/* More subroutines needed by GCC output code on some machines. */ /* Compile this one with gcc. */ /* Copyright (C) 1989, 1992 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* As a special exception, if you link this library with files compiled with GCC to produce an executable, this does not cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* It is incorrect to include config.h here, because this file is being compiled for the target, and hence definitions concerning only the host do not apply. */ #include "tm.h" #ifndef L_trampoline #include "gstddef.h" #endif /* Don't use `fancy_abort' here even if config.h says to use it. */ #ifdef abort #undef abort #endif /* Need to undef this because LONG_TYPE_SIZE may rely upon GCC's internal `target_flags' variable. */ #undef LONG_TYPE_SIZE #define LONG_TYPE_SIZE (sizeof (long) * BITS_PER_UNIT) #ifndef SItype #define SItype long int #endif /* long long ints are pairs of long ints in the order determined by WORDS_BIG_ENDIAN. */ #if WORDS_BIG_ENDIAN struct longlong {long high, low;}; #else struct longlong {long low, high;}; #endif /* We need this union to unpack/pack longlongs, since we don't have any arithmetic yet. Incoming long long parameters are stored into the `ll' field, and the unpacked result is read from the struct longlong. */ typedef union { struct longlong s; long long ll; } long_long; #if defined (L_udivmoddi4) || defined (L_muldi3) #include "longlong.h" #endif /* udiv or mul */ extern long long __fixunssfdi (float a); extern long long __fixunsdfdi (double a); #if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3) #if defined (L_divdi3) || defined (L_moddi3) static inline #endif long long __negdi2 (u) long long u; { long_long w; long_long uu; uu.ll = u; w.s.low = -uu.s.low; w.s.high = -uu.s.high - ((unsigned long) w.s.low > 0); return w.ll; } #endif #ifdef L_lshldi3 long long __lshldi3 (u, b) long long u; int b; { long_long w; long bm; long_long uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (long) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.low = 0; w.s.high = (unsigned long)uu.s.low << -bm; } else { unsigned long carries = (unsigned long)uu.s.low >> bm; w.s.low = (unsigned long)uu.s.low << b; w.s.high = ((unsigned long)uu.s.high << b) | carries; } return w.ll; } #endif #ifdef L_lshrdi3 long long __lshrdi3 (u, b) long long u; int b; { long_long w; long bm; long_long uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (long) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.high = 0; w.s.low = (unsigned long)uu.s.high >> -bm; } else { unsigned long carries = (unsigned long)uu.s.high << bm; w.s.high = (unsigned long)uu.s.high >> b; w.s.low = ((unsigned long)uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ashldi3 long long __ashldi3 (u, b) long long u; int b; { long_long w; long bm; long_long uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (long) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.low = 0; w.s.high = (unsigned long)uu.s.low << -bm; } else { unsigned long carries = (unsigned long)uu.s.low >> bm; w.s.low = (unsigned long)uu.s.low << b; w.s.high = ((unsigned long)uu.s.high << b) | carries; } return w.ll; } #endif #ifdef L_ashrdi3 long long __ashrdi3 (u, b) long long u; int b; { long_long w; long bm; long_long uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (long) * BITS_PER_UNIT) - b; if (bm <= 0) { /* w.s.high = 1..1 or 0..0 */ w.s.high = uu.s.high >> (sizeof (long) * BITS_PER_UNIT - 1); w.s.low = uu.s.high >> -bm; } else { unsigned long carries = (unsigned long)uu.s.high << bm; w.s.high = uu.s.high >> b; w.s.low = ((unsigned long)uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_muldi3 long long __muldi3 (u, v) long long u, v; { long_long w; long_long uu, vv; uu.ll = u, vv.ll = v; w.ll = __umulsidi3 (uu.s.low, vv.s.low); w.s.high += ((unsigned long) uu.s.low * (unsigned long) vv.s.high + (unsigned long) uu.s.high * (unsigned long) vv.s.low); return w.ll; } #endif #ifdef L_udivmoddi4 static const unsigned char __clz_tab[] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, }; unsigned long long __udivmoddi4 (n, d, rp) unsigned long long n, d; unsigned long long int *rp; { long_long ww; long_long nn, dd; long_long rr; unsigned long d0, d1, n0, n1, n2; unsigned long q0, q1; unsigned b, bm; nn.ll = n; dd.ll = d; d0 = dd.s.low; d1 = dd.s.high; n0 = nn.s.low; n1 = nn.s.high; #if !UDIV_NEEDS_NORMALIZATION if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ udiv_qrnnd (q1, n1, 0, n1, d0); udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0. */ } if (rp != 0) { rr.s.low = n0; rr.s.high = 0; *rp = rr.ll; } } #else /* UDIV_NEEDS_NORMALIZATION */ if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ count_leading_zeros (bm, d0); if (bm != 0) { /* Normalize, i.e. make the most significant bit of the denominator set. */ d0 = d0 << bm; n1 = (n1 << bm) | (n0 >> (LONG_TYPE_SIZE - bm)); n0 = n0 << bm; } udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0 >> bm. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ count_leading_zeros (bm, d0); if (bm == 0) { /* From (n1 >= d0) /\ (the most significant bit of d0 is set), conclude (the most significant bit of n1 is set) /\ (the leading quotient digit q1 = 1). This special case is necessary, not an optimization. (Shifts counts of LONG_TYPE_SIZE are undefined.) */ n1 -= d0; q1 = 1; } else { /* Normalize. */ b = LONG_TYPE_SIZE - bm; d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q1, n1, n2, n1, d0); } /* n1 != d0... */ udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0 >> bm. */ } if (rp != 0) { rr.s.low = n0 >> bm; rr.s.high = 0; *rp = rr.ll; } } #endif /* UDIV_NEEDS_NORMALIZATION */ else { if (d1 > n1) { /* 00 = nn / DD */ q0 = 0; q1 = 0; /* Remainder in n1n0. */ if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { /* 0q = NN / dd */ count_leading_zeros (bm, d1); if (bm == 0) { /* From (n1 >= d1) /\ (the most significant bit of d1 is set), conclude (the most significant bit of n1 is set) /\ (the quotient digit q0 = 0 or 1). This special case is necessary, not an optimization. */ /* The condition on the next line takes advantage of that n1 >= d1 (true due to program flow). */ if (n1 > d1 || n0 >= d0) { q0 = 1; sub_ddmmss (n1, n0, n1, n0, d1, d0); } else q0 = 0; q1 = 0; if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { unsigned long m1, m0; /* Normalize. */ b = LONG_TYPE_SIZE - bm; d1 = (d1 << bm) | (d0 >> b); d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q0, n1, n2, n1, d1); umul_ppmm (m1, m0, q0, d0); if (m1 > n1 || (m1 == n1 && m0 > n0)) { q0--; sub_ddmmss (m1, m0, m1, m0, d1, d0); } q1 = 0; /* Remainder in (n1n0 - m1m0) >> bm. */ if (rp != 0) { sub_ddmmss (n1, n0, n1, n0, m1, m0); rr.s.low = (n1 << b) | (n0 >> bm); rr.s.high = n1 >> bm; *rp = rr.ll; } } } } ww.s.low = q0; ww.s.high = q1; return ww.ll; } #endif #ifdef L_divdi3 unsigned long long __udivmoddi4 (); long long __divdi3 (u, v) long long u, v; { int c = 0; long_long uu, vv; long long w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = __negdi2 (uu.ll); if (vv.s.high < 0) c = ~c, vv.ll = __negdi2 (vv.ll); w = __udivmoddi4 (uu.ll, vv.ll, (unsigned long long *) 0); if (c) w = __negdi2 (w); return w; } #endif #ifdef L_moddi3 unsigned long long __udivmoddi4 (); long long __moddi3 (u, v) long long u, v; { int c = 0; long_long uu, vv; long long w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = __negdi2 (uu.ll); if (vv.s.high < 0) vv.ll = __negdi2 (vv.ll); (void) __udivmoddi4 (uu.ll, vv.ll, &w); if (c) w = __negdi2 (w); return w; } #endif #ifdef L_umoddi3 unsigned long long __udivmoddi4 (); unsigned long long __umoddi3 (u, v) unsigned long long u, v; { long long w; (void) __udivmoddi4 (u, v, &w); return w; } #endif #ifdef L_udivdi3 unsigned long long __udivmoddi4 (); unsigned long long __udivdi3 (n, d) unsigned long long n, d; { return __udivmoddi4 (n, d, (unsigned long long *) 0); } #endif #ifdef L_cmpdi2 SItype __cmpdi2 (a, b) long long a, b; { long_long au, bu; au.ll = a, bu.ll = b; if (au.s.high < bu.s.high) return 0; else if (au.s.high > bu.s.high) return 2; if ((unsigned long) au.s.low < (unsigned long) bu.s.low) return 0; else if ((unsigned long) au.s.low > (unsigned long) bu.s.low) return 2; return 1; } #endif #ifdef L_ucmpdi2 SItype __ucmpdi2 (a, b) long long a, b; { long_long au, bu; au.ll = a, bu.ll = b; if ((unsigned long) au.s.high < (unsigned long) bu.s.high) return 0; else if ((unsigned long) au.s.high > (unsigned long) bu.s.high) return 2; if ((unsigned long) au.s.low < (unsigned long) bu.s.low) return 0; else if ((unsigned long) au.s.low > (unsigned long) bu.s.low) return 2; return 1; } #endif #ifdef L_fixunsdfdi #define WORD_SIZE (sizeof (long) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE) long long __fixunsdfdi (a) double a; { double b; unsigned long long v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to long long!), and shift it into the high word. */ v = (unsigned long int) b; v <<= WORD_SIZE; /* Remove high part from the double, leaving the low part as flonum. */ a -= (double)v; /* Convert that to fixed (but not to long long!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (unsigned long int) (- a); else v += (unsigned long int) a; return v; } #endif #ifdef L_fixdfdi long long __fixdfdi (a) double a; { if (a < 0) return - __fixunsdfdi (-a); return __fixunsdfdi (a); } #endif #ifdef L_fixunssfdi #define WORD_SIZE (sizeof (long) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE) long long __fixunssfdi (float original_a) { /* Convert the float to a double, because that is surely not going to lose any bits. Some day someone else can write a faster version that avoids converting to double, and verify it really works right. */ double a = original_a; double b; unsigned long long v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to long long!), and shift it into the high word. */ v = (unsigned long int) b; v <<= WORD_SIZE; /* Remove high part from the double, leaving the low part as flonum. */ a -= (double)v; /* Convert that to fixed (but not to long long!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (unsigned long int) (- a); else v += (unsigned long int) a; return v; } #endif #ifdef L_fixsfdi long long __fixsfdi (float a) { if (a < 0) return - __fixunssfdi (-a); return __fixunssfdi (a); } #endif #ifdef L_floatdidf #define WORD_SIZE (sizeof (long) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((long long) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE) double __floatdidf (u) long long u; { double d; int negate = 0; if (u < 0) u = -u, negate = 1; d = (unsigned int) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (unsigned int) (u & (HIGH_WORD_COEFF - 1)); return (negate ? -d : d); } #endif #ifdef L_floatdisf #define WORD_SIZE (sizeof (long) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((long long) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE) float __floatdisf (u) long long u; { float f; int negate = 0; if (u < 0) u = -u, negate = 1; f = (unsigned int) (u >> WORD_SIZE); f *= HIGH_HALFWORD_COEFF; f *= HIGH_HALFWORD_COEFF; f += (unsigned int) (u & (HIGH_WORD_COEFF - 1)); return (negate ? -f : f); } #endif #ifdef L_fixunsdfsi #include "limits.h" unsigned SItype __fixunsdfsi (a) double a; { if (a >= - (double) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif #ifdef L_fixunssfsi #include "limits.h" unsigned SItype __fixunssfsi (float a) { if (a >= - (float) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif #ifdef L_varargs #ifdef __i860__ #ifdef SVR4 asm (" .text"); asm (" .align 4"); asm (".globl __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (" andnot 0x0f,%sp,%sp"); /* round down to 16-byte boundary */ asm (" adds -96,%sp,%sp"); /* allocate stack space for reg save area and also for a new va_list structure */ /* Save all argument registers in the arg reg save area. The arg reg save area must have the following layout (according to the svr4 ABI): struct { union { float freg[8]; double dreg[4]; } float_regs; long ireg[12]; }; */ asm (" fst.q %f8, 0(%sp)"); /* save floating regs (f8-f15) */ asm (" fst.q %f12,16(%sp)"); asm (" st.l %r16,32(%sp)"); /* save integer regs (r16-r27) */ asm (" st.l %r17,36(%sp)"); asm (" st.l %r18,40(%sp)"); asm (" st.l %r19,44(%sp)"); asm (" st.l %r20,48(%sp)"); asm (" st.l %r21,52(%sp)"); asm (" st.l %r22,56(%sp)"); asm (" st.l %r23,60(%sp)"); asm (" st.l %r24,64(%sp)"); asm (" st.l %r25,68(%sp)"); asm (" st.l %r26,72(%sp)"); asm (" st.l %r27,76(%sp)"); asm (" adds 80,%sp,%r16"); /* compute the address of the new va_list structure. Put in into r16 so that it will be returned to the caller. */ /* Initialize all fields of the new va_list structure. This structure looks like: typedef struct { unsigned long ireg_used; unsigned long freg_used; long *reg_base; long *mem_ptr; } va_list; */ asm (" st.l %r0, 0(%r16)"); /* nfixed */ asm (" st.l %r0, 4(%r16)"); /* nfloating */ asm (" st.l %sp, 8(%r16)"); /* __va_ctl points to __va_struct. */ asm (" bri %r1"); /* delayed return */ asm (" st.l %r28,12(%r16)"); /* pointer to overflow args */ #else /* not SVR4 */ asm (" .text"); asm (" .align 4"); asm (".globl ___builtin_saveregs"); asm ("___builtin_saveregs:"); asm (" mov sp,r30"); asm (" andnot 0x0f,sp,sp"); asm (" adds -96,sp,sp"); /* allocate sufficient space on the stack */ /* Fill in the __va_struct. */ asm (" st.l r16, 0(sp)"); /* save integer regs (r16-r27) */ asm (" st.l r17, 4(sp)"); /* int fixed[12] */ asm (" st.l r18, 8(sp)"); asm (" st.l r19,12(sp)"); asm (" st.l r20,16(sp)"); asm (" st.l r21,20(sp)"); asm (" st.l r22,24(sp)"); asm (" st.l r23,28(sp)"); asm (" st.l r24,32(sp)"); asm (" st.l r25,36(sp)"); asm (" st.l r26,40(sp)"); asm (" st.l r27,44(sp)"); asm (" fst.q f8, 48(sp)"); /* save floating regs (f8-f15) */ asm (" fst.q f12,64(sp)"); /* int floating[8] */ /* Fill in the __va_ctl. */ asm (" st.l sp, 80(sp)"); /* __va_ctl points to __va_struct. */ asm (" st.l r28,84(sp)"); /* pointer to more args */ asm (" st.l r0, 88(sp)"); /* nfixed */ asm (" st.l r0, 92(sp)"); /* nfloating */ asm (" adds 80,sp,r16"); /* return address of the __va_ctl. */ asm (" bri r1"); asm (" mov r30,sp"); /* recover stack and pass address to start of data. */ #endif /* not SVR4 */ #else /* not __i860__ */ #ifdef __sparc__ asm (".global __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (".global ___builtin_saveregs"); asm ("___builtin_saveregs:"); #ifdef NEED_PROC_COMMAND asm (".proc 020"); #endif asm ("st %i0,[%fp+68]"); asm ("st %i1,[%fp+72]"); asm ("st %i2,[%fp+76]"); asm ("st %i3,[%fp+80]"); asm ("st %i4,[%fp+84]"); asm ("retl"); asm ("st %i5,[%fp+88]"); #ifdef NEED_TYPE_COMMAND asm (".type __builtin_saveregs,#function"); asm (".size __builtin_saveregs,.-__builtin_saveregs"); #endif #else /* not __sparc__ */ #if defined(__MIPSEL__) | defined(__R3000__) | defined(__R2000__) | defined(__mips__) asm (" .text"); asm (" .ent __builtin_saveregs"); asm (" .globl __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (" sw $4,0($30)"); asm (" sw $5,4($30)"); asm (" sw $6,8($30)"); asm (" sw $7,12($30)"); asm (" j $31"); asm (" .end __builtin_saveregs"); #else /* not __mips__, etc. */ __builtin_saveregs () { abort (); } #endif /* not __mips__ */ #endif /* not __sparc__ */ #endif /* not __i860__ */ #endif #ifdef L_eprintf #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include /* This is used by the `assert' macro. */ void __eprintf (string, expression, line, filename) const char *string; const char *expression; int line; const char *filename; { fprintf (stderr, string, expression, line, filename); fflush (stderr); abort (); } #endif #ifdef L_bb /* Avoid warning from ranlib about empty object file. */ void __bb_avoid_warning () {} #if defined (__sun__) && defined (__mc68000__) struct bb { int initialized; char *filename; int *counts; int ncounts; int zero_word; int *addresses; }; extern int ___tcov_init; __bb_init_func (blocks) struct bb *blocks; { if (! ___tcov_init) ___tcov_init_func (); ___bb_link (blocks->filename, blocks->counts, blocks->ncounts); } #endif #endif /* frills for C++ */ #ifdef L_builtin_new typedef void (*vfp)(void); extern vfp __new_handler; void * __builtin_new (sz) long sz; { void *p; extern void *malloc (); p = malloc (sz); if (p == 0) (*__new_handler) (); return p; } #endif #ifdef L_builtin_New typedef void (*vfp)(void); extern void *__builtin_new (); static void default_new_handler (); vfp __new_handler = default_new_handler; void * __builtin_vec_new (p, maxindex, size, ctor) void *p; int maxindex, size; void (*ctor)(void *); { int i, nelts = maxindex + 1; void *rval; if (p == 0) p = __builtin_new (nelts * size); rval = p; for (i = 0; i < nelts; i++) { (*ctor) (p); p += size; } return rval; } vfp __set_new_handler (handler) vfp handler; { vfp prev_handler; prev_handler = __new_handler; if (handler == 0) handler = default_new_handler; __new_handler = handler; return prev_handler; } vfp set_new_handler (handler) vfp handler; { return __set_new_handler (handler); } #define MESSAGE "Virtual memory exceeded in `new'\n" static void default_new_handler () { /* don't use fprintf (stderr, ...) because it may need to call malloc. */ /* This should really print the name of the program, but that is hard to do. We need a standard, clean way to get at the name. */ write (2, MESSAGE, sizeof (MESSAGE)); /* don't call exit () because that may call global destructors which may cause a loop. */ _exit (-1); } #endif #ifdef L_builtin_del typedef void (*vfp)(void); void __builtin_delete (ptr) void *ptr; { if (ptr) free (ptr); } void __builtin_vec_delete (ptr, maxindex, size, dtor, auto_delete_vec, auto_delete) void *ptr; int maxindex, size; void (*dtor)(); int auto_delete; { int i, nelts = maxindex + 1; void *p = ptr; ptr += nelts * size; for (i = 0; i < nelts; i++) { ptr -= size; (*dtor) (ptr, auto_delete); } if (auto_delete_vec) __builtin_delete (p); } #endif #ifdef L_shtab unsigned int __shtab[] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000 }; #endif #ifdef L_clear_cache /* Clear part of an instruction cache. */ #define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH) void __clear_cache (beg, end) char *beg, *end; { #ifdef INSN_CACHE_SIZE static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH]; static int initialized = 0; int offset; unsigned int start_addr, end_addr; typedef (*function_ptr) (); #if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16 /* It's cheaper to clear the whole cache. Put in a series of jump instructions so that calling the beginning of the cache will clear the whole thing. */ if (! initialized) { int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH); int end_ptr = ptr + INSN_CACHE_SIZE; while (ptr < end_ptr) { *(INSTRUCTION_TYPE *)ptr = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH; ptr += INSN_CACHE_LINE_WIDTH; } *(INSTRUCTION_TYPE *)(ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION; initialized = 1; } /* Call the beginning of the sequence. */ (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH)) ()); #else /* Cache is large. */ if (! initialized) { int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH); while (ptr < (int) array + sizeof array) { *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION; ptr += INSN_CACHE_LINE_WIDTH; } initialized = 1; } /* Find the location in array that occupies the same cache line as BEG. */ offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1); start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1) & -INSN_CACHE_PLANE_SIZE) + offset); /* Compute the cache alignment of the place to stop clearing. */ #if 0 /* This is not needed for gcc's purposes. */ /* If the block to clear is bigger than a cache plane, we clear the entire cache, and OFFSET is already correct. */ if (end < beg + INSN_CACHE_PLANE_SIZE) #endif offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1)); #if INSN_CACHE_DEPTH > 1 end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset; if (end_addr <= start_addr) end_addr += INSN_CACHE_PLANE_SIZE; for (plane = 0; plane < INSN_CACHE_DEPTH; plane++) { int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE; int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE; while (addr != stop) { /* Call the return instruction at ADDR. */ ((function_ptr) addr) (); addr += INSN_CACHE_LINE_WIDTH; } } #else /* just one plane */ do { /* Call the return instruction at START_ADDR. */ ((function_ptr) start_addr) (); start_addr += INSN_CACHE_LINE_WIDTH; } while ((start_addr % INSN_CACHE_SIZE) != offset); #endif /* just one plane */ #endif /* Cache is large */ #endif /* Cache exists */ } #endif /* L_clear_cache */ #ifdef L_trampoline /* Jump to a trampoline, loading the static chain address. */ #ifdef TRANSFER_FROM_TRAMPOLINE TRANSFER_FROM_TRAMPOLINE #endif #ifdef __convex__ /* Make stack executable so we can call trampolines on stack. This is called from INITIALIZE_TRAMPOLINE in convex.h. */ #include #include #include void __enable_execute_stack () { int fp; static unsigned lowest = USRSTACK; unsigned current = (unsigned) &fp & -NBPG; if (lowest > current) { unsigned len = lowest - current; mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE); lowest = current; } /* Clear instruction cache in case an old trampoline is in it. */ asm ("pich"); } #endif /* __convex__ */ #ifdef __pyr__ #include #include #include #include #include /* Modified from the convex -code above. mremap promises to clear the i-cache. */ void __enable_execute_stack () { int fp; if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ, PROT_READ|PROT_WRITE|PROT_EXEC)) { perror ("mprotect in __enable_execute_stack"); fflush (stderr); abort (); } } #endif /* __pyr__ */ #endif /* L_trampoline */ #ifdef L__main #include "gbl-ctors.h" /* Run all the global destructors on exit from the program. */ void __do_global_dtors () { #ifdef DO_GLOBAL_DTORS_BODY DO_GLOBAL_DTORS_BODY; #else int nptrs = *(int *)__DTOR_LIST__; int i; /* Some systems place the number of pointers in the first word of the table. On other systems, that word is -1. In all cases, the table is null-terminated. */ /* If the length is not recorded, count up to the null. */ if (nptrs == -1) for (nptrs = 0; __DTOR_LIST__[nptrs + 1] != 0; nptrs++); /* GNU LD format. */ for (i = nptrs; i >= 1; i--) __DTOR_LIST__[i] (); #endif } #ifndef INIT_SECTION_ASM_OP /* Run all the global constructors on entry to the program. */ #ifndef ON_EXIT #define ON_EXIT(a, b) #else /* Make sure the exit routine is pulled in to define the globals as bss symbols, just in case the linker does not automatically pull bss definitions from the library. */ extern int _exit_dummy_decl; int *_exit_dummy_ref = &_exit_dummy_decl; #endif /* ON_EXIT */ void __do_global_ctors () { DO_GLOBAL_CTORS_BODY; ON_EXIT (__do_global_dtors, 0); } #endif /* no INIT_SECTION_ASM_OP */ #if !defined (INIT_SECTION_ASM_OP) || defined (INVOKE__main) /* Subroutine called automatically by `main'. Compiling a global function named `main' produces an automatic call to this function at the beginning. For many systems, this routine calls __do_global_ctors. For systems which support a .init section we use the .init section to run __do_global_ctors, so we need not do anything here. */ void __main () { /* Support recursive calls to `main': run initializers just once. */ static initialized = 0; if (! initialized) { initialized = 1; __do_global_ctors (); } } #endif /* no INIT_SECTION_ASM_OP or INVOKE__main */ #endif /* L__main */ #ifdef L_exit #include "gbl-ctors.h" /* Provide default definitions for the lists of constructors and destructors, so that we don't get linker errors. These symbols are intentionally bss symbols, so that gld and/or collect will provide the right values. */ /* We declare the lists here with two elements each, so that they are valid empty lists if no other definition is loaded. */ #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY) func_ptr __CTOR_LIST__[2]; func_ptr __DTOR_LIST__[2]; #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */ #ifndef ON_EXIT /* If we have no known way of registering our own __do_global_dtors routine so that it will be invoked at program exit time, then we have to define our own exit routine which will get this to happen. */ extern void __do_global_dtors (); extern void _cleanup (); extern void _exit (); void exit (status) int status; { __do_global_dtors (); #ifdef EXIT_BODY EXIT_BODY; #else _cleanup (); #endif _exit (status); } #else int _exit_dummy_decl = 0; /* prevent compiler & linker warnings */ #endif #endif /* L_exit */ /* In a.out systems, we need to have these dummy constructor and destructor lists in the library. When using `collect', the first link will resolve __CTOR_LIST__ and __DTOR_LIST__ to these symbols. We will then run "nm" on the result, build the correct __CTOR_LIST__ and __DTOR_LIST__, and relink. Since we don't do the second link if no constructors existed, these dummies must be fully functional empty lists. When using `gnu ld', these symbols will be used if there are no constructors. If there are constructors, the N_SETV symbol defined by the linker from the N_SETT's in input files will define __CTOR_LIST__ and __DTOR_LIST__ rather than its being allocated as common storage by the definitions below. When using a linker that supports constructor and destructor segments, these definitions will not be used, since crtbegin.o and crtend.o (from crtstuff.c) will have already defined __CTOR_LIST__ and __DTOR_LIST__. The crt*.o files are passed directly to the linker on its command line, by gcc. */ /* The list needs two elements: one is ignored (the old count); the second is the terminating zero. Since both values are zero, this declaration is not initialized, and it becomes `common'. */ #ifdef L_ctor_list #include "gbl-ctors.h" func_ptr __CTOR_LIST__[2]; #endif #ifdef L_dtor_list #include "gbl-ctors.h" func_ptr __DTOR_LIST__[2]; #endif