/* Basic IPA optimizations and utilities. Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "cgraph.h" #include "tree-pass.h" #include "timevar.h" #include "gimple.h" #include "ggc.h" #include "flags.h" #include "pointer-set.h" #include "target.h" #include "tree-iterator.h" /* Fill array order with all nodes with output flag set in the reverse topological order. */ int cgraph_postorder (struct cgraph_node **order) { struct cgraph_node *node, *node2; int stack_size = 0; int order_pos = 0; struct cgraph_edge *edge, last; int pass; struct cgraph_node **stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); /* We have to deal with cycles nicely, so use a depth first traversal output algorithm. Ignore the fact that some functions won't need to be output and put them into order as well, so we get dependencies right through inline functions. */ for (node = cgraph_nodes; node; node = node->next) node->aux = NULL; for (pass = 0; pass < 2; pass++) for (node = cgraph_nodes; node; node = node->next) if (!node->aux && (pass || (!node->address_taken && !node->global.inlined_to && !cgraph_only_called_directly_p (node)))) { node2 = node; if (!node->callers) node->aux = &last; else node->aux = node->callers; while (node2) { while (node2->aux != &last) { edge = (struct cgraph_edge *) node2->aux; if (edge->next_caller) node2->aux = edge->next_caller; else node2->aux = &last; /* Break possible cycles involving always-inline functions by ignoring edges from always-inline functions to non-always-inline functions. */ if (edge->caller->local.disregard_inline_limits && !edge->callee->local.disregard_inline_limits) continue; if (!edge->caller->aux) { if (!edge->caller->callers) edge->caller->aux = &last; else edge->caller->aux = edge->caller->callers; stack[stack_size++] = node2; node2 = edge->caller; break; } } if (node2->aux == &last) { order[order_pos++] = node2; if (stack_size) node2 = stack[--stack_size]; else node2 = NULL; } } } free (stack); for (node = cgraph_nodes; node; node = node->next) node->aux = NULL; return order_pos; } /* Look for all functions inlined to NODE and update their inlined_to pointers to INLINED_TO. */ static void update_inlined_to_pointer (struct cgraph_node *node, struct cgraph_node *inlined_to) { struct cgraph_edge *e; for (e = node->callees; e; e = e->next_callee) if (e->callee->global.inlined_to) { e->callee->global.inlined_to = inlined_to; update_inlined_to_pointer (e->callee, inlined_to); } } /* Add cgraph NODE to queue starting at FIRST. The queue is linked via AUX pointers and terminated by pointer to 1. We enqueue nodes at two occasions: when we find them reachable or when we find their bodies needed for further clonning. In the second case we mark them by pointer to 2 after processing so they are re-queue when they become reachable. */ static void enqueue_cgraph_node (struct cgraph_node *node, struct cgraph_node **first) { /* Node is still in queue; do nothing. */ if (node->aux && node->aux != (void *) 2) return; /* Node was already processed as unreachable, re-enqueue only if it became reachable now. */ if (node->aux == (void *)2 && !node->reachable) return; node->aux = *first; *first = node; } /* Add varpool NODE to queue starting at FIRST. */ static void enqueue_varpool_node (struct varpool_node *node, struct varpool_node **first) { node->aux = *first; *first = node; } /* Process references. */ static void process_references (struct ipa_ref_list *list, struct cgraph_node **first, struct varpool_node **first_varpool, bool before_inlining_p) { int i; struct ipa_ref *ref; for (i = 0; ipa_ref_list_reference_iterate (list, i, ref); i++) { if (ref->refered_type == IPA_REF_CGRAPH) { struct cgraph_node *node = ipa_ref_node (ref); if (!node->reachable && node->analyzed && (!DECL_EXTERNAL (node->decl) || before_inlining_p)) node->reachable = true; enqueue_cgraph_node (node, first); } else { struct varpool_node *node = ipa_ref_varpool_node (ref); if (!node->needed) { varpool_mark_needed_node (node); enqueue_varpool_node (node, first_varpool); } } } } /* Return true when function can be marked local. */ static bool cgraph_local_node_p (struct cgraph_node *node) { return (cgraph_only_called_directly_p (node) && node->analyzed && !DECL_EXTERNAL (node->decl) && !node->local.externally_visible && !node->reachable_from_other_partition && !node->in_other_partition); } /* Perform reachability analysis and reclaim all unreachable nodes. If BEFORE_INLINING_P is true this function is called before inlining decisions has been made. If BEFORE_INLINING_P is false this function also removes unneeded bodies of extern inline functions. */ bool cgraph_remove_unreachable_nodes (bool before_inlining_p, FILE *file) { struct cgraph_node *first = (struct cgraph_node *) (void *) 1; struct varpool_node *first_varpool = (struct varpool_node *) (void *) 1; struct cgraph_node *node, *next; struct varpool_node *vnode, *vnext; bool changed = false; #ifdef ENABLE_CHECKING verify_cgraph (); #endif if (file) fprintf (file, "\nReclaiming functions:"); #ifdef ENABLE_CHECKING for (node = cgraph_nodes; node; node = node->next) gcc_assert (!node->aux); for (vnode = varpool_nodes; vnode; vnode = vnode->next) gcc_assert (!vnode->aux); #endif varpool_reset_queue (); /* Mark functions whose bodies are obviously needed. This is mostly when they can be referenced externally. Inline clones are special since their declarations are shared with master clone and thus cgraph_can_remove_if_no_direct_calls_and_refs_p should not be called on them. */ for (node = cgraph_nodes; node; node = node->next) if (node->analyzed && !node->global.inlined_to && (!cgraph_can_remove_if_no_direct_calls_and_refs_p (node) /* Keep around virtual functions for possible devirtualization. */ || (before_inlining_p && DECL_VIRTUAL_P (node->decl) && (DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))) /* Also external functions with address taken are better to stay for indirect inlining. */ || (before_inlining_p && DECL_EXTERNAL (node->decl) && node->address_taken))) { gcc_assert (!node->global.inlined_to); enqueue_cgraph_node (node, &first); node->reachable = true; } else { gcc_assert (!node->aux); node->reachable = false; } /* Mark variables that are obviously needed. */ for (vnode = varpool_nodes; vnode; vnode = vnode->next) { vnode->next_needed = NULL; vnode->prev_needed = NULL; if (vnode->analyzed && !varpool_can_remove_if_no_refs (vnode)) { vnode->needed = false; varpool_mark_needed_node (vnode); enqueue_varpool_node (vnode, &first_varpool); } else vnode->needed = false; } /* Perform reachability analysis. As a special case do not consider extern inline functions not inlined as live because we won't output them at all. We maintain two worklist, one for cgraph nodes other for varpools and are finished once both are empty. */ while (first != (struct cgraph_node *) (void *) 1 || first_varpool != (struct varpool_node *) (void *) 1) { if (first != (struct cgraph_node *) (void *) 1) { struct cgraph_edge *e; node = first; first = (struct cgraph_node *) first->aux; if (!node->reachable) node->aux = (void *)2; /* If we found this node reachable, first mark on the callees reachable too, unless they are direct calls to extern inline functions we decided to not inline. */ if (node->reachable) { for (e = node->callees; e; e = e->next_callee) { if (!e->callee->reachable && node->analyzed && (!e->inline_failed || !DECL_EXTERNAL (e->callee->decl) || before_inlining_p)) e->callee->reachable = true; enqueue_cgraph_node (e->callee, &first); } process_references (&node->ref_list, &first, &first_varpool, before_inlining_p); } /* If any function in a comdat group is reachable, force all other functions in the same comdat group to be also reachable. */ if (node->same_comdat_group && node->reachable && !node->global.inlined_to) { for (next = node->same_comdat_group; next != node; next = next->same_comdat_group) if (!next->reachable) { next->reachable = true; enqueue_cgraph_node (next, &first); } } /* We can freely remove inline clones even if they are cloned, however if function is clone of real clone, we must keep it around in order to make materialize_clones produce function body with the changes applied. */ while (node->clone_of && !node->clone_of->aux && !gimple_has_body_p (node->decl)) { bool noninline = node->clone_of->decl != node->decl; node = node->clone_of; if (noninline && !node->reachable && !node->aux) { enqueue_cgraph_node (node, &first); break; } } } if (first_varpool != (struct varpool_node *) (void *) 1) { vnode = first_varpool; first_varpool = (struct varpool_node *)first_varpool->aux; vnode->aux = NULL; process_references (&vnode->ref_list, &first, &first_varpool, before_inlining_p); /* If any function in a comdat group is reachable, force all other functions in the same comdat group to be also reachable. */ if (vnode->same_comdat_group) { struct varpool_node *next; for (next = vnode->same_comdat_group; next != vnode; next = next->same_comdat_group) if (!next->needed) { varpool_mark_needed_node (next); enqueue_varpool_node (next, &first_varpool); } } } } /* Remove unreachable nodes. Completely unreachable functions can be fully removed from the callgraph. Extern inline functions that we decided to not inline need to become unanalyzed nodes of callgraph (so we still have edges to them). We remove function body then. Also we need to care functions that are unreachable but we need to keep them around for later clonning. In this case we also turn them to unanalyzed nodes, but keep the body around. */ for (node = cgraph_nodes; node; node = next) { next = node->next; if (node->aux && !node->reachable) { cgraph_node_remove_callees (node); ipa_remove_all_references (&node->ref_list); node->analyzed = false; node->local.inlinable = false; } if (!node->aux) { struct cgraph_edge *e; bool found = false; int i; struct ipa_ref *ref; node->global.inlined_to = NULL; if (file) fprintf (file, " %s", cgraph_node_name (node)); /* See if there is reachable caller. */ for (e = node->callers; e && !found; e = e->next_caller) if (e->caller->reachable) found = true; for (i = 0; (ipa_ref_list_refering_iterate (&node->ref_list, i, ref) && !found); i++) if (ref->refering_type == IPA_REF_CGRAPH && ipa_ref_refering_node (ref)->reachable) found = true; else if (ref->refering_type == IPA_REF_VARPOOL && ipa_ref_refering_varpool_node (ref)->needed) found = true; /* If so, we need to keep node in the callgraph. */ if (found) { if (node->analyzed) { struct cgraph_node *clone; /* If there are still clones, we must keep body around. Otherwise we can just remove the body but keep the clone. */ for (clone = node->clones; clone; clone = clone->next_sibling_clone) if (clone->aux) break; if (!clone) { cgraph_release_function_body (node); node->local.inlinable = false; if (node->prev_sibling_clone) node->prev_sibling_clone->next_sibling_clone = node->next_sibling_clone; else if (node->clone_of) node->clone_of->clones = node->next_sibling_clone; if (node->next_sibling_clone) node->next_sibling_clone->prev_sibling_clone = node->prev_sibling_clone; #ifdef ENABLE_CHECKING if (node->clone_of) node->former_clone_of = node->clone_of->decl; #endif node->clone_of = NULL; node->next_sibling_clone = NULL; node->prev_sibling_clone = NULL; } else gcc_assert (!clone->in_other_partition); node->analyzed = false; changed = true; cgraph_node_remove_callees (node); ipa_remove_all_references (&node->ref_list); } } else { cgraph_remove_node (node); changed = true; } } } for (node = cgraph_nodes; node; node = node->next) { /* Inline clones might be kept around so their materializing allows further cloning. If the function the clone is inlined into is removed, we need to turn it into normal cone. */ if (node->global.inlined_to && !node->callers) { gcc_assert (node->clones); node->global.inlined_to = NULL; update_inlined_to_pointer (node, node); } node->aux = NULL; } if (file) fprintf (file, "\n"); /* We must release unused extern inlines or sanity checking will fail. Rest of transformations are undesirable at -O0 since we do not want to remove anything. */ if (!optimize) return changed; if (file) fprintf (file, "Reclaiming variables:"); for (vnode = varpool_nodes; vnode; vnode = vnext) { vnext = vnode->next; if (!vnode->needed) { if (file) fprintf (file, " %s", varpool_node_name (vnode)); varpool_remove_node (vnode); changed = true; } } /* Now update address_taken flags and try to promote functions to be local. */ if (file) fprintf (file, "\nClearing address taken flags:"); for (node = cgraph_nodes; node; node = node->next) if (node->address_taken && !node->reachable_from_other_partition) { int i; struct ipa_ref *ref; bool found = false; for (i = 0; ipa_ref_list_refering_iterate (&node->ref_list, i, ref) && !found; i++) { gcc_assert (ref->use == IPA_REF_ADDR); found = true; } if (!found) { if (file) fprintf (file, " %s", cgraph_node_name (node)); node->address_taken = false; changed = true; if (cgraph_local_node_p (node)) { node->local.local = true; if (file) fprintf (file, " (local)"); } } } #ifdef ENABLE_CHECKING verify_cgraph (); #endif /* Reclaim alias pairs for functions that have disappeared from the call graph. */ remove_unreachable_alias_pairs (); return changed; } /* Discover variables that have no longer address taken or that are read only and update their flags. FIXME: This can not be done in between gimplify and omp_expand since readonly flag plays role on what is shared and what is not. Currently we do this transformation as part of whole program visibility and re-do at ipa-reference pass (to take into account clonning), but it would make sense to do it before early optimizations. */ void ipa_discover_readonly_nonaddressable_vars (void) { struct varpool_node *vnode; if (dump_file) fprintf (dump_file, "Clearing variable flags:"); for (vnode = varpool_nodes; vnode; vnode = vnode->next) if (vnode->finalized && varpool_all_refs_explicit_p (vnode) && (TREE_ADDRESSABLE (vnode->decl) || !TREE_READONLY (vnode->decl))) { bool written = false; bool address_taken = false; int i; struct ipa_ref *ref; for (i = 0; ipa_ref_list_refering_iterate (&vnode->ref_list, i, ref) && (!written || !address_taken); i++) switch (ref->use) { case IPA_REF_ADDR: address_taken = true; break; case IPA_REF_LOAD: break; case IPA_REF_STORE: written = true; break; } if (TREE_ADDRESSABLE (vnode->decl) && !address_taken) { if (dump_file) fprintf (dump_file, " %s (addressable)", varpool_node_name (vnode)); TREE_ADDRESSABLE (vnode->decl) = 0; } if (!TREE_READONLY (vnode->decl) && !address_taken && !written /* Making variable in explicit section readonly can cause section type conflict. See e.g. gcc.c-torture/compile/pr23237.c */ && DECL_SECTION_NAME (vnode->decl) == NULL) { if (dump_file) fprintf (dump_file, " %s (read-only)", varpool_node_name (vnode)); TREE_READONLY (vnode->decl) = 1; } } if (dump_file) fprintf (dump_file, "\n"); } /* Return true when there is a reference to node and it is not vtable. */ static bool cgraph_address_taken_from_non_vtable_p (struct cgraph_node *node) { int i; struct ipa_ref *ref; for (i = 0; ipa_ref_list_reference_iterate (&node->ref_list, i, ref); i++) { struct varpool_node *node; if (ref->refered_type == IPA_REF_CGRAPH) return true; node = ipa_ref_varpool_node (ref); if (!DECL_VIRTUAL_P (node->decl)) return true; } return false; } /* COMDAT functions must be shared only if they have address taken, otherwise we can produce our own private implementation with -fwhole-program. Return true when turning COMDAT functoin static can not lead to wrong code when the resulting object links with a library defining same COMDAT. Virtual functions do have their addresses taken from the vtables, but in C++ there is no way to compare their addresses for equality. */ bool cgraph_comdat_can_be_unshared_p (struct cgraph_node *node) { if ((cgraph_address_taken_from_non_vtable_p (node) && !DECL_VIRTUAL_P (node->decl)) || !node->analyzed) return false; if (node->same_comdat_group) { struct cgraph_node *next; /* If more than one function is in the same COMDAT group, it must be shared even if just one function in the comdat group has address taken. */ for (next = node->same_comdat_group; next != node; next = next->same_comdat_group) if (cgraph_address_taken_from_non_vtable_p (node) && !DECL_VIRTUAL_P (next->decl)) return false; } return true; } /* Return true when function NODE should be considered externally visible. */ static bool cgraph_externally_visible_p (struct cgraph_node *node, bool whole_program, bool aliased) { struct cgraph_node *alias; if (!node->local.finalized) return false; if (!DECL_COMDAT (node->decl) && (!TREE_PUBLIC (node->decl) || DECL_EXTERNAL (node->decl))) return false; /* Do not even try to be smart about aliased nodes. Until we properly represent everything by same body alias, these are just evil. */ if (aliased) return true; /* If linker counts on us, we must preserve the function. */ if (cgraph_used_from_object_file_p (node)) return true; if (DECL_PRESERVE_P (node->decl)) return true; if (lookup_attribute ("externally_visible", DECL_ATTRIBUTES (node->decl))) return true; if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && lookup_attribute ("dllexport", DECL_ATTRIBUTES (node->decl))) return true; /* When doing LTO or whole program, we can bring COMDAT functoins static. This improves code quality and we know we will duplicate them at most twice (in the case that we are not using plugin and link with object file implementing same COMDAT) */ if ((in_lto_p || whole_program) && DECL_COMDAT (node->decl) && cgraph_comdat_can_be_unshared_p (node)) return false; /* See if we have linker information about symbol not being used or if we need to make guess based on the declaration. Even if the linker clams the symbol is unused, never bring internal symbols that are declared by user as used or externally visible. This is needed for i.e. references from asm statements. */ for (alias = node->same_body; alias; alias = alias->next) if (alias->resolution != LDPR_PREVAILING_DEF_IRONLY) break; if (!alias && node->resolution == LDPR_PREVAILING_DEF_IRONLY) return false; /* When doing link time optimizations, hidden symbols become local. */ if (in_lto_p && (DECL_VISIBILITY (node->decl) == VISIBILITY_HIDDEN || DECL_VISIBILITY (node->decl) == VISIBILITY_INTERNAL) /* Be sure that node is defined in IR file, not in other object file. In that case we don't set used_from_other_object_file. */ && node->analyzed) ; else if (!whole_program) return true; if (MAIN_NAME_P (DECL_NAME (node->decl))) return true; return false; } /* Return true when variable VNODE should be considered externally visible. */ static bool varpool_externally_visible_p (struct varpool_node *vnode, bool aliased) { struct varpool_node *alias; if (!DECL_COMDAT (vnode->decl) && !TREE_PUBLIC (vnode->decl)) return false; /* Do not even try to be smart about aliased nodes. Until we properly represent everything by same body alias, these are just evil. */ if (aliased) return true; /* If linker counts on us, we must preserve the function. */ if (varpool_used_from_object_file_p (vnode)) return true; if (DECL_PRESERVE_P (vnode->decl)) return true; if (lookup_attribute ("externally_visible", DECL_ATTRIBUTES (vnode->decl))) return true; if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && lookup_attribute ("dllexport", DECL_ATTRIBUTES (vnode->decl))) return true; /* See if we have linker information about symbol not being used or if we need to make guess based on the declaration. Even if the linker clams the symbol is unused, never bring internal symbols that are declared by user as used or externally visible. This is needed for i.e. references from asm statements. */ if (varpool_used_from_object_file_p (vnode)) return true; for (alias = vnode->extra_name; alias; alias = alias->next) if (alias->resolution != LDPR_PREVAILING_DEF_IRONLY) break; if (!alias && vnode->resolution == LDPR_PREVAILING_DEF_IRONLY) return false; /* As a special case, the COMDAT virutal tables can be unshared. In LTO mode turn vtables into static variables. The variable is readonly, so this does not enable more optimization, but referring static var is faster for dynamic linking. Also this match logic hidding vtables from LTO symbol tables. */ if ((in_lto_p || flag_whole_program) && !vnode->force_output && DECL_COMDAT (vnode->decl) && DECL_VIRTUAL_P (vnode->decl)) return false; /* When doing link time optimizations, hidden symbols become local. */ if (in_lto_p && (DECL_VISIBILITY (vnode->decl) == VISIBILITY_HIDDEN || DECL_VISIBILITY (vnode->decl) == VISIBILITY_INTERNAL) /* Be sure that node is defined in IR file, not in other object file. In that case we don't set used_from_other_object_file. */ && vnode->finalized) ; else if (!flag_whole_program) return true; /* Do not attempt to privatize COMDATS by default. This would break linking with C++ libraries sharing inline definitions. FIXME: We can do so for readonly vars with no address taken and possibly also for vtables since no direct pointer comparsion is done. It might be interesting to do so to reduce linking overhead. */ if (DECL_COMDAT (vnode->decl) || DECL_WEAK (vnode->decl)) return true; return false; } /* Dissolve the same_comdat_group list in which NODE resides. */ static void dissolve_same_comdat_group_list (struct cgraph_node *node) { struct cgraph_node *n = node, *next; do { next = n->same_comdat_group; n->same_comdat_group = NULL; n = next; } while (n != node); } /* Mark visibility of all functions. A local function is one whose calls can occur only in the current compilation unit and all its calls are explicit, so we can change its calling convention. We simply mark all static functions whose address is not taken as local. We also change the TREE_PUBLIC flag of all declarations that are public in language point of view but we want to overwrite this default via visibilities for the backend point of view. */ static unsigned int function_and_variable_visibility (bool whole_program) { struct cgraph_node *node; struct varpool_node *vnode; struct pointer_set_t *aliased_nodes = pointer_set_create (); struct pointer_set_t *aliased_vnodes = pointer_set_create (); unsigned i; alias_pair *p; /* Discover aliased nodes. */ FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p) { if (dump_file) fprintf (dump_file, "Alias %s->%s", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (p->decl)), IDENTIFIER_POINTER (p->target)); if ((node = cgraph_node_for_asm (p->target)) != NULL) { gcc_assert (node->needed); pointer_set_insert (aliased_nodes, node); if (dump_file) fprintf (dump_file, " node %s/%i", cgraph_node_name (node), node->uid); } else if ((vnode = varpool_node_for_asm (p->target)) != NULL) { gcc_assert (vnode->needed); pointer_set_insert (aliased_vnodes, vnode); if (dump_file) fprintf (dump_file, " varpool node %s", varpool_node_name (vnode)); } if (dump_file) fprintf (dump_file, "\n"); } for (node = cgraph_nodes; node; node = node->next) { int flags = flags_from_decl_or_type (node->decl); if (optimize && (flags & (ECF_CONST | ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE)) { DECL_STATIC_CONSTRUCTOR (node->decl) = 0; DECL_STATIC_DESTRUCTOR (node->decl) = 0; } /* C++ FE on lack of COMDAT support create local COMDAT functions (that ought to be shared but can not due to object format limitations). It is neccesary to keep the flag to make rest of C++ FE happy. Clear the flag here to avoid confusion in middle-end. */ if (DECL_COMDAT (node->decl) && !TREE_PUBLIC (node->decl)) DECL_COMDAT (node->decl) = 0; /* For external decls stop tracking same_comdat_group, it doesn't matter what comdat group they are in when they won't be emitted in this TU, and simplifies later passes. */ if (node->same_comdat_group && DECL_EXTERNAL (node->decl)) { #ifdef ENABLE_CHECKING struct cgraph_node *n; for (n = node->same_comdat_group; n != node; n = n->same_comdat_group) /* If at least one of same comdat group functions is external, all of them have to be, otherwise it is a front-end bug. */ gcc_assert (DECL_EXTERNAL (n->decl)); #endif dissolve_same_comdat_group_list (node); } gcc_assert ((!DECL_WEAK (node->decl) && !DECL_COMDAT (node->decl)) || TREE_PUBLIC (node->decl) || DECL_EXTERNAL (node->decl)); if (cgraph_externally_visible_p (node, whole_program, pointer_set_contains (aliased_nodes, node))) { gcc_assert (!node->global.inlined_to); node->local.externally_visible = true; } else node->local.externally_visible = false; if (!node->local.externally_visible && node->analyzed && !DECL_EXTERNAL (node->decl)) { struct cgraph_node *alias; gcc_assert (whole_program || in_lto_p || !TREE_PUBLIC (node->decl)); cgraph_make_decl_local (node->decl); node->resolution = LDPR_PREVAILING_DEF_IRONLY; for (alias = node->same_body; alias; alias = alias->next) cgraph_make_decl_local (alias->decl); if (node->same_comdat_group) /* cgraph_externally_visible_p has already checked all other nodes in the group and they will all be made local. We need to dissolve the group at once so that the predicate does not segfault though. */ dissolve_same_comdat_group_list (node); } node->local.local = cgraph_local_node_p (node); } for (vnode = varpool_nodes; vnode; vnode = vnode->next) { /* weak flag makes no sense on local variables. */ gcc_assert (!DECL_WEAK (vnode->decl) || TREE_PUBLIC (vnode->decl) || DECL_EXTERNAL (vnode->decl)); /* In several cases declarations can not be common: - when declaration has initializer - when it is in weak - when it has specific section - when it resides in non-generic address space. - if declaration is local, it will get into .local common section so common flag is not needed. Frontends still produce these in certain cases, such as for: static int a __attribute__ ((common)) Canonicalize things here and clear the redundant flag. */ if (DECL_COMMON (vnode->decl) && (!(TREE_PUBLIC (vnode->decl) || DECL_EXTERNAL (vnode->decl)) || (DECL_INITIAL (vnode->decl) && DECL_INITIAL (vnode->decl) != error_mark_node) || DECL_WEAK (vnode->decl) || DECL_SECTION_NAME (vnode->decl) != NULL || ! (ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (TREE_TYPE (vnode->decl)))))) DECL_COMMON (vnode->decl) = 0; } for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed) { if (!vnode->finalized) continue; if (vnode->needed && varpool_externally_visible_p (vnode, pointer_set_contains (aliased_vnodes, vnode))) vnode->externally_visible = true; else vnode->externally_visible = false; if (!vnode->externally_visible) { gcc_assert (in_lto_p || whole_program || !TREE_PUBLIC (vnode->decl)); cgraph_make_decl_local (vnode->decl); vnode->resolution = LDPR_PREVAILING_DEF_IRONLY; } gcc_assert (TREE_STATIC (vnode->decl)); } pointer_set_destroy (aliased_nodes); pointer_set_destroy (aliased_vnodes); if (dump_file) { fprintf (dump_file, "\nMarking local functions:"); for (node = cgraph_nodes; node; node = node->next) if (node->local.local) fprintf (dump_file, " %s", cgraph_node_name (node)); fprintf (dump_file, "\n\n"); fprintf (dump_file, "\nMarking externally visible functions:"); for (node = cgraph_nodes; node; node = node->next) if (node->local.externally_visible) fprintf (dump_file, " %s", cgraph_node_name (node)); fprintf (dump_file, "\n\n"); fprintf (dump_file, "\nMarking externally visible variables:"); for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed) if (vnode->externally_visible) fprintf (dump_file, " %s", varpool_node_name (vnode)); fprintf (dump_file, "\n\n"); } cgraph_function_flags_ready = true; return 0; } /* Local function pass handling visibilities. This happens before LTO streaming so in particular -fwhole-program should be ignored at this level. */ static unsigned int local_function_and_variable_visibility (void) { return function_and_variable_visibility (flag_whole_program && !flag_lto); } struct simple_ipa_opt_pass pass_ipa_function_and_variable_visibility = { { SIMPLE_IPA_PASS, "visibility", /* name */ NULL, /* gate */ local_function_and_variable_visibility,/* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_CGRAPHOPT, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_remove_functions | TODO_dump_cgraph | TODO_ggc_collect /* todo_flags_finish */ } }; /* Do not re-run on ltrans stage. */ static bool gate_whole_program_function_and_variable_visibility (void) { return !flag_ltrans; } /* Bring functionss local at LTO time whith -fwhole-program. */ static unsigned int whole_program_function_and_variable_visibility (void) { struct cgraph_node *node; struct varpool_node *vnode; function_and_variable_visibility (flag_whole_program); for (node = cgraph_nodes; node; node = node->next) if ((node->local.externally_visible && !DECL_COMDAT (node->decl)) && node->local.finalized) cgraph_mark_needed_node (node); for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed) if (vnode->externally_visible && !DECL_COMDAT (vnode->decl)) varpool_mark_needed_node (vnode); if (dump_file) { fprintf (dump_file, "\nNeeded variables:"); for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed) if (vnode->needed) fprintf (dump_file, " %s", varpool_node_name (vnode)); fprintf (dump_file, "\n\n"); } if (optimize) ipa_discover_readonly_nonaddressable_vars (); return 0; } struct ipa_opt_pass_d pass_ipa_whole_program_visibility = { { IPA_PASS, "whole-program", /* name */ gate_whole_program_function_and_variable_visibility,/* gate */ whole_program_function_and_variable_visibility,/* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_CGRAPHOPT, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_remove_functions | TODO_dump_cgraph | TODO_ggc_collect /* todo_flags_finish */ }, NULL, /* generate_summary */ NULL, /* write_summary */ NULL, /* read_summary */ NULL, /* write_optimization_summary */ NULL, /* read_optimization_summary */ NULL, /* stmt_fixup */ 0, /* TODOs */ NULL, /* function_transform */ NULL, /* variable_transform */ }; /* Hash a cgraph node set element. */ static hashval_t hash_cgraph_node_set_element (const void *p) { const_cgraph_node_set_element element = (const_cgraph_node_set_element) p; return htab_hash_pointer (element->node); } /* Compare two cgraph node set elements. */ static int eq_cgraph_node_set_element (const void *p1, const void *p2) { const_cgraph_node_set_element e1 = (const_cgraph_node_set_element) p1; const_cgraph_node_set_element e2 = (const_cgraph_node_set_element) p2; return e1->node == e2->node; } /* Create a new cgraph node set. */ cgraph_node_set cgraph_node_set_new (void) { cgraph_node_set new_node_set; new_node_set = ggc_alloc_cgraph_node_set_def (); new_node_set->hashtab = htab_create_ggc (10, hash_cgraph_node_set_element, eq_cgraph_node_set_element, NULL); new_node_set->nodes = NULL; return new_node_set; } /* Add cgraph_node NODE to cgraph_node_set SET. */ void cgraph_node_set_add (cgraph_node_set set, struct cgraph_node *node) { void **slot; cgraph_node_set_element element; struct cgraph_node_set_element_def dummy; dummy.node = node; slot = htab_find_slot (set->hashtab, &dummy, INSERT); if (*slot != HTAB_EMPTY_ENTRY) { element = (cgraph_node_set_element) *slot; gcc_assert (node == element->node && (VEC_index (cgraph_node_ptr, set->nodes, element->index) == node)); return; } /* Insert node into hash table. */ element = ggc_alloc_cgraph_node_set_element_def (); element->node = node; element->index = VEC_length (cgraph_node_ptr, set->nodes); *slot = element; /* Insert into node vector. */ VEC_safe_push (cgraph_node_ptr, gc, set->nodes, node); } /* Remove cgraph_node NODE from cgraph_node_set SET. */ void cgraph_node_set_remove (cgraph_node_set set, struct cgraph_node *node) { void **slot, **last_slot; cgraph_node_set_element element, last_element; struct cgraph_node *last_node; struct cgraph_node_set_element_def dummy; dummy.node = node; slot = htab_find_slot (set->hashtab, &dummy, NO_INSERT); if (slot == NULL) return; element = (cgraph_node_set_element) *slot; gcc_assert (VEC_index (cgraph_node_ptr, set->nodes, element->index) == node); /* Remove from vector. We do this by swapping node with the last element of the vector. */ last_node = VEC_pop (cgraph_node_ptr, set->nodes); if (last_node != node) { dummy.node = last_node; last_slot = htab_find_slot (set->hashtab, &dummy, NO_INSERT); last_element = (cgraph_node_set_element) *last_slot; gcc_assert (last_element); /* Move the last element to the original spot of NODE. */ last_element->index = element->index; VEC_replace (cgraph_node_ptr, set->nodes, last_element->index, last_node); } /* Remove element from hash table. */ htab_clear_slot (set->hashtab, slot); ggc_free (element); } /* Find NODE in SET and return an iterator to it if found. A null iterator is returned if NODE is not in SET. */ cgraph_node_set_iterator cgraph_node_set_find (cgraph_node_set set, struct cgraph_node *node) { void **slot; struct cgraph_node_set_element_def dummy; cgraph_node_set_element element; cgraph_node_set_iterator csi; dummy.node = node; slot = htab_find_slot (set->hashtab, &dummy, NO_INSERT); if (slot == NULL) csi.index = (unsigned) ~0; else { element = (cgraph_node_set_element) *slot; gcc_assert (VEC_index (cgraph_node_ptr, set->nodes, element->index) == node); csi.index = element->index; } csi.set = set; return csi; } /* Dump content of SET to file F. */ void dump_cgraph_node_set (FILE *f, cgraph_node_set set) { cgraph_node_set_iterator iter; for (iter = csi_start (set); !csi_end_p (iter); csi_next (&iter)) { struct cgraph_node *node = csi_node (iter); fprintf (f, " %s/%i", cgraph_node_name (node), node->uid); } fprintf (f, "\n"); } /* Dump content of SET to stderr. */ DEBUG_FUNCTION void debug_cgraph_node_set (cgraph_node_set set) { dump_cgraph_node_set (stderr, set); } /* Hash a varpool node set element. */ static hashval_t hash_varpool_node_set_element (const void *p) { const_varpool_node_set_element element = (const_varpool_node_set_element) p; return htab_hash_pointer (element->node); } /* Compare two varpool node set elements. */ static int eq_varpool_node_set_element (const void *p1, const void *p2) { const_varpool_node_set_element e1 = (const_varpool_node_set_element) p1; const_varpool_node_set_element e2 = (const_varpool_node_set_element) p2; return e1->node == e2->node; } /* Create a new varpool node set. */ varpool_node_set varpool_node_set_new (void) { varpool_node_set new_node_set; new_node_set = ggc_alloc_varpool_node_set_def (); new_node_set->hashtab = htab_create_ggc (10, hash_varpool_node_set_element, eq_varpool_node_set_element, NULL); new_node_set->nodes = NULL; return new_node_set; } /* Add varpool_node NODE to varpool_node_set SET. */ void varpool_node_set_add (varpool_node_set set, struct varpool_node *node) { void **slot; varpool_node_set_element element; struct varpool_node_set_element_def dummy; dummy.node = node; slot = htab_find_slot (set->hashtab, &dummy, INSERT); if (*slot != HTAB_EMPTY_ENTRY) { element = (varpool_node_set_element) *slot; gcc_assert (node == element->node && (VEC_index (varpool_node_ptr, set->nodes, element->index) == node)); return; } /* Insert node into hash table. */ element = ggc_alloc_varpool_node_set_element_def (); element->node = node; element->index = VEC_length (varpool_node_ptr, set->nodes); *slot = element; /* Insert into node vector. */ VEC_safe_push (varpool_node_ptr, gc, set->nodes, node); } /* Remove varpool_node NODE from varpool_node_set SET. */ void varpool_node_set_remove (varpool_node_set set, struct varpool_node *node) { void **slot, **last_slot; varpool_node_set_element element, last_element; struct varpool_node *last_node; struct varpool_node_set_element_def dummy; dummy.node = node; slot = htab_find_slot (set->hashtab, &dummy, NO_INSERT); if (slot == NULL) return; element = (varpool_node_set_element) *slot; gcc_assert (VEC_index (varpool_node_ptr, set->nodes, element->index) == node); /* Remove from vector. We do this by swapping node with the last element of the vector. */ last_node = VEC_pop (varpool_node_ptr, set->nodes); if (last_node != node) { dummy.node = last_node; last_slot = htab_find_slot (set->hashtab, &dummy, NO_INSERT); last_element = (varpool_node_set_element) *last_slot; gcc_assert (last_element); /* Move the last element to the original spot of NODE. */ last_element->index = element->index; VEC_replace (varpool_node_ptr, set->nodes, last_element->index, last_node); } /* Remove element from hash table. */ htab_clear_slot (set->hashtab, slot); ggc_free (element); } /* Find NODE in SET and return an iterator to it if found. A null iterator is returned if NODE is not in SET. */ varpool_node_set_iterator varpool_node_set_find (varpool_node_set set, struct varpool_node *node) { void **slot; struct varpool_node_set_element_def dummy; varpool_node_set_element element; varpool_node_set_iterator vsi; dummy.node = node; slot = htab_find_slot (set->hashtab, &dummy, NO_INSERT); if (slot == NULL) vsi.index = (unsigned) ~0; else { element = (varpool_node_set_element) *slot; gcc_assert (VEC_index (varpool_node_ptr, set->nodes, element->index) == node); vsi.index = element->index; } vsi.set = set; return vsi; } /* Dump content of SET to file F. */ void dump_varpool_node_set (FILE *f, varpool_node_set set) { varpool_node_set_iterator iter; for (iter = vsi_start (set); !vsi_end_p (iter); vsi_next (&iter)) { struct varpool_node *node = vsi_node (iter); fprintf (f, " %s", varpool_node_name (node)); } fprintf (f, "\n"); } /* Dump content of SET to stderr. */ DEBUG_FUNCTION void debug_varpool_node_set (varpool_node_set set) { dump_varpool_node_set (stderr, set); } /* Simple ipa profile pass propagating frequencies across the callgraph. */ static unsigned int ipa_profile (void) { struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); struct cgraph_edge *e; int order_pos; bool something_changed = false; int i; order_pos = cgraph_postorder (order); for (i = order_pos - 1; i >= 0; i--) { if (order[i]->local.local && cgraph_propagate_frequency (order[i])) { for (e = order[i]->callees; e; e = e->next_callee) if (e->callee->local.local && !e->callee->aux) { something_changed = true; e->callee->aux = (void *)1; } } order[i]->aux = NULL; } while (something_changed) { something_changed = false; for (i = order_pos - 1; i >= 0; i--) { if (order[i]->aux && cgraph_propagate_frequency (order[i])) { for (e = order[i]->callees; e; e = e->next_callee) if (e->callee->local.local && !e->callee->aux) { something_changed = true; e->callee->aux = (void *)1; } } order[i]->aux = NULL; } } free (order); return 0; } static bool gate_ipa_profile (void) { return flag_ipa_profile; } struct ipa_opt_pass_d pass_ipa_profile = { { IPA_PASS, "ipa-profile", /* name */ gate_ipa_profile, /* gate */ ipa_profile, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_IPA_PROFILE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0 /* todo_flags_finish */ }, NULL, /* generate_summary */ NULL, /* write_summary */ NULL, /* read_summary */ NULL, /* write_optimization_summary */ NULL, /* read_optimization_summary */ NULL, /* stmt_fixup */ 0, /* TODOs */ NULL, /* function_transform */ NULL /* variable_transform */ }; /* Generate and emit a static constructor or destructor. WHICH must be one of 'I' (for a constructor) or 'D' (for a destructor). BODY is a STATEMENT_LIST containing GENERIC statements. PRIORITY is the initialization priority for this constructor or destructor. */ void cgraph_build_static_cdtor (char which, tree body, int priority) { static int counter = 0; char which_buf[16]; tree decl, name, resdecl; /* The priority is encoded in the constructor or destructor name. collect2 will sort the names and arrange that they are called at program startup. */ sprintf (which_buf, "%c_%.5d_%d", which, priority, counter++); name = get_file_function_name (which_buf); decl = build_decl (input_location, FUNCTION_DECL, name, build_function_type_list (void_type_node, NULL_TREE)); current_function_decl = decl; resdecl = build_decl (input_location, RESULT_DECL, NULL_TREE, void_type_node); DECL_ARTIFICIAL (resdecl) = 1; DECL_RESULT (decl) = resdecl; DECL_CONTEXT (resdecl) = decl; allocate_struct_function (decl, false); TREE_STATIC (decl) = 1; TREE_USED (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl) = 1; DECL_SAVED_TREE (decl) = body; if (!targetm.have_ctors_dtors) { TREE_PUBLIC (decl) = 1; DECL_PRESERVE_P (decl) = 1; } DECL_UNINLINABLE (decl) = 1; DECL_INITIAL (decl) = make_node (BLOCK); TREE_USED (DECL_INITIAL (decl)) = 1; DECL_SOURCE_LOCATION (decl) = input_location; cfun->function_end_locus = input_location; switch (which) { case 'I': DECL_STATIC_CONSTRUCTOR (decl) = 1; decl_init_priority_insert (decl, priority); break; case 'D': DECL_STATIC_DESTRUCTOR (decl) = 1; decl_fini_priority_insert (decl, priority); break; default: gcc_unreachable (); } gimplify_function_tree (decl); cgraph_add_new_function (decl, false); set_cfun (NULL); current_function_decl = NULL; } /* A vector of FUNCTION_DECLs declared as static constructors. */ static VEC(tree, heap) *static_ctors; /* A vector of FUNCTION_DECLs declared as static destructors. */ static VEC(tree, heap) *static_dtors; /* When target does not have ctors and dtors, we call all constructor and destructor by special initialization/destruction function recognized by collect2. When we are going to build this function, collect all constructors and destructors and turn them into normal functions. */ static void record_cdtor_fn (struct cgraph_node *node) { if (DECL_STATIC_CONSTRUCTOR (node->decl)) VEC_safe_push (tree, heap, static_ctors, node->decl); if (DECL_STATIC_DESTRUCTOR (node->decl)) VEC_safe_push (tree, heap, static_dtors, node->decl); node = cgraph_node (node->decl); node->local.disregard_inline_limits = 1; } /* Define global constructors/destructor functions for the CDTORS, of which they are LEN. The CDTORS are sorted by initialization priority. If CTOR_P is true, these are constructors; otherwise, they are destructors. */ static void build_cdtor (bool ctor_p, VEC (tree, heap) *cdtors) { size_t i,j; size_t len = VEC_length (tree, cdtors); i = 0; while (i < len) { tree body; tree fn; priority_type priority; priority = 0; body = NULL_TREE; j = i; do { priority_type p; fn = VEC_index (tree, cdtors, j); p = ctor_p ? DECL_INIT_PRIORITY (fn) : DECL_FINI_PRIORITY (fn); if (j == i) priority = p; else if (p != priority) break; j++; } while (j < len); /* When there is only one cdtor and target supports them, do nothing. */ if (j == i + 1 && targetm.have_ctors_dtors) { i++; continue; } /* Find the next batch of constructors/destructors with the same initialization priority. */ for (;i < j; i++) { tree call; fn = VEC_index (tree, cdtors, i); call = build_call_expr (fn, 0); if (ctor_p) DECL_STATIC_CONSTRUCTOR (fn) = 0; else DECL_STATIC_DESTRUCTOR (fn) = 0; /* We do not want to optimize away pure/const calls here. When optimizing, these should be already removed, when not optimizing, we want user to be able to breakpoint in them. */ TREE_SIDE_EFFECTS (call) = 1; append_to_statement_list (call, &body); } gcc_assert (body != NULL_TREE); /* Generate a function to call all the function of like priority. */ cgraph_build_static_cdtor (ctor_p ? 'I' : 'D', body, priority); } } /* Comparison function for qsort. P1 and P2 are actually of type "tree *" and point to static constructors. DECL_INIT_PRIORITY is used to determine the sort order. */ static int compare_ctor (const void *p1, const void *p2) { tree f1; tree f2; int priority1; int priority2; f1 = *(const tree *)p1; f2 = *(const tree *)p2; priority1 = DECL_INIT_PRIORITY (f1); priority2 = DECL_INIT_PRIORITY (f2); if (priority1 < priority2) return -1; else if (priority1 > priority2) return 1; else /* Ensure a stable sort. Constructors are executed in backwarding order to make LTO initialize braries first. */ return DECL_UID (f2) - DECL_UID (f1); } /* Comparison function for qsort. P1 and P2 are actually of type "tree *" and point to static destructors. DECL_FINI_PRIORITY is used to determine the sort order. */ static int compare_dtor (const void *p1, const void *p2) { tree f1; tree f2; int priority1; int priority2; f1 = *(const tree *)p1; f2 = *(const tree *)p2; priority1 = DECL_FINI_PRIORITY (f1); priority2 = DECL_FINI_PRIORITY (f2); if (priority1 < priority2) return -1; else if (priority1 > priority2) return 1; else /* Ensure a stable sort. */ return DECL_UID (f1) - DECL_UID (f2); } /* Generate functions to call static constructors and destructors for targets that do not support .ctors/.dtors sections. These functions have magic names which are detected by collect2. */ static void build_cdtor_fns (void) { if (!VEC_empty (tree, static_ctors)) { gcc_assert (!targetm.have_ctors_dtors || in_lto_p); VEC_qsort (tree, static_ctors, compare_ctor); build_cdtor (/*ctor_p=*/true, static_ctors); } if (!VEC_empty (tree, static_dtors)) { gcc_assert (!targetm.have_ctors_dtors || in_lto_p); VEC_qsort (tree, static_dtors, compare_dtor); build_cdtor (/*ctor_p=*/false, static_dtors); } } /* Look for constructors and destructors and produce function calling them. This is needed for targets not supporting ctors or dtors, but we perform the transformation also at linktime to merge possibly numberous constructors/destructors into single function to improve code locality and reduce size. */ static unsigned int ipa_cdtor_merge (void) { struct cgraph_node *node; for (node = cgraph_nodes; node; node = node->next) if (node->analyzed && (DECL_STATIC_CONSTRUCTOR (node->decl) || DECL_STATIC_DESTRUCTOR (node->decl))) record_cdtor_fn (node); build_cdtor_fns (); VEC_free (tree, heap, static_ctors); VEC_free (tree, heap, static_dtors); return 0; } /* Perform the pass when we have no ctors/dtors support or at LTO time to merge multiple constructors into single function. */ static bool gate_ipa_cdtor_merge (void) { return !targetm.have_ctors_dtors || (optimize && in_lto_p); } struct ipa_opt_pass_d pass_ipa_cdtor_merge = { { IPA_PASS, "cdtor", /* name */ gate_ipa_cdtor_merge, /* gate */ ipa_cdtor_merge, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_CGRAPHOPT, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0 /* todo_flags_finish */ }, NULL, /* generate_summary */ NULL, /* write_summary */ NULL, /* read_summary */ NULL, /* write_optimization_summary */ NULL, /* read_optimization_summary */ NULL, /* stmt_fixup */ 0, /* TODOs */ NULL, /* function_transform */ NULL /* variable_transform */ };