* Return whether X is a SUBREG of a register which we need to resolve. */ static bool resolve_subreg_p (rtx x) { if (GET_CODE (x) != SUBREG) return false; return resolve_reg_p (SUBREG_REG (x)); } /* Look for SUBREGs in *LOC which need to be decomposed. */ static bool resolve_subreg_use (rtx *loc, rtx insn) { subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) { rtx *loc = *iter; rtx x = *loc; if (resolve_subreg_p (x)) { x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x), SUBREG_BYTE (x)); /* It is possible for a note to contain a reference which we can decompose. In this case, return 1 to the caller to indicate that the note must be removed. */ if (!x) { gcc_assert (!insn); return true; } validate_change (insn, loc, x, 1); iter.skip_subrtxes (); } else if (resolve_reg_p (x)) /* Return 1 to the caller to indicate that we found a direct reference to a register which is being decomposed. This can happen inside notes, multiword shift or zero-extend instructions. */ return true; } return false; } /* Resolve any decomposed registers which appear in register notes on INSN. */ static void resolve_reg_notes (rtx_insn *insn) { rtx *pnote, note; note = find_reg_equal_equiv_note (insn); if (note) { int old_count = num_validated_changes (); if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX)) remove_note (insn, note); else if (old_count != num_validated_changes ()) df_notes_rescan (insn); } pnote = ®_NOTES (insn); while (*pnote != NULL_RTX) { bool del = false; note = *pnote; switch (REG_NOTE_KIND (note)) { case REG_DEAD: case REG_UNUSED: if (resolve_reg_p (XEXP (note, 0))) del = true; break; default: break; } if (del) *pnote = XEXP (note, 1); else pnote = &XEXP (note, 1); } } /* Return whether X can be decomposed into subwords. */ static bool can_decompose_p (rtx x) { if (REG_P (x)) { unsigned int regno = REGNO (x); if (HARD_REGISTER_NUM_P (regno)) { unsigned int byte, num_bytes; num_bytes = GET_MODE_SIZE (GET_MODE (x)); for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD) if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0) return false; return true; } else return !bitmap_bit_p (subreg_context, regno); } return true; } /* Decompose the registers used in a simple move SET within INSN. If we don't change anything, return INSN, otherwise return the start of the sequence of moves. */ static rtx_insn * resolve_simple_move (rtx set, rtx_insn *insn) { rtx src, dest, real_dest; rtx_insn *insns; machine_mode orig_mode, dest_mode; unsigned int words; bool pushing; src = SET_SRC (set); dest = SET_DEST (set); orig_mode = GET_MODE (dest); words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; gcc_assert (words > 1); start_sequence (); /* We have to handle copying from a SUBREG of a decomposed reg where the SUBREG is larger than word size. Rather than assume that we can take a word_mode SUBREG of the destination, we copy to a new register and then copy that to the destination. */ real_dest = NULL_RTX; if (GET_CODE (src) == SUBREG && resolve_reg_p (SUBREG_REG (src)) && (SUBREG_BYTE (src) != 0 || (GET_MODE_SIZE (orig_mode) != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))) { real_dest = dest; dest = gen_reg_rtx (orig_mode); if (REG_P (real_dest)) REG_ATTRS (dest) = REG_ATTRS (real_dest); } /* Similarly if we are copying to a SUBREG of a decomposed reg where the SUBREG is larger than word size. */ if (GET_CODE (dest) == SUBREG && resolve_reg_p (SUBREG_REG (dest)) && (SUBREG_BYTE (dest) != 0 || (GET_MODE_SIZE (orig_mode) != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))) { rtx reg, smove; rtx_insn *minsn; reg = gen_reg_rtx (orig_mode); minsn = emit_move_insn (reg, src); smove = single_set (minsn); gcc_assert (smove != NULL_RTX); resolve_simple_move (smove, minsn); src = reg; } /* If we didn't have any big SUBREGS of decomposed registers, and neither side of the move is a register we are decomposing, then we don't have to do anything here. */ if (src == SET_SRC (set) && dest == SET_DEST (set) && !resolve_reg_p (src) && !resolve_subreg_p (src) && !resolve_reg_p (dest) && !resolve_subreg_p (dest)) { end_sequence (); return insn; } /* It's possible for the code to use a subreg of a decomposed register while forming an address. We need to handle that before passing the address to emit_move_insn. We pass NULL_RTX as the insn parameter to resolve_subreg_use because we can not validate the insn yet. */ if (MEM_P (src) || MEM_P (dest)) { int acg; if (MEM_P (src)) resolve_subreg_use (&XEXP (src, 0), NULL_RTX); if (MEM_P (dest)) resolve_subreg_use (&XEXP (dest, 0), NULL_RTX); acg = apply_change_group (); gcc_assert (acg); } /* If SRC is a register which we can't decompose, or has side effects, we need to move via a temporary register. */ if (!can_decompose_p (src) || side_effects_p (src) || GET_CODE (src) == ASM_OPERANDS) { rtx reg; reg = gen_reg_rtx (orig_mode); #ifdef AUTO_INC_DEC { rtx move = emit_move_insn (reg, src); if (MEM_P (src)) { rtx note = find_reg_note (insn, REG_INC, NULL_RTX); if (note) add_reg_note (move, REG_INC, XEXP (note, 0)); } } #else emit_move_insn (reg, src); #endif src = reg; } /* If DEST is a register which we can't decompose, or has side effects, we need to first move to a temporary register. We handle the common case of pushing an operand directly. We also go through a temporary register if it holds a floating point value. This gives us better code on systems which can't move data easily between integer and floating point registers. */ dest_mode = orig_mode; pushing = push_operand (dest, dest_mode); if (!can_decompose_p (dest) || (side_effects_p (dest) && !pushing) || (!SCALAR_INT_MODE_P (dest_mode) && !resolve_reg_p (dest) && !resolve_subreg_p (dest))) { if (real_dest == NULL_RTX) real_dest = dest; if (!SCALAR_INT_MODE_P (dest_mode)) { dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT, MODE_INT, 0); gcc_assert (dest_mode != BLKmode); } dest = gen_reg_rtx (dest_mode); if (REG_P (real_dest)) REG_ATTRS (dest) = REG_ATTRS (real_dest); } if (pushing) { unsigned int i, j, jinc; gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0); gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY); gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY); if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD) { j = 0; jinc = 1; } else { j = words - 1; jinc = -1; } for (i = 0; i < words; ++i, j += jinc) { rtx temp; temp = copy_rtx (XEXP (dest, 0)); temp = adjust_automodify_address_nv (dest, word_mode, temp, j * UNITS_PER_WORD); emit_move_insn (temp, simplify_gen_subreg_concatn (word_mode, src, orig_mode, j * UNITS_PER_WORD)); } } else { unsigned int i; if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest))) emit_clobber (dest); for (i = 0; i < words; ++i) emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest, dest_mode, i * UNITS_PER_WORD), simplify_gen_subreg_concatn (word_mode, src, orig_mode, i * UNITS_PER_WORD)); } if (real_dest != NULL_RTX) { rtx mdest, smove; rtx_insn *minsn; if (dest_mode == orig_mode) mdest = dest; else mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0); minsn = emit_move_insn (real_dest, mdest); #ifdef AUTO_INC_DEC if (MEM_P (real_dest) && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest))) { rtx note = find_reg_note (insn, REG_INC, NULL_RTX); if (note) add_reg_note (minsn, REG_INC, XEXP (note, 0)); } #endif smove = single_set (minsn); gcc_assert (smove != NULL_RTX); resolve_simple_move (smove, minsn); } insns = get_insns (); end_sequence (); copy_reg_eh_region_note_forward (insn, insns, NULL_RTX); emit_insn_before (insns, insn); /* If we get here via self-recursion, then INSN is not yet in the insns chain and delete_insn will fail. We only want to remove INSN from the current sequence. See PR56738. */ if (in_sequence_p ()) remove_insn (insn); else delete_insn (insn); return insns; } /* Change a CLOBBER of a decomposed register into a CLOBBER of the component registers. Return whether we changed something. */ static bool resolve_clobber (rtx pat, rtx_insn *insn) { rtx reg; machine_mode orig_mode; unsigned int words, i; int ret; reg = XEXP (pat, 0); if (!resolve_reg_p (reg) && !resolve_subreg_p (reg)) return false; orig_mode = GET_MODE (reg); words = GET_MODE_SIZE (orig_mode); words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; ret = validate_change (NULL_RTX, &XEXP (pat, 0), simplify_gen_subreg_concatn (word_mode, reg, orig_mode, 0), 0); df_insn_rescan (insn); gcc_assert (ret != 0); for (i = words - 1; i > 0; --i) { rtx x; x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode, i * UNITS_PER_WORD); x = gen_rtx_CLOBBER (VOIDmode, x); emit_insn_after (x, insn); } resolve_reg_notes (insn); return true; } /* A USE of a decomposed register is no longer meaningful. Return whether we changed something. */ static bool resolve_use (rtx pat, rtx_insn *insn) { if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0))) { delete_insn (insn); return true; } resolve_reg_notes (insn); return false; } /* A VAR_LOCATION can be simplified. */ static void resolve_debug (rtx_insn *insn) { subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST) { rtx *loc = *iter; rtx x = *loc; if (resolve_subreg_p (x)) { x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x), SUBREG_BYTE (x)); if (x) *loc = x; else x = copy_rtx (*loc); } if (resolve_reg_p (x)) *loc = copy_rtx (x); } df_insn_rescan (insn); resolve_reg_notes (insn); } /* Check if INSN is a decomposable multiword-shift or zero-extend and set the decomposable_context bitmap accordingly. SPEED_P is true if we are optimizing INSN for speed rather than size. Return true if INSN is decomposable. */ static bool find_decomposable_shift_zext (rtx_insn *insn, bool speed_p) { rtx set; rtx op; rtx op_operand; set = single_set (insn); if (!set) return false; op = SET_SRC (set); if (GET_CODE (op) != ASHIFT && GET_CODE (op) != LSHIFTRT && GET_CODE (op) != ASHIFTRT && GET_CODE (op) != ZERO_EXTEND) return false; op_operand = XEXP (op, 0); if (!REG_P (SET_DEST (set)) || !REG_P (op_operand) || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set))) || HARD_REGISTER_NUM_P (REGNO (op_operand)) || GET_MODE (op) != twice_word_mode) return false; if (GET_CODE (op) == ZERO_EXTEND) { if (GET_MODE (op_operand) != word_mode || !choices[speed_p].splitting_zext) return false; } else /* left or right shift */ { bool *splitting = (GET_CODE (op) == ASHIFT ? choices[speed_p].splitting_ashift : GET_CODE (op) == ASHIFTRT ? choices[speed_p].splitting_ashiftrt : choices[speed_p].splitting_lshiftrt); if (!CONST_INT_P (XEXP (op, 1)) || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD, 2 * BITS_PER_WORD - 1) || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD]) return false; bitmap_set_bit (decomposable_context, REGNO (op_operand)); } bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set))); return true; } /* Decompose a more than word wide shift (in INSN) of a multiword pseudo or a multiword zero-extend of a wordmode pseudo into a move and 'set to zero' insn. Return a pointer to the new insn when a replacement was done. */ static rtx_insn * resolve_shift_zext (rtx_insn *insn) { rtx set; rtx op; rtx op_operand; rtx_insn *insns; rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX; int src_reg_num, dest_reg_num, offset1, offset2, src_offset; set = single_set (insn); if (!set) return NULL; op = SET_SRC (set); if (GET_CODE (op) != ASHIFT && GET_CODE (op) != LSHIFTRT && GET_CODE (op) != ASHIFTRT && GET_CODE (op) != ZERO_EXTEND) return NULL; op_operand = XEXP (op, 0); /* We can tear this operation apart only if the regs were already torn apart. */ if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand)) return NULL; /* src_reg_num is the number of the word mode register which we are operating on. For a left shift and a zero_extend on little endian machines this is register 0. */ src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT) ? 1 : 0; if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD) src_reg_num = 1 - src_reg_num; if (GET_CODE (op) == ZERO_EXTEND) dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0; else dest_reg_num = 1 - src_reg_num; offset1 = UNITS_PER_WORD * dest_reg_num; offset2 = UNITS_PER_WORD * (1 - dest_reg_num); src_offset = UNITS_PER_WORD * src_reg_num; start_sequence (); dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set), GET_MODE (SET_DEST (set)), offset1); dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set), GET_MODE (SET_DEST (set)), offset2); src_reg = simplify_gen_subreg_concatn (word_mode, op_operand, GET_MODE (op_operand), src_offset); if (GET_CODE (op) == ASHIFTRT && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1) upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg), BITS_PER_WORD - 1, NULL_RTX, 0); if (GET_CODE (op) != ZERO_EXTEND) { int shift_count = INTVAL (XEXP (op, 1)); if (shift_count > BITS_PER_WORD) src_reg = expand_shift (GET_CODE (op) == ASHIFT ? LSHIFT_EXPR : RSHIFT_EXPR, word_mode, src_reg, shift_count - BITS_PER_WORD, dest_reg, GET_CODE (op) != ASHIFTRT); } if (dest_reg != src_reg) emit_move_insn (dest_reg, src_reg); if (GET_CODE (op) != ASHIFTRT) emit_move_insn (dest_upper, CONST0_RTX (word_mode)); else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1) emit_move_insn (dest_upper, copy_rtx (src_reg)); else emit_move_insn (dest_upper, upper_src); insns = get_insns (); end_sequence (); emit_insn_before (insns, insn); if (dump_file) { rtx_insn *in; fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn)); for (in = insns; in != insn; in = NEXT_INSN (in)) fprintf (dump_file, "%d ", INSN_UID (in)); fprintf (dump_file, "\n"); } delete_insn (insn); return insns; } /* Print to dump_file a description of what we're doing with shift code CODE. SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */ static void dump_shift_choices (enum rtx_code code, bool *splitting) { int i; const char *sep; fprintf (dump_file, " Splitting mode %s for %s lowering with shift amounts = ", GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code)); sep = ""; for (i = 0; i < BITS_PER_WORD; i++) if (splitting[i]) { fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD); sep = ","; } fprintf (dump_file, "\n"); } /* Print to dump_file a description of what we're doing when optimizing for speed or size; SPEED_P says which. DESCRIPTION is a description of the SPEED_P choice. */ static void dump_choices (bool speed_p, const char *description) { unsigned int i; fprintf (dump_file, "Choices when optimizing for %s:\n", description); for (i = 0; i < MAX_MACHINE_MODE; i++) if (GET_MODE_SIZE ((machine_mode) i) > UNITS_PER_WORD) fprintf (dump_file, " %s mode %s for copy lowering.\n", choices[speed_p].move_modes_to_split[i] ? "Splitting" : "Skipping", GET_MODE_NAME ((machine_mode) i)); fprintf (dump_file, " %s mode %s for zero_extend lowering.\n", choices[speed_p].splitting_zext ? "Splitting" : "Skipping", GET_MODE_NAME (twice_word_mode)); dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift); dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt); dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt); fprintf (dump_file, "\n"); } /* Look for registers which are always accessed via word-sized SUBREGs or -if DECOMPOSE_COPIES is true- via copies. Decompose these registers into several word-sized pseudo-registers. */ static void decompose_multiword_subregs (bool decompose_copies) { unsigned int max; basic_block bb; bool speed_p; if (dump_file) { dump_choices (false, "size"); dump_choices (true, "speed"); } /* Check if this target even has any modes to consider lowering. */ if (!choices[false].something_to_do && !choices[true].something_to_do) { if (dump_file) fprintf (dump_file, "Nothing to do!\n"); return; } max = max_reg_num (); /* First see if there are any multi-word pseudo-registers. If there aren't, there is nothing we can do. This should speed up this pass in the normal case, since it should be faster than scanning all the insns. */ { unsigned int i; bool useful_modes_seen = false; for (i = FIRST_PSEUDO_REGISTER; i < max; ++i) if (regno_reg_rtx[i] != NULL) { machine_mode mode = GET_MODE (regno_reg_rtx[i]); if (choices[false].move_modes_to_split[(int) mode] || choices[true].move_modes_to_split[(int) mode]) { useful_modes_seen = true; break; } } if (!useful_modes_seen) { if (dump_file) fprintf (dump_file, "Nothing to lower in this function.\n"); return; } } if (df) { df_set_flags (DF_DEFER_INSN_RESCAN); run_word_dce (); } /* FIXME: It may be possible to change this code to look for each multi-word pseudo-register and to find each insn which sets or uses that register. That should be faster than scanning all the insns. */ decomposable_context = BITMAP_ALLOC (NULL); non_decomposable_context = BITMAP_ALLOC (NULL); subreg_context = BITMAP_ALLOC (NULL); reg_copy_graph.create (max); reg_copy_graph.safe_grow_cleared (max); memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max); speed_p = optimize_function_for_speed_p (cfun); FOR_EACH_BB_FN (bb, cfun) { rtx_insn *insn; FOR_BB_INSNS (bb, insn) { rtx set; enum classify_move_insn cmi; int i, n; if (!INSN_P (insn) || GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE) continue; recog_memoized (insn); if (find_decomposable_shift_zext (insn, speed_p)) continue; extract_insn (insn); set = simple_move (insn, speed_p); if (!set) cmi = NOT_SIMPLE_MOVE; else { /* We mark pseudo-to-pseudo copies as decomposable during the second pass only. The first pass is so early that there is good chance such moves will be optimized away completely by subsequent optimizations anyway. However, we call find_pseudo_copy even during the first pass so as to properly set up the reg_copy_graph. */ if (find_pseudo_copy (set)) cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE; else cmi = SIMPLE_MOVE; } n = recog_data.n_operands; for (i = 0; i < n; ++i) { find_decomposable_subregs (&recog_data.operand[i], &cmi); /* We handle ASM_OPERANDS as a special case to support things like x86 rdtsc which returns a DImode value. We can decompose the output, which will certainly be operand 0, but not the inputs. */ if (cmi == SIMPLE_MOVE && GET_CODE (SET_SRC (set)) == ASM_OPERANDS) { gcc_assert (i == 0); cmi = NOT_SIMPLE_MOVE; } } } } bitmap_and_compl_into (decomposable_context, non_decomposable_context); if (!bitmap_empty_p (decomposable_context)) { sbitmap sub_blocks; unsigned int i; sbitmap_iterator sbi; bitmap_iterator iter; unsigned int regno; propagate_pseudo_copies (); sub_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); bitmap_clear (sub_blocks); EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter) decompose_register (regno); FOR_EACH_BB_FN (bb, cfun) { rtx_insn *insn; FOR_BB_INSNS (bb, insn) { rtx pat; if (!INSN_P (insn)) continue; pat = PATTERN (insn); if (GET_CODE (pat) == CLOBBER) resolve_clobber (pat, insn); else if (GET_CODE (pat) == USE) resolve_use (pat, insn); else if (DEBUG_INSN_P (insn)) resolve_debug (insn); else { rtx set; int i; recog_memoized (insn); extract_insn (insn); set = simple_move (insn, speed_p); if (set) { rtx_insn *orig_insn = insn; bool cfi = control_flow_insn_p (insn); /* We can end up splitting loads to multi-word pseudos into separate loads to machine word size pseudos. When this happens, we first had one load that can throw, and after resolve_simple_move we'll have a bunch of loads (at least two). All those loads may trap if we can have non-call exceptions, so they all will end the current basic block. We split the block after the outer loop over all insns, but we make sure here that we will be able to split the basic block and still produce the correct control flow graph for it. */ gcc_assert (!cfi || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))); insn = resolve_simple_move (set, insn); if (insn != orig_insn) { recog_memoized (insn); extract_insn (insn); if (cfi) bitmap_set_bit (sub_blocks, bb->index); } } else { rtx_insn *decomposed_shift; decomposed_shift = resolve_shift_zext (insn); if (decomposed_shift != NULL_RTX) { insn = decomposed_shift; recog_memoized (insn); extract_insn (insn); } } for (i = recog_data.n_operands - 1; i >= 0; --i) resolve_subreg_use (recog_data.operand_loc[i], insn); resolve_reg_notes (insn); if (num_validated_changes () > 0) { for (i = recog_data.n_dups - 1; i >= 0; --i) { rtx *pl = recog_data.dup_loc[i]; int dup_num = recog_data.dup_num[i]; rtx *px = recog_data.operand_loc[dup_num]; validate_unshare_change (insn, pl, *px, 1); } i = apply_change_group (); gcc_assert (i); } } } } /* If we had insns to split that caused control flow insns in the middle of a basic block, split those blocks now. Note that we only handle the case where splitting a load has caused multiple possibly trapping loads to appear. */ EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi) { rtx_insn *insn, *end; edge fallthru; bb = BASIC_BLOCK_FOR_FN (cfun, i); insn = BB_HEAD (bb); end = BB_END (bb); while (insn != end) { if (control_flow_insn_p (insn)) { /* Split the block after insn. There will be a fallthru edge, which is OK so we keep it. We have to create the exception edges ourselves. */ fallthru = split_block (bb, insn); rtl_make_eh_edge (NULL, bb, BB_END (bb)); bb = fallthru->dest; insn = BB_HEAD (bb); } else insn = NEXT_INSN (insn); } } sbitmap_free (sub_blocks); } { unsigned int i; bitmap b; FOR_EACH_VEC_ELT (reg_copy_graph, i, b) if (b) BITMAP_FREE (b); } reg_copy_graph.release (); BITMAP_FREE (decomposable_context); BITMAP_FREE (non_decomposable_context); BITMAP_FREE (subreg_context); } /* Implement first lower subreg pass. */ namespace { const pass_data pass_data_lower_subreg = { RTL_PASS, /* type */ "subreg1", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_LOWER_SUBREG, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_lower_subreg : public rtl_opt_pass { public: pass_lower_subreg (gcc::context *ctxt) : rtl_opt_pass (pass_data_lower_subreg, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_split_wide_types != 0; } virtual unsigned int execute (function *) { decompose_multiword_subregs (false); return 0; } }; // class pass_lower_subreg } // anon namespace rtl_opt_pass * make_pass_lower_subreg (gcc::context *ctxt) { return new pass_lower_subreg (ctxt); } /* Implement second lower subreg pass. */ namespace { const pass_data pass_data_lower_subreg2 = { RTL_PASS, /* type */ "subreg2", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_LOWER_SUBREG, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish, /* todo_flags_finish */ }; class pass_lower_subreg2 : public rtl_opt_pass { public: pass_lower_subreg2 (gcc::context *ctxt) : rtl_opt_pass (pass_data_lower_subreg2, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_split_wide_types != 0; } virtual unsigned int execute (function *) { decompose_multiword_subregs (true); return 0; } }; // class pass_lower_subreg2 } // anon namespace rtl_opt_pass * make_pass_lower_subreg2 (gcc::context *ctxt) { return new pass_lower_subreg2 (ctxt); }