/* Generic partial redundancy elimination with lazy code motion support. Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* These routines are meant to be used by various optimization passes which can be modeled as lazy code motion problems. Including, but not limited to: * Traditional partial redundancy elimination. * Placement of caller/caller register save/restores. * Load/store motion. * Copy motion. * Conversion of flat register files to a stacked register model. * Dead load/store elimination. These routines accept as input: * Basic block information (number of blocks, lists of predecessors and successors). Note the granularity does not need to be basic block, they could be statements or functions. * Bitmaps of local properties (computed, transparent and anticipatable expressions). The output of these routines is bitmap of redundant computations and a bitmap of optimal placement points. */ #include "config.h" #include "system.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "flags.h" #include "real.h" #include "insn-config.h" #include "recog.h" #include "basic-block.h" #include "tm_p.h" /* We want target macros for the mode switching code to be able to refer to instruction attribute values. */ #include "insn-attr.h" /* Edge based LCM routines. */ static void compute_antinout_edge PARAMS ((sbitmap *, sbitmap *, sbitmap *, sbitmap *)); static void compute_earliest PARAMS ((struct edge_list *, int, sbitmap *, sbitmap *, sbitmap *, sbitmap *, sbitmap *)); static void compute_laterin PARAMS ((struct edge_list *, sbitmap *, sbitmap *, sbitmap *, sbitmap *)); static void compute_insert_delete PARAMS ((struct edge_list *edge_list, sbitmap *, sbitmap *, sbitmap *, sbitmap *, sbitmap *)); /* Edge based LCM routines on a reverse flowgraph. */ static void compute_farthest PARAMS ((struct edge_list *, int, sbitmap *, sbitmap *, sbitmap*, sbitmap *, sbitmap *)); static void compute_nearerout PARAMS ((struct edge_list *, sbitmap *, sbitmap *, sbitmap *, sbitmap *)); static void compute_rev_insert_delete PARAMS ((struct edge_list *edge_list, sbitmap *, sbitmap *, sbitmap *, sbitmap *, sbitmap *)); /* Edge based lcm routines. */ /* Compute expression anticipatability at entrance and exit of each block. This is done based on the flow graph, and not on the pred-succ lists. Other than that, its pretty much identical to compute_antinout. */ static void compute_antinout_edge (antloc, transp, antin, antout) sbitmap *antloc; sbitmap *transp; sbitmap *antin; sbitmap *antout; { int bb; edge e; basic_block *worklist, *tos; /* Allocate a worklist array/queue. Entries are only added to the list if they were not already on the list. So the size is bounded by the number of basic blocks. */ tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks); /* We want a maximal solution, so make an optimistic initialization of ANTIN. */ sbitmap_vector_ones (antin, n_basic_blocks); /* Put every block on the worklist; this is necessary because of the optimistic initialization of ANTIN above. */ for (bb = 0; bb < n_basic_blocks; bb++) { *tos++ = BASIC_BLOCK (bb); BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb); } /* Mark blocks which are predecessors of the exit block so that we can easily identify them below. */ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) e->src->aux = EXIT_BLOCK_PTR; /* Iterate until the worklist is empty. */ while (tos != worklist) { /* Take the first entry off the worklist. */ basic_block b = *--tos; bb = b->index; if (b->aux == EXIT_BLOCK_PTR) /* Do not clear the aux field for blocks which are predecessors of the EXIT block. That way we never add then to the worklist again. */ sbitmap_zero (antout[bb]); else { /* Clear the aux field of this block so that it can be added to the worklist again if necessary. */ b->aux = NULL; sbitmap_intersection_of_succs (antout[bb], antin, bb); } if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb], transp[bb], antout[bb])) /* If the in state of this block changed, then we need to add the predecessors of this block to the worklist if they are not already on the worklist. */ for (e = b->pred; e; e = e->pred_next) if (!e->src->aux && e->src != ENTRY_BLOCK_PTR) { *tos++ = e->src; e->src->aux = e; } } free (tos); } /* Compute the earliest vector for edge based lcm. */ static void compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest) struct edge_list *edge_list; int n_exprs; sbitmap *antin, *antout, *avout, *kill, *earliest; { sbitmap difference, temp_bitmap; int x, num_edges; basic_block pred, succ; num_edges = NUM_EDGES (edge_list); difference = sbitmap_alloc (n_exprs); temp_bitmap = sbitmap_alloc (n_exprs); for (x = 0; x < num_edges; x++) { pred = INDEX_EDGE_PRED_BB (edge_list, x); succ = INDEX_EDGE_SUCC_BB (edge_list, x); if (pred == ENTRY_BLOCK_PTR) sbitmap_copy (earliest[x], antin[succ->index]); else { if (succ == EXIT_BLOCK_PTR) sbitmap_zero (earliest[x]); else { sbitmap_difference (difference, antin[succ->index], avout[pred->index]); sbitmap_not (temp_bitmap, antout[pred->index]); sbitmap_a_and_b_or_c (earliest[x], difference, kill[pred->index], temp_bitmap); } } } free (temp_bitmap); free (difference); } /* later(p,s) is dependent on the calculation of laterin(p). laterin(p) is dependent on the calculation of later(p2,p). laterin(ENTRY) is defined as all 0's later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY) laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)). If we progress in this manner, starting with all basic blocks in the work list, anytime we change later(bb), we need to add succs(bb) to the worklist if they are not already on the worklist. Boundary conditions: We prime the worklist all the normal basic blocks. The ENTRY block can never be added to the worklist since it is never the successor of any block. We explicitly prevent the EXIT block from being added to the worklist. We optimistically initialize LATER. That is the only time this routine will compute LATER for an edge out of the entry block since the entry block is never on the worklist. Thus, LATERIN is neither used nor computed for the ENTRY block. Since the EXIT block is never added to the worklist, we will neither use nor compute LATERIN for the exit block. Edges which reach the EXIT block are handled in the normal fashion inside the loop. However, the insertion/deletion computation needs LATERIN(EXIT), so we have to compute it. */ static void compute_laterin (edge_list, earliest, antloc, later, laterin) struct edge_list *edge_list; sbitmap *earliest, *antloc, *later, *laterin; { int bb, num_edges, i; edge e; basic_block *worklist, *tos; num_edges = NUM_EDGES (edge_list); /* Allocate a worklist array/queue. Entries are only added to the list if they were not already on the list. So the size is bounded by the number of basic blocks. */ tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1)); /* Initialize a mapping from each edge to its index. */ for (i = 0; i < num_edges; i++) INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; /* We want a maximal solution, so initially consider LATER true for all edges. This allows propagation through a loop since the incoming loop edge will have LATER set, so if all the other incoming edges to the loop are set, then LATERIN will be set for the head of the loop. If the optimistic setting of LATER on that edge was incorrect (for example the expression is ANTLOC in a block within the loop) then this algorithm will detect it when we process the block at the head of the optimistic edge. That will requeue the affected blocks. */ sbitmap_vector_ones (later, num_edges); /* Note that even though we want an optimistic setting of LATER, we do not want to be overly optimistic. Consider an outgoing edge from the entry block. That edge should always have a LATER value the same as EARLIEST for that edge. */ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next) sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]); /* Add all the blocks to the worklist. This prevents an early exit from the loop given our optimistic initialization of LATER above. */ for (bb = n_basic_blocks - 1; bb >= 0; bb--) { basic_block b = BASIC_BLOCK (bb); *tos++ = b; b->aux = b; } /* Iterate until the worklist is empty. */ while (tos != worklist) { /* Take the first entry off the worklist. */ basic_block b = *--tos; b->aux = NULL; /* Compute the intersection of LATERIN for each incoming edge to B. */ bb = b->index; sbitmap_ones (laterin[bb]); for (e = b->pred; e != NULL; e = e->pred_next) sbitmap_a_and_b (laterin[bb], laterin[bb], later[(size_t)e->aux]); /* Calculate LATER for all outgoing edges. */ for (e = b->succ; e != NULL; e = e->succ_next) if (sbitmap_union_of_diff (later[(size_t) e->aux], earliest[(size_t) e->aux], laterin[e->src->index], antloc[e->src->index]) /* If LATER for an outgoing edge was changed, then we need to add the target of the outgoing edge to the worklist. */ && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0) { *tos++ = e->dest; e->dest->aux = e; } } /* Computation of insertion and deletion points requires computing LATERIN for the EXIT block. We allocated an extra entry in the LATERIN array for just this purpose. */ sbitmap_ones (laterin[n_basic_blocks]); for (e = EXIT_BLOCK_PTR->pred; e != NULL; e = e->pred_next) sbitmap_a_and_b (laterin[n_basic_blocks], laterin[n_basic_blocks], later[(size_t) e->aux]); free (tos); } /* Compute the insertion and deletion points for edge based LCM. */ static void compute_insert_delete (edge_list, antloc, later, laterin, insert, delete) struct edge_list *edge_list; sbitmap *antloc, *later, *laterin, *insert, *delete; { int x; for (x = 0; x < n_basic_blocks; x++) sbitmap_difference (delete[x], antloc[x], laterin[x]); for (x = 0; x < NUM_EDGES (edge_list); x++) { basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x); if (b == EXIT_BLOCK_PTR) sbitmap_difference (insert[x], later[x], laterin[n_basic_blocks]); else sbitmap_difference (insert[x], later[x], laterin[b->index]); } } /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and delete vectors for edge based LCM. Returns an edgelist which is used to map the insert vector to what edge an expression should be inserted on. */ struct edge_list * pre_edge_lcm (file, n_exprs, transp, avloc, antloc, kill, insert, delete) FILE *file ATTRIBUTE_UNUSED; int n_exprs; sbitmap *transp; sbitmap *avloc; sbitmap *antloc; sbitmap *kill; sbitmap **insert; sbitmap **delete; { sbitmap *antin, *antout, *earliest; sbitmap *avin, *avout; sbitmap *later, *laterin; struct edge_list *edge_list; int num_edges; edge_list = create_edge_list (); num_edges = NUM_EDGES (edge_list); #ifdef LCM_DEBUG_INFO if (file) { fprintf (file, "Edge List:\n"); verify_edge_list (file, edge_list); print_edge_list (file, edge_list); dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks); dump_sbitmap_vector (file, "antloc", "", antloc, n_basic_blocks); dump_sbitmap_vector (file, "avloc", "", avloc, n_basic_blocks); dump_sbitmap_vector (file, "kill", "", kill, n_basic_blocks); } #endif /* Compute global availability. */ avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs); avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs); compute_available (avloc, kill, avout, avin); free (avin); /* Compute global anticipatability. */ antin = sbitmap_vector_alloc (n_basic_blocks, n_exprs); antout = sbitmap_vector_alloc (n_basic_blocks, n_exprs); compute_antinout_edge (antloc, transp, antin, antout); #ifdef LCM_DEBUG_INFO if (file) { dump_sbitmap_vector (file, "antin", "", antin, n_basic_blocks); dump_sbitmap_vector (file, "antout", "", antout, n_basic_blocks); } #endif /* Compute earliestness. */ earliest = sbitmap_vector_alloc (num_edges, n_exprs); compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest); #ifdef LCM_DEBUG_INFO if (file) dump_sbitmap_vector (file, "earliest", "", earliest, num_edges); #endif free (antout); free (antin); free (avout); later = sbitmap_vector_alloc (num_edges, n_exprs); /* Allocate an extra element for the exit block in the laterin vector. */ laterin = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs); compute_laterin (edge_list, earliest, antloc, later, laterin); #ifdef LCM_DEBUG_INFO if (file) { dump_sbitmap_vector (file, "laterin", "", laterin, n_basic_blocks + 1); dump_sbitmap_vector (file, "later", "", later, num_edges); } #endif free (earliest); *insert = sbitmap_vector_alloc (num_edges, n_exprs); *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs); compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete); free (laterin); free (later); #ifdef LCM_DEBUG_INFO if (file) { dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges); dump_sbitmap_vector (file, "pre_delete_map", "", *delete, n_basic_blocks); } #endif return edge_list; } /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors. Return the number of passes we performed to iterate to a solution. */ void compute_available (avloc, kill, avout, avin) sbitmap *avloc, *kill, *avout, *avin; { int bb; edge e; basic_block *worklist, *tos; /* Allocate a worklist array/queue. Entries are only added to the list if they were not already on the list. So the size is bounded by the number of basic blocks. */ tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks); /* We want a maximal solution. */ sbitmap_vector_ones (avout, n_basic_blocks); /* Put every block on the worklist; this is necessary because of the optimistic initialization of AVOUT above. */ for (bb = n_basic_blocks - 1; bb >= 0; bb--) { *tos++ = BASIC_BLOCK (bb); BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb); } /* Mark blocks which are successors of the entry block so that we can easily identify them below. */ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next) e->dest->aux = ENTRY_BLOCK_PTR; /* Iterate until the worklist is empty. */ while (tos != worklist) { /* Take the first entry off the worklist. */ basic_block b = *--tos; bb = b->index; /* If one of the predecessor blocks is the ENTRY block, then the intersection of avouts is the null set. We can identify such blocks by the special value in the AUX field in the block structure. */ if (b->aux == ENTRY_BLOCK_PTR) /* Do not clear the aux field for blocks which are successors of the ENTRY block. That way we never add then to the worklist again. */ sbitmap_zero (avin[bb]); else { /* Clear the aux field of this block so that it can be added to the worklist again if necessary. */ b->aux = NULL; sbitmap_intersection_of_preds (avin[bb], avout, bb); } if (sbitmap_union_of_diff (avout[bb], avloc[bb], avin[bb], kill[bb])) /* If the out state of this block changed, then we need to add the successors of this block to the worklist if they are not already on the worklist. */ for (e = b->succ; e; e = e->succ_next) if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR) { *tos++ = e->dest; e->dest->aux = e; } } free (tos); } /* Compute the farthest vector for edge based lcm. */ static void compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin, kill, farthest) struct edge_list *edge_list; int n_exprs; sbitmap *st_avout, *st_avin, *st_antin, *kill, *farthest; { sbitmap difference, temp_bitmap; int x, num_edges; basic_block pred, succ; num_edges = NUM_EDGES (edge_list); difference = sbitmap_alloc (n_exprs); temp_bitmap = sbitmap_alloc (n_exprs); for (x = 0; x < num_edges; x++) { pred = INDEX_EDGE_PRED_BB (edge_list, x); succ = INDEX_EDGE_SUCC_BB (edge_list, x); if (succ == EXIT_BLOCK_PTR) sbitmap_copy (farthest[x], st_avout[pred->index]); else { if (pred == ENTRY_BLOCK_PTR) sbitmap_zero (farthest[x]); else { sbitmap_difference (difference, st_avout[pred->index], st_antin[succ->index]); sbitmap_not (temp_bitmap, st_avin[succ->index]); sbitmap_a_and_b_or_c (farthest[x], difference, kill[succ->index], temp_bitmap); } } } free (temp_bitmap); free (difference); } /* Compute nearer and nearerout vectors for edge based lcm. This is the mirror of compute_laterin, additional comments on the implementation can be found before compute_laterin. */ static void compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout) struct edge_list *edge_list; sbitmap *farthest, *st_avloc, *nearer, *nearerout; { int bb, num_edges, i; edge e; basic_block *worklist, *tos; num_edges = NUM_EDGES (edge_list); /* Allocate a worklist array/queue. Entries are only added to the list if they were not already on the list. So the size is bounded by the number of basic blocks. */ tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1)); /* Initialize NEARER for each edge and build a mapping from an edge to its index. */ for (i = 0; i < num_edges; i++) INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; /* We want a maximal solution. */ sbitmap_vector_ones (nearer, num_edges); /* Note that even though we want an optimistic setting of NEARER, we do not want to be overly optimistic. Consider an incoming edge to the exit block. That edge should always have a NEARER value the same as FARTHEST for that edge. */ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]); /* Add all the blocks to the worklist. This prevents an early exit from the loop given our optimistic initialization of NEARER. */ for (bb = 0; bb < n_basic_blocks; bb++) { basic_block b = BASIC_BLOCK (bb); *tos++ = b; b->aux = b; } /* Iterate until the worklist is empty. */ while (tos != worklist) { /* Take the first entry off the worklist. */ basic_block b = *--tos; b->aux = NULL; /* Compute the intersection of NEARER for each outgoing edge from B. */ bb = b->index; sbitmap_ones (nearerout[bb]); for (e = b->succ; e != NULL; e = e->succ_next) sbitmap_a_and_b (nearerout[bb], nearerout[bb], nearer[(size_t) e->aux]); /* Calculate NEARER for all incoming edges. */ for (e = b->pred; e != NULL; e = e->pred_next) if (sbitmap_union_of_diff (nearer[(size_t) e->aux], farthest[(size_t) e->aux], nearerout[e->dest->index], st_avloc[e->dest->index]) /* If NEARER for an incoming edge was changed, then we need to add the source of the incoming edge to the worklist. */ && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0) { *tos++ = e->src; e->src->aux = e; } } /* Computation of insertion and deletion points requires computing NEAREROUT for the ENTRY block. We allocated an extra entry in the NEAREROUT array for just this purpose. */ sbitmap_ones (nearerout[n_basic_blocks]); for (e = ENTRY_BLOCK_PTR->succ; e != NULL; e = e->succ_next) sbitmap_a_and_b (nearerout[n_basic_blocks], nearerout[n_basic_blocks], nearer[(size_t) e->aux]); free (tos); } /* Compute the insertion and deletion points for edge based LCM. */ static void compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout, insert, delete) struct edge_list *edge_list; sbitmap *st_avloc, *nearer, *nearerout, *insert, *delete; { int x; for (x = 0; x < n_basic_blocks; x++) sbitmap_difference (delete[x], st_avloc[x], nearerout[x]); for (x = 0; x < NUM_EDGES (edge_list); x++) { basic_block b = INDEX_EDGE_PRED_BB (edge_list, x); if (b == ENTRY_BLOCK_PTR) sbitmap_difference (insert[x], nearer[x], nearerout[n_basic_blocks]); else sbitmap_difference (insert[x], nearer[x], nearerout[b->index]); } } /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the insert and delete vectors for edge based reverse LCM. Returns an edgelist which is used to map the insert vector to what edge an expression should be inserted on. */ struct edge_list * pre_edge_rev_lcm (file, n_exprs, transp, st_avloc, st_antloc, kill, insert, delete) FILE *file ATTRIBUTE_UNUSED; int n_exprs; sbitmap *transp; sbitmap *st_avloc; sbitmap *st_antloc; sbitmap *kill; sbitmap **insert; sbitmap **delete; { sbitmap *st_antin, *st_antout; sbitmap *st_avout, *st_avin, *farthest; sbitmap *nearer, *nearerout; struct edge_list *edge_list; int num_edges; edge_list = create_edge_list (); num_edges = NUM_EDGES (edge_list); st_antin = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs); st_antout = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs); sbitmap_vector_zero (st_antin, n_basic_blocks); sbitmap_vector_zero (st_antout, n_basic_blocks); compute_antinout_edge (st_antloc, transp, st_antin, st_antout); /* Compute global anticipatability. */ st_avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs); st_avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs); compute_available (st_avloc, kill, st_avout, st_avin); #ifdef LCM_DEBUG_INFO if (file) { fprintf (file, "Edge List:\n"); verify_edge_list (file, edge_list); print_edge_list (file, edge_list); dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks); dump_sbitmap_vector (file, "st_avloc", "", st_avloc, n_basic_blocks); dump_sbitmap_vector (file, "st_antloc", "", st_antloc, n_basic_blocks); dump_sbitmap_vector (file, "st_antin", "", st_antin, n_basic_blocks); dump_sbitmap_vector (file, "st_antout", "", st_antout, n_basic_blocks); dump_sbitmap_vector (file, "st_kill", "", kill, n_basic_blocks); } #endif #ifdef LCM_DEBUG_INFO if (file) { dump_sbitmap_vector (file, "st_avout", "", st_avout, n_basic_blocks); dump_sbitmap_vector (file, "st_avin", "", st_avin, n_basic_blocks); } #endif /* Compute farthestness. */ farthest = sbitmap_vector_alloc (num_edges, n_exprs); compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin, kill, farthest); #ifdef LCM_DEBUG_INFO if (file) dump_sbitmap_vector (file, "farthest", "", farthest, num_edges); #endif free (st_avin); free (st_avout); nearer = sbitmap_vector_alloc (num_edges, n_exprs); /* Allocate an extra element for the entry block. */ nearerout = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs); compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout); #ifdef LCM_DEBUG_INFO if (file) { dump_sbitmap_vector (file, "nearerout", "", nearerout, n_basic_blocks + 1); dump_sbitmap_vector (file, "nearer", "", nearer, num_edges); } #endif free (farthest); *insert = sbitmap_vector_alloc (num_edges, n_exprs); *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs); compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout, *insert, *delete); free (nearerout); free (nearer); #ifdef LCM_DEBUG_INFO if (file) { dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges); dump_sbitmap_vector (file, "pre_delete_map", "", *delete, n_basic_blocks); } #endif return edge_list; } /* Mode switching: The algorithm for setting the modes consists of scanning the insn list and finding all the insns which require a specific mode. Each insn gets a unique struct seginfo element. These structures are inserted into a list for each basic block. For each entity, there is an array of bb_info over the flow graph basic blocks (local var 'bb_info'), and contains a list of all insns within that basic block, in the order they are encountered. For each entity, any basic block WITHOUT any insns requiring a specific mode are given a single entry, without a mode. (Each basic block in the flow graph must have at least one entry in the segment table.) The LCM algorithm is then run over the flow graph to determine where to place the sets to the highest-priority value in respect of first the first insn in any one block. Any adjustments required to the transparancy vectors are made, then the next iteration starts for the next-lower priority mode, till for each entity all modes are exhasted. More details are located in the code for optimize_mode_switching(). */ /* This structure contains the information for each insn which requires either single or double mode to be set. MODE is the mode this insn must be executed in. INSN_PTR is the insn to be executed. BBNUM is the flow graph basic block this insn occurs in. NEXT is the next insn in the same basic block. */ struct seginfo { int mode; rtx insn_ptr; int bbnum; struct seginfo *next; HARD_REG_SET regs_live; }; struct bb_info { struct seginfo *seginfo; int computing; }; /* These bitmaps are used for the LCM algorithm. */ #ifdef OPTIMIZE_MODE_SWITCHING static sbitmap *antic; static sbitmap *transp; static sbitmap *comp; static sbitmap *delete; static sbitmap *insert; static struct seginfo * new_seginfo PARAMS ((int, rtx, int, HARD_REG_SET));; static void add_seginfo PARAMS ((struct bb_info *, struct seginfo *)); static void reg_dies PARAMS ((rtx, HARD_REG_SET)); static void reg_becomes_live PARAMS ((rtx, rtx, void *)); static void make_preds_opaque PARAMS ((basic_block, int)); #endif #ifdef OPTIMIZE_MODE_SWITCHING /* This function will allocate a new BBINFO structure, initialized with the FP_MODE, INSN, and basic block BB parameters. */ static struct seginfo * new_seginfo (mode, insn, bb, regs_live) int mode; rtx insn; int bb; HARD_REG_SET regs_live; { struct seginfo *ptr; ptr = xmalloc (sizeof (struct seginfo)); ptr->mode = mode; ptr->insn_ptr = insn; ptr->bbnum = bb; ptr->next = NULL; COPY_HARD_REG_SET (ptr->regs_live, regs_live); return ptr; } /* Add a seginfo element to the end of a list. HEAD is a pointer to the list beginning. INFO is the structure to be linked in. */ static void add_seginfo (head, info) struct bb_info *head; struct seginfo *info; { struct seginfo *ptr; if (head->seginfo == NULL) head->seginfo = info; else { ptr = head->seginfo; while (ptr->next != NULL) ptr = ptr->next; ptr->next = info; } } /* Make all predecessors of basic block B opaque, recursively, till we hit some that are already non-transparent, or an edge where aux is set; that denotes that a mode set is to be done on that edge. J is the bit number in the bitmaps that corresponds to the entity that we are currently handling mode-switching for. */ static void make_preds_opaque (b, j) basic_block b; int j; { edge e; for (e = b->pred; e; e = e->pred_next) { basic_block pb = e->src; if (e->aux || ! TEST_BIT (transp[pb->index], j)) continue; RESET_BIT (transp[pb->index], j); make_preds_opaque (pb, j); } } /* Record in LIVE that register REG died. */ static void reg_dies (reg, live) rtx reg; HARD_REG_SET live; { int regno, nregs; if (GET_CODE (reg) != REG) return; regno = REGNO (reg); if (regno < FIRST_PSEUDO_REGISTER) for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0; nregs--) CLEAR_HARD_REG_BIT (live, regno + nregs); } /* Record in LIVE that register REG became live. This is called via note_stores. */ static void reg_becomes_live (reg, setter, live) rtx reg; rtx setter ATTRIBUTE_UNUSED; void *live; { int regno, nregs; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (GET_CODE (reg) != REG) return; regno = REGNO (reg); if (regno < FIRST_PSEUDO_REGISTER) for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0; nregs--) SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs); } /* Find all insns that need a particular mode setting, and insert the necessary mode switches. Return true if we did work. */ int optimize_mode_switching (file) FILE *file; { rtx insn; int bb, e; edge eg; int need_commit = 0; sbitmap *kill; struct edge_list *edge_list; static int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING; #define N_ENTITIES (sizeof num_modes / sizeof (int)) int entity_map[N_ENTITIES]; struct bb_info *bb_info[N_ENTITIES]; int i, j; int n_entities; int max_num_modes = 0; for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--) if (OPTIMIZE_MODE_SWITCHING (e)) { /* Create the list of segments within each basic block. */ bb_info[n_entities] = (struct bb_info *) xcalloc (n_basic_blocks, sizeof **bb_info); entity_map[n_entities++] = e; if (num_modes[e] > max_num_modes) max_num_modes = num_modes[e]; } if (! n_entities) return 0; #ifdef MODE_USES_IN_EXIT_BLOCK /* For some ABIs a particular mode setting is required at function exit. */ for (eg = EXIT_BLOCK_PTR->pred; eg; eg = eg->pred_next) { int bb = eg->src->index; rtx insn = BLOCK_END (bb); rtx use = MODE_USES_IN_EXIT_BLOCK; /* If the block ends with the use of the return value and / or a return, insert the new use(s) in front of them. */ while ((GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE) || GET_CODE (insn) == JUMP_INSN) insn = PREV_INSN (insn); use = emit_insn_after (use, insn); if (insn == BLOCK_END (bb)) BLOCK_END (bb) = use; else if (NEXT_INSN (use) == BLOCK_HEAD (bb)) BLOCK_HEAD (bb) = NEXT_INSN (insn); } #endif /* MODE_USES_IN_EXIT_BLOCK */ /* Create the bitmap vectors. */ antic = sbitmap_vector_alloc (n_basic_blocks, n_entities); transp = sbitmap_vector_alloc (n_basic_blocks, n_entities); comp = sbitmap_vector_alloc (n_basic_blocks, n_entities); sbitmap_vector_ones (transp, n_basic_blocks); for (j = n_entities - 1; j >= 0; j--) { int e = entity_map[j]; int no_mode = num_modes[e]; struct bb_info *info = bb_info[j]; /* Determine what the first use (if any) need for a mode of entity E is. This will be the mode that is anticipatable for this block. Also compute the initial transparency settings. */ for (bb = 0 ; bb < n_basic_blocks; bb++) { struct seginfo *ptr; int last_mode = no_mode; HARD_REG_SET live_now; REG_SET_TO_HARD_REG_SET (live_now, BASIC_BLOCK (bb)->global_live_at_start); for (insn = BLOCK_HEAD (bb); insn != NULL && insn != NEXT_INSN (BLOCK_END (bb)); insn = NEXT_INSN (insn)) { if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { int mode = MODE_NEEDED (e, insn); rtx link; if (mode != no_mode && mode != last_mode) { last_mode = mode; ptr = new_seginfo (mode, insn, bb, live_now); add_seginfo (info + bb, ptr); RESET_BIT (transp[bb], j); } /* Update LIVE_NOW. */ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_DEAD) reg_dies (XEXP (link, 0), live_now); note_stores (PATTERN (insn), reg_becomes_live, &live_now); for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_UNUSED) reg_dies (XEXP (link, 0), live_now); } } info[bb].computing = last_mode; /* Check for blocks without ANY mode requirements. */ if (last_mode == no_mode) { ptr = new_seginfo (no_mode, insn, bb, live_now); add_seginfo (info + bb, ptr); } } #ifdef MODE_AT_ENTRY { int mode = MODE_AT_ENTRY (e); if (mode != no_mode) { for (eg = ENTRY_BLOCK_PTR->succ; eg; eg = eg->succ_next) { bb = eg->dest->index; /* By always making this nontransparent, we save an extra check in make_preds_opaque. We also need this to avoid confusing pre_edge_lcm when antic is cleared but transp and comp are set. */ RESET_BIT (transp[bb], j); /* If the block already has MODE, pretend it has none (because we don't need to set it), but retain whatever mode it computes. */ if (info[bb].seginfo->mode == mode) info[bb].seginfo->mode = no_mode; /* Insert a fake computing definition of MODE into entry blocks which compute no mode. This represents the mode on entry. */ else if (info[bb].computing == no_mode) { info[bb].computing = mode; info[bb].seginfo->mode = no_mode; } } } } #endif /* MODE_AT_ENTRY */ } kill = sbitmap_vector_alloc (n_basic_blocks, n_entities); for (i = 0; i < max_num_modes; i++) { int current_mode[N_ENTITIES]; /* Set the anticipatable and computing arrays. */ sbitmap_vector_zero (antic, n_basic_blocks); sbitmap_vector_zero (comp, n_basic_blocks); for (j = n_entities - 1; j >= 0; j--) { int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i); struct bb_info *info = bb_info[j]; for (bb = 0 ; bb < n_basic_blocks; bb++) { if (info[bb].seginfo->mode == m) SET_BIT (antic[bb], j); if (info[bb].computing == m) SET_BIT (comp[bb], j); } } /* Calculate the optimal locations for the placement mode switches to modes with priority I. */ for (bb = n_basic_blocks - 1; bb >= 0; bb--) sbitmap_not (kill[bb], transp[bb]); edge_list = pre_edge_lcm (file, 1, transp, comp, antic, kill, &insert, &delete); for (j = n_entities - 1; j >= 0; j--) { /* Insert all mode sets that have been inserted by lcm. */ int no_mode = num_modes[entity_map[j]]; /* Wherever we have moved a mode setting upwards in the flow graph, the blocks between the new setting site and the now redundant computation ceases to be transparent for any lower-priority mode of the same entity. First set the aux field of each insertion site edge non-transparent, then propagate the new non-transparency from the redundant computation upwards till we hit an insertion site or an already non-transparent block. */ for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--) { edge eg = INDEX_EDGE (edge_list, e); int mode; basic_block src_bb; HARD_REG_SET live_at_edge; rtx mode_set; eg->aux = 0; if (! TEST_BIT (insert[e], j)) continue; eg->aux = (void *)1; mode = current_mode[j]; src_bb = eg->src; REG_SET_TO_HARD_REG_SET (live_at_edge, src_bb->global_live_at_end); start_sequence (); EMIT_MODE_SET (entity_map[j], mode, live_at_edge); mode_set = gen_sequence (); end_sequence (); /* If this is an abnormal edge, we'll insert at the end of the previous block. */ if (eg->flags & EDGE_ABNORMAL) { src_bb->end = emit_insn_after (mode_set, src_bb->end); bb_info[j][src_bb->index].computing = mode; RESET_BIT (transp[src_bb->index], j); } else { need_commit = 1; insert_insn_on_edge (mode_set, eg); } } for (bb = n_basic_blocks - 1; bb >= 0; bb--) if (TEST_BIT (delete[bb], j)) { make_preds_opaque (BASIC_BLOCK (bb), j); /* Cancel the 'deleted' mode set. */ bb_info[j][bb].seginfo->mode = no_mode; } } free_edge_list (edge_list); } /* Now output the remaining mode sets in all the segments. */ for (j = n_entities - 1; j >= 0; j--) { for (bb = n_basic_blocks - 1; bb >= 0; bb--) { struct seginfo *ptr, *next; for (ptr = bb_info[j][bb].seginfo; ptr; ptr = next) { next = ptr->next; if (ptr->mode != FP_MODE_NONE) { rtx mode_set; start_sequence (); EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live); mode_set = gen_sequence (); end_sequence (); emit_block_insn_before (mode_set, ptr->insn_ptr, BASIC_BLOCK (ptr->bbnum)); } free (ptr); } } free (bb_info[j]); } /* Finished. Free up all the things we've allocated. */ sbitmap_vector_free (kill); sbitmap_vector_free (antic); sbitmap_vector_free (transp); sbitmap_vector_free (comp); sbitmap_vector_free (delete); sbitmap_vector_free (insert); if (need_commit) commit_edge_insertions (); /* Ideally we'd figure out what blocks were affected and start from there, but this is enormously complicated by commit_edge_insertions, which would screw up any indicies we'd collected, and also need to be involved in the update. Bail and recompute global life info for everything. */ allocate_reg_life_data (); update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES, (PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE | PROP_REG_INFO)); return 1; } #endif /* OPTIMIZE_MODE_SWITCHING */